
VisualRDR: A general framework for creating,
maintaining and learning of ripple down rules for

Information Extraction

Delip Rao Sachindra Joshi Ganesh Ramakrishnan Sreeram Balakrishnan
Ashwin Srinivasan

Department of Computer Science and Engineering
Indian Institute of Technology Madras

Chennai-600036
India

email: delip@cse.iitm.ernet.in

Abstract

The problem facing the industry and the com-
mon user today is that of an information glut.
Large amounts of useful information, in vari-
ous forms, are being generated mostly for hu-
man consumption. This deluge of information
requires us to find ways of gathering informa-
tion from such unstructured sources with as
little manual intervention as possible. This
has been made possible by information ex-
traction. In this paper we propose a novel
knowledge-based approach to information ex-
traction. We demonstrate how this knowledge
for information extraction can be accrued in
an incremental fashion.

1 Introduction

Information comes in various forms from various
sources including, but not limited to, product man-
uals, FAQs, man-pages, websites, weblogs, email and
news articles. The information thus generated is dy-
namic. Further to complicate matters, the information
in most cases is generated for manual viewing where
style and language occlude automatic perception of in-
formation. At the time of this writing, Google [1] alone
indexes more than eight billion pages. Much more in-
formation than this exists in offline form. Manually
perusing through this sea of unstructured sources for
extracting information is an infeasible task. This mo-
tivates the need for techniques that automatically ex-
tract relevant information and present them in a struc-
tured format to enable querying or further processing.
Information extraction is the task of identifying and

Submitted to COMAD 2005b.
Copyright information will be provided later

extracting relevant information from an unstructured
source. The information extraction (IE) task can be
formally defined as follows [18]:

“Given a set of structured elements E (tar-
get schema) and an unstructured source S,
extract all instances of E from S.”

In general, there are two approaches to building in-
formation extraction systems: the knowledge engineer-
ing approach and the trainable system approach [3].
The knowledge engineering approach refers to manual
development of rules (or grammars) for IE by “Knowl-
edge Engineers”. The advantage of such a system is
that, with skill and experience, it is possible to achieve
good performance. Also the resulting knowledge base
is very compact and comprehensible. But the flip side
is that the manual rule development process, although
easy, is very laborious.

The strengths and weaknesses of the automatic
training approach are contrary to those of the knowl-
edge engineering approach. The focus here is on pro-
ducing training data instead of producing rules. This
training data is used to learn a model that could be
used to process novel instances. With the help of
domain-experts to annotate texts, systems can be cus-
tomized to a specific domain without any intervention
from the developers. The success of this method de-
pends on the availability of good training data. An-
notated training data may be sparse, or difficult and
expensive to obtain. Despite this, contemporary work
focuses on the automatic learning aiming to alleviate
the aforementioned problems.

Recent study by Ireson et al [15] shows that the
adoption of a machine learning algorithm, in itself,
does not provide a guaranteed advantage in infor-
mation extraction. Hence we aim to bring the best
of both worlds together by combining the trainable

system approach and the knowledge engineering ap-
proach. We propose a framework for acquiring rules
for information extraction which can later be refined
by a knowledge engineer to “tune” the system for high
performance. This is based on Compton et al’s semi-
nal work [6] on a knowledge acquisition methodology
called the Ripple Down Rules (RDR). Our inspiration
to use ripple down rules comes from its rich structure
due to exceptions. Exceptions allow addition of knowl-
edge with out breaking the previous rules.

Section 2 describes the prior art in Information Ex-
traction systems. Section 3 introduces the knowledge
acquisition framework for information extraction. Al-
though the focus of this paper is on using ripple down
rules for information extraction, in Section 4, we also
give method of automatically learning such rules from
raw corpus. The knowledge acquisition framework was
implemented as a visual tool, called VisualRDR. Sec-
tion 5 describes VisualRDR. The experiments and the
results of using RDR for information extraction are
detailed in Section 6.

