
Building industry-specific knowledge bases using concept
graphs: Methods and Applications

Shantanu Godbole
∗

IBM India Research Lab
Sachindra Joshi

IBM India Research Lab
Sameep Mehta

IBM India Research Lab

Ganesh Ramakrishnan
IBM India Research Lab

ABSTRACT
Searching and learning are two critical tasks undertaken in
fulfilling an individual’s information need in an organiza-
tion. In the context of CRM or service oriented organiza-
tions like contact centers, applications like searching appro-
priate knowledge bases, and learning arbitrary concepts of
interest are important building blocks in interacting with
customers. In this paper we present two applications that
exploit custom built domain specific knowledge bases. First,
we delve into knowledge bases built as concept graphs. We
propose algorithms to automatically capture pre-requisite
dependence graphs among the concepts. We present a vi-
sual interactive tool for efficient and effective targeted learn-
ing. Second, we present a ranking framework built on top
of these knowledge bases that ranks documents. This rank-
ing can be configured to return simpler documents before
advanced ones to aid quick learning of concepts for service
personnel. The user guides the learning process, by selecting
a target concept, exploring the associated learning graph,
learning pre-requisite concepts, and repeating this process
till the learning goal is reached. The ranking framework we
show is customizable to return different documents based
on the application need. We measured the usefulness and
correctness of the concept graph built using our approaches
with a user study involving 25 users. We believe that this
effort is a positive step toward exploiting domain-specific
knowledge bases in targeted learning scenarios relevant in
services scenarios.

1. INTRODUCTION
In service arms of organizations including contact centers
and L1/L2 support desks, QoS metrics employed are: per-
centage of problems solved successfully and the average re-
sponse time per customer. The same metrics are also used to
measure the effectiveness and efficiency of individual agents.
However, both these metrics are somewhat conflicting in na-
ture. Obtaining low response time with high success rate is

∗{shgodbol,jsachind,sameepmehta,ganramkr}@in.ibm.com
Alphabetical listing

extremely difficult. Some of the reasons for this are i) in-
ability of the customer to precisely state the problem, ii)
lack of knowledge on the agents part, and iii) lack of proper
databases and interfaces using which the agent can learn
more about the customer’s query. The first problem cannot
be completely solved using technology. The second problem
requires the organization to invest heavily in agent training
programs. We contend that solving the first two problems
completely is implausible (if not impossible). Businesses
cannot control customers and owing to the rapid shifts in
technology and products, comprehensive training to adjust
for each change in not feasible. In this paper, we focus on
the third problem, i.e., to design domain specific databases
and interfaces which the agent can use while helping the
customer. The databases will be useful when the agent has
to quickly learn pre-requisite/related concepts which will aid
him in helping the customer (who may be on hold on phone)
effectively.

In this paper we outline a method for building domain spe-
cific knowledge bases and search interfaces that aid (1) in
quickly searching relevant information and (2) the dynamic
learning process. The domain specific knowledge base is rep-
resented as a graph along with a large body of annotated text
data. An directed edge from concept A to B implies that A
is a pre-requisite for learning B. To be more precise, there
is a partial ordering between concepts, which corresponds
to a directed acyclic graph (DAG). We present algorithms
and heuristics based on graph theoretic principles to derive
a learning DAG, given a set of concepts and respective def-
initions. The algorithms automatically capture and model
the pre-requisite dependencies among concepts. Next, we
highlight two applications where availability of such learn-
ing DAGS will be extremely helpful. The applications we
focus on are Education Portals and Search applications for
agents in CRM organizations.

Web based educational portals typically support an on-line
chat facility wherein the customer can chat directly with
an instructor. In such cases exploiting concept graphs can
tremendously boost student satisfaction by facilitating struc-
tured learning. Consider a simple example, wherein an in-
structor is trying to teach post-order traversal to a student.
The learning DAG shown in Figure 1(a) is presented to the
instructor (who may not be a subject matter expert). By in-
specting the graph, the instructor soon realizes that she will
need to explain (to the student) tree traversal. She clicks
on the tree traversal node and the learning graph shown in
Figure 1(b) is presented. The agent explains tree-traversal



and realizes that she can also teach pre-order and in-order
traversal without teaching any new concepts and therefore
very low overhead is incurred on both ends. Figure 1(c) is
displayed when she selects pre-order traversal. It is clear
from this example, that in a practical setting, the useful-
ness of the concept graph can be very limited without ef-
fective presentation. To handle this problem, we design a
web-interface, using which the instructor can very quickly
view the concept graph. The instructor can also explore
pre-requisite and related concepts. Finally, in another in-
carnation the portal may allow the student to directly in-
teract with the system. This expository example illustrates
the usefulness of our system, wherein the instructor uses the
learning DAG and a hyper-linked environment to help the
student learn better.