2 Information Extraction

In this section we provide a synoptic view of some
of the existing work on information extraction. In-
formation extraction approaches for the purpose of
this study is roughly classified into pattern based ap-
proaches and statistical approaches.

2.1 Pattern based approaches

The basic idea behind pattern based approaches is
to learn patterns that extract the relevant informa-
tion. The information extraction process is treated as
a process of slot-filling. The patterns (or rules) can be
used either for single slot extraction or multi slot ex-
traction. In multi slot extraction the extraction rules
are able to link together related information, as op-
posed to single slot rules that can only extract isolated
data (e.g. in a document that contains several names
and addresses, single-slot rules can not specify what
the address of a particular person is). Section 3 lists
some examples of such systems.

2.2 Statistical approaches

Machine learning methods using Naive Bayes, Sup-
port Vector Machines (SVM), Hidden Markov Mod-
els (HMM), Conditional Random Fields (CRF) and
Semi Markov CRFs have been applied to information
extraction. In the Naive Bayes method [9] we treat
the document as a bag of words and totally ignore
the linguistic structure of the document and a priori
probabilities are estimated using weights taken as the
TF-IDF measure of the words. Experiments have been
done to study the possibility of using support vector
machines in information integration. Features from

the document/sentence are extracted and classified us-
ing an SVM classifier. Hidden Markov Models are
a powerful probabilistic tool for time series data and
have been successfully applied to problems in speech
and text processing. Recently, McCallum et al [14]
have used HMMs to extract information from natural
language text. They alleviate the large training data
requirement by HMMs using a statistical technique
called shrinkage. Peng et al [16] have used conditional
random fields to extract information from scientific pa-
pers and Sarawagi et al [19] demonstrate the possibil-
ity of using semi Markov conditional random fields.

3 Knowledge acquisition for Informa-
tion Extraction

Knowledge acquisition is “the transfer and transforma-
tion of potential problem-solving expertise from some
knowledge source to a program.” [4] Knowledge ac-
quisition is performed by knowledge engineering tech-
niques. Knowledge engineering is “the process of re-
ducing a large body of knowledge to a precise set of
facts and rules.” [8]

The information extraction task can be solved us-
ing a knowledge based approach. Explicit rules could
be elucidated for extracting information from unstruc-
tured sources. Several efforts in the past have made
use of rules for information extraction. Some exam-
ples include, AUTOSLOG [17], LIEP [12] and CRYS-
TAL [22], WHISK [21], RAPIER [5] and SRV [10]. All
these systems suffer from the maintainability problems
pointed by [7].

We use the knowledge acquisition methodology pro-
posed by Compton et al [6] called Ripple Down Rules
(RDR). The main advantages of using RDR is that

1. RDR enable incremental acquisition of rules.

2. Rules are acquired in context

3. Rule based systems modeled on RDR are
amenable to easy maintainance.

3.1 Ripple Down Rules

Ripple down rules (RDR) is a knowledge acquisition
methodology and a way of structuring knowledge bases
which grew out of long term experience of maintaining
an expert system , GARVIN-ESI by Compton et al [6].
In the RDR framework, the human expert’s knowledge
is acquired based on the current context and is added
incrementally. Ripple Down Rules consist of rules
which form a tree structure. Many rules in RDR are
exceptions to other rules. Ripple down rules method-
ology allows incremental changes to knowledge base
without causing unwanted side effects to the existing
knowledge base. Compton et al have shown [7] that
this approach allows clear separation of the knowledge
engineering and domain expertise. This enables do-
main experts to change the knowledge base without

the need of a knowledge engineer. The root of the tree
provides a default conclusion if the rule linked to the
child is not satisfied for a particular case. Whenever
an RDR incorrectly classifies a case or fails to classify
a case, a rule is added. When a rule is added to the
RDR structure, the case that prompted the rule is also
stored with the rule. These cases are called “corner-
stone cases.” Apart from providing contextual infor-
mation, later we shall see that the cornerstone cases
are also useful in on the fly validation. Inferencing
in RDR is very simple. Whenever a case is satisfied
by the rule which does not have a dependent, i.e. no
branches, the conclusion associated with that rule is
asserted. On the other hand, if the rule has a TRUE
branch then that branch condition is also tested in a
depth-first manner. The conclusion of the most deep-
est satisfying node is returned as the result. If no rule
satisfies the case, except the default rule, then an ex-
ception branch is added to the default rule and a new
rule is created. As always, with every new rule we also
store the cornerstone case that actuated the creation
of that new rule.

3.2 RDR for information extraction

Simple regular expression based patterns based on fea-
tures in the text could be written for extracting infor-
mation. We can organize the rules in the ripple down
representation with the more generic rules at the top
having child rules that further specialize them. We
represent the rules for information extraction in XML
format. The schema for our representation is shown
below.

<!DOCTYPE KNOWLEDGE [
<!ELEMENT KNOWLEDGE (RULE+)>
<!ELEMENT RULE (CONTEXT, CONCLUSION,

CSCASE+, EXCEPTION)>
<!ELEMENT CONTEXT (#PCDATA)>
<!ELEMENT CONCLUSION (#PCDATA)>
<!ELEMENT CSCASE (LOCATION)>
<!ELEMENT EXCEPTION (RULE+)>
<!ELEMENT LOCATION (#PCDATA)>

<!ATTLIST RULE ID CDATA #REQUIRED>
<!ATTLIST CSCASE ID CDATA #REQUIRED>
]>

3.3 On the fly validation

It was realized that the error rate could be eliminated
by validating the rules as they were added [6]. Every
time a new rule is added, the cornerstone cases could
be used to verify if the new rule did not inadvertently
break previously existing rules. Thus each time a new
rule is added, we verify if the cornerstone cases still
continue to be satisfied by the rules which were orig-
inally created to cater to them. Instances where this
does not happen is flagged to the user as potential

Figure 1: Information Extraction Process

problems. The user can then choose to modify the
newly added rule or refine the existing rules. This
ensures that the knowledge base is consistent at all
times.

3.4 Our approach to information extraction

We identify and distinctly seperate the tasks
of entity identification and information extrac-
tion. The raw corpus is run through a rule
based named-entity (NE) recogonizer (Ref?).
The NE annotator identifies enitities like
NAME, PERSON, DATE, AMOUNT, ORGANIZATION
etc.

Ganesh feel free to add more here about the
NE annotator.

We then write regular expression patterns (rules)
over the annotated document. For example, the pat-
tern ORGANIZATION.*sold.*ORGANIZATION would im-
ply the organization on the left sold something to the
organization on the right. This process is outlined in
Figure 1.

4 Learning of RDR

It is clear that Ripple Down Rules is an efficient way
to organize rule based systems. Creation of these rules
however could be a time-consuming task, especially
when we have large amounts of data and we need to
write rules that cover them. This is true of informa-
tion extraction systems which have to deal with large
corpora. We propose to glean these rules from the cor-
pus and construct an RDR tree from it. Several efforts
in the past, including, INDUCT [11], Cut95 [20] have
addressed the problem of learning RDR from training
data.

Figure 2: Learning of Ripple Down Rules

Figure 2 illustrates our methodology. In order to
learn we start with an annotated corpus. We split
the annotated corpus into a test and training data set.
RDR is induced from the training data set and test set
is used for validation of the learnt RDR. The RDR is
said to cover a case if it accepts the case.

The steps in learning the RDR are as follows:

1. The corpus is tagged and entity annotated.

2. Extract features between interested entities.

3. These features are clustered on some criterion
such that all similar patterns fall in the same clus-
ter.

4. Find a regular expression for each cluster and
build a first level RDR using the regular expres-
sions corresponding to each cluster.

5. Now pass the training data again through this first
level RDR.

6. At each node where misclassifications happen,
take all the misclassified instances at that node
and repeat the above algorithm (step 3 onwards)
till there is no appreciable reduction in perfor-
mance is observed.

5 VisualRDR

We implement information extraction in a visual
framework, called VisualRDR, for easy creation, main-
tenance and learning Ripple Down Rules. The tool has
to be general enough to support any application that
uses RDR. To enable this a plugin based architecture
is designed. Where the actual task to be preformed by
the rules is factored out into externally loadable plu-
gins. Users of the tool can extend it to applications
other than information extraction by writing appro-
priate plugins. Further, we provide facilities to learn
RDRs if the application wishes to do so. Since ripple
down rules are highly interactive, we envision knowl-
edge engineers to manually add, modify and delete
rules. Any modifications to the rule base should be
reflected immediately in the GUI and the tool should
be able to point out if any rules broke-down due to
changes made. The following features were identified
to be core for any RDR based application.

1. Create a new RDR

2. Edit an RDR

3. Use an RDR against a set of cases

4. On the fly validation

Optionally, we could also add capability to automati-
cally learn the rules. Again, the exact method of rule
learning is left to the user.

5.1 Creating new rules

New rules are added to the ripple down rule structure
as exception. Every new rule added has to be an ex-
ception to a previously existing rule, which the newly
added rule specializes. In case there is no rule relavent
to the current case then the new rule is added as an
exception to the default rule, which is the root of the
ripple down tree. Figure 3 shows the VisualRDR in-

Figure 3: Adding exception

terface for adding rules.

5.2 Editing an RDR

VisualRDR supports manual editing of ripple down
rules as any knowledge base system will inevitably in-
volve a human in the loop. The interfaces are kept
simple so that any domain-expert can easily modify,
add or delete the rules without the need of a knowl-
edge engineer. We ensure the consistency of the knowl-
edge base is not perturbed during each edit operation
by providing appropriate visual cues using on the fly
validation.

Figure 4: Editing of rules in VisualRDR

5.3 Using the RDR

VisualRDR operates in two modes, batch and single.
In the batch mode, an entire collection of cases could
be classified using the RDR. On the other hand, the
single mode lets use validate a single case against the
RDR. Figure 5 shows the VisualRDR interface for ap-
plying a rule to a case. The exact operation of the rule
is left to the plugin writer. In our case, we extract in-
formation.

Figure 5: Using RDR

5.4 On the fly validation

Every time a change is made to the ripple down rule
structure, the rule base is validated as mentioned
in Section 3.3. OTFV alidate, the procedure for
on-the-fly validation is given below. Each time a rule
is added to the RDR knowledge base, all cornerstone
cases are reclassified using the new RDR. Cases where
the new classification is different from the previous
classification are flagged as possible errors.

procedure OTFV alidate(rdr)
1: cstones← rdr.cscases
2: for all case ∈ cstones do
3: newrule← Classify(case, rdr)
4: if newrule 6= case.rule then
5: Flag case as possibly missclassified.
6: end if
7: end for

Figure 6: On the fly validation

Figure 6 shows on the fly validation being done in
VisualRDR.

5.5 Learning

VisualRDR leaves learning of RDR to be implemented
by the plugin writer. In our case, we implement the
learning algorithm mentioned in Section 4.

6 Experiments and results

6.1 The dataset

For the purpose of this experiment we use the acqui-
sitions corpus [13] of Reuters news articles on mergers
and acquisitions provided by RISE [2]. The corpus
has 600 news articles about acquisitions providing in-
formation about buyers, sellers, the money involved
and so on. The corpus is manually annotated so that
it can be used for training and validation purposes.

6.2 The task

Our aim was to identify the names of the seller and
purchaser involved from every news snippet in the ac-
quisitions corpus. Although we only extract seller and
purchaser instead of all information extracted by com-
paring techinques [10] [14], extracting other informa-
tion is merely a process of adding more rules to the
knowledge base. In this work we choose demonstrate
the concept by extracting seller and purchaser infor-
mation.

6.3 The knowledgebase

We performed our experiments with 6 seed rules that
were refined over a period of time. These rules were
based on simple regular expressions on data annotated
by enitity identification. All rules were hand-crafted.
For details, please refer to the appendix A.

6.4 Results

The RDR mentioned listed in appendix A was used to
extract information from the acquisitions corpus after
entity identification. The performance for extracting
seller and purchaser information was as shown below.
The number of cases where the seller or buyer infor-
mation was present is shown as “Total cases”. By
precision we mean the proportion of the extracted in-
formation (seller or buyer) that are relevant and recall
is the proportion of the relevant information that was
extracted. The F1 measure combines the two by tak-
ing a harmonic mean of precision and recall.

Seller Purchaser
Total cases 471 447
Precision 64.54 58.38
Recall 77.70 80.98
F1 measure 70.51 67.84

Table 1: Result of RDR listed in appendix A

We compared our technique with two other meth-
ods, SRV [10] and another based on HMMs [14], for
extraction of buyer and seller from the acquisitions
corpus. Table 2 shows the comparision.

Seller Purchaser
SRV 34.30 42.90
HMM 30.90 42.90
RDR 70.51 67.84

Table 2: Comparision of RDR with other techniques

7 Conclusions and future work

In our current work we have shown the utility of
a knowledge acquisition methodology, called Ripple
Down Rules, for information extraction. We also de-
scribed VisualRDR, a framework for creating, main-
taining and learning of Ripple Down Rules. These
rules could be fine-tuned by a domain-expert for
achieving high levels of performance. We wish to add
additional features to VisualRDR like highlighting re-
dundant and contradictory rules.

8 Acknowledgements

Delip Rao would like to acknowledge the support by
IBM India research labs during which this work was
done.

References

[1] http://www.google.com.

[2] http://www.isi.edu/info-agents/rise/.

[3] D. E. Appelt and D. J. Israel. Introduction to
information extraction technology. IJCAI, 1999.

[4] D. B. Buchanan, J. B. R. Betchel, and
W. Clancey. Constructing an expert system.
building expert systems, 1983.

[5] M. E. Califf and R. J. Mooney. Relational learning
of pattern-match rules for information extraction.
In AAAI/IAAI, pages 328–334, 1999.

[6] P. Compton and R. Jansen. Knowledge in con-
text: a strategy for expert system maintenance.
In Proceedings of the 2nd Australian Joint Arti-
ficial Intelligence conference, volume 406 of Lec-
ture Notes in Artificial Intelligence, pages 292–
306, Adelaide, 1988. Springer.

[7] P. Compton and R. Jansen. A philosophical basis
for knowledge acquisition, Aug. 16 2000.

[8] E. A. Feigenbaum. Knowledge engineering. the
applied side of artificial intelligence, 1984.

[9] D. Freitag. Using grammatical inference to im-
prove precision in information extraction. In
Workshop on Grammatical Inference, Automata
Induction, and Language Acquisition (ICML’97),
Nashville, TN, 1997.

[10] D. Freitag. Multistrategy learning for information
extraction, 1998.

[11] B. R. Gaines and P. Compton. Induction of ripple-
down rules applied to modeling large databases.
J. Intell. Inf. Syst, 5(3):211–228, 1995.

[12] S. B. Huffman. Learning information extraction
patterns from examples. In Learning for Natural
Language Processing, pages 246–260, 1995.

[13] D. D. Lewis. Representation and learning in in-
formation retrieval. Ph.D. Thesis, 1992.

[14] A. McCallum and D. Freitag. Information ex-
traction with HMMs and shrinkage. In AAAI’99
Workshop on Machine Learning for Information
Extraction, 1999.

[15] F. C. Neil Ireson, D. F. Mary Elaine Califf,
N. Kushmerick, and A. Lavelli. Evaluating ma-
chine learning for information extraction. In
International Conference on Machine Learn-
ing(ICML), 2005.

[16] F. Peng and A. McCallum. Accurate information
extraction from research papers using conditional
random fields. In HLT-NAACL, pages 329–336,
2004.

[17] E. Riloff. Automatically constructing a dictionary
for information extraction tasks. In AAAI, pages
811–816, 1993.

[18] S. Sarawagi. Automation in information extrac-
tion and integration. VLDB, 2002.

[19] S. Sarawagi and W. W. Cohen. Semi-markov con-
ditional random fields for, June 07 2004.

[20] T. Scheffer. Algebraic foundation and improved
methods of induction of ripple down rules, Dec. 05
1996.

[21] S. Soderland. Learning information extraction
rules for semi-structured and free text. Machine
Learning, 34:233, 1999.

[22] S. Soderland, D. Fisher, J. Aseltine, and
Lenhert. CRYSTAL: Inducing a conceptual dic-
tionary. Proc. Int. Joint Conf. Artcicial In-
teligence (IJCAI-95), pages 1314–1319, 1995.

A The knowledge base

A listing of the RDR knowledge base used for extrac-
tion follows.

<?xml version="1.0" encoding="iso-8859-1"?>
<knowledge>
<rule id="R1113570577436">
<context>ANY</context>
<conclusion>NOTHING</conclusion>
<cscase id="C0">
<location>NONE</location>

</cscase>
<exception>
<rule id="R1113570678193">
<context>
acquiring<[^.]*:neTag:NE:WHO:ORGANIZATION>[^.]*
act<[^.]*:neTag:NE:WHAT:STATUS></context>
<conclusion>extractResult()</conclusion>
<cscase id="14582">
<location>14582-R1113570678193.xml</location>

</cscase>
<exception>
<rule id="R1113570811459">
<context>
acquired<[^.]*:neTag:NE:WHO:ORGANIZATION>[^.]*
act<[^.]*sell[^.]*:neTag:NE:WHAT:STATUS></context>
<conclusion>extractResult()</conclusion>
<cscase id="1032">
<location>1032-R1113570811459.xml</location>

</cscase>
<exception>
<rule id="R1113570925553">
<context>
acquired<[^.]*:neTag:NE:WHO:ORGANIZATION>[^.]*
act<[^.]*sell[^.]*:neTag:NE:WHAT:STATUS>[^.]*its
acquired_unit<[^.]*:neTag:NE:WHO:ORGANIZATION></context>
<conclusion>extractResult()</conclusion>
<cscase id="12890">
<location>12890-R1113570925553.xml</location>

</cscase>
<exception>
<rule id="R1113894751843">
<context>
acquired<[^.]*:neTag:NE:WHO:ORGANIZATION>[^.]*
act<[^.]*sell[^.]*:neTag:NE:WHAT:STATUS>[^.]*its
acquired_unit<[^.]*:neTag:NE:WHO:ORGANIZATION>[^.]*
acquiring<.*:neTag:NE:WHO:ORGANIZATION></context>
<conclusion>extractResult()</conclusion>
<cscase id="12937">
<location>12937-R1113894751843.xml</location>

</cscase>
<exception />

</rule>
</exception>

</rule>
</exception>

</rule>
<rule id="R1113570876376">
<context>
acquiring<[^.]*:neTag:NE:WHO:ORGANIZATION>[^.]*
act<[^.]*:neTag:NE:WHAT:STATUS>[^.]*
acquired<[^.]*:neTag:NE:WHO:ORGANIZATION></context>
<conclusion>extractResult()</conclusion>
<cscase id="10025">
<location>10025-R1113570876376.xml</location>

</cscase>
<exception />

</rule>
</exception>

</rule>
</exception>

</rule>
</knowledge>

Table 3: Listing of the RDR knowledge base used for extraction