The second application is ranking results of searches in the
context of service arms of organizations, contact centers,
and help-desks. Technical help sites for JAVA, SAP, Ora-
cle, etc., use a search procedure to list all documents given
a user query/concept. Typically, the search methods used
are based on algorithms that exploit hyper-link structure of
documents and support exact/approximate key word match-
ing. The agent searches a target concept on the web (Google
or Wikipedia for example) or proprietary enterprise knowl-
edge bases and learns it by following relevant (typically top
10) results. Even if the algorithms perform extremely well in
achieving high values for traditional IR metrics like precision
and recall, they may not reflect the best choice in scenarios
outlined above. The agent has to navigate back and forth
between related, underlying or pre-requisite concepts. This
navigation is ad-hoc, without any principled ordering.

Even though printed sources solve some of these problems,
they pose different kind of difficulties like storage and num-
ber of copies needed (sharing books is not feasible in online
help sites). We contend that in technical help sites, better
domain specific algorithms to rank the search results can be
developed. We strongly believe that a natural ordering of
web pages is from simple (easy to learn) documents to dif-
ficult (hard, needing pre-requisite knowledge) documents.
We assign a ”hardness” score to a web page by projecting
it onto the learning DAG described above. For expository
purposes, suppose a contact center technical support agent
has to answer a customer’s query about installing a soft-
ware product. The agent needs to quickly help the customer
identify if certain pre-requisite software is available on her
system. This software may in turn have other pre-requisites,
possibly specific hardware, its drivers and so on. In this ex-
ample scenario, the learning DAG is a software dependency
graph with associated searchable product manuals so that
the agent can quickly guide the end-to-end installation pro-
cess.

To summarize, the key contributions of this paper are:

1. We present automatic algorithms to mine a graph struc-
ture, given a list of concepts with their associated def-
initions. Problematic scenarios like presence of cy-
cles are handled to remove ambiguities. These derived
graphs can then be browsed in different ways to as-
similate different forms of information. This concept
graph along with its associated document collection
comprises a knowledge base for our applications.

2. We propose an interactive visual interface allowing the
users to select, explore and learn concepts. The inter-
face supports web and enterprise search. The toolkit
supports the traditional zoom, filter and details–on–
demand paradigm.

3. We propose a family of ranking functions which are
aware of the mined concept graph. Sample functions
shown can return either documents containing pre-
requisites of a target concept or explaining the target
concept in great detail. This component neatly fits the
quick targeted learning scenario.

4. We empirically demonstrate the correctness and use-
fulness of our algorithms for two domains, viz., “algo-
rithms” and “particle physics”. We conducted a user
study with 25 users and 15 target concepts. High pre-
cision and recall were observed demonstrating the cor-
rectness and usefulness of the proposed system.

The rest of the paper is organized as follows. In section 2
we present the methods and algorithms used to mine the
concept graph from a collection of documents. Section 3
presents the family of ranking functions aware of this con-
cept graph for different applications. In section 4 we show
the visual interface we propose to browse and use the knowl-
edge base constructed as this concept graph with its docu-
ment collection. We evaluate the correctness and usefulness
of the concept graph in section 5. We review some related
work in section 6 and conclude in section 7.

2. BUILDING CONCEPT GRAPHS
In this section, we build domain specific knowledge bases for
our target applications. One of the main components en-
abling our proposed applications is the concept graph mod-
eled as a DAG. This concept graph along with the associated
documents for each concept forms the knowledge base. We
would like to note here that a concept graph for a given do-
main can be hand crafted and tuned by experts. However
constructing a large comprehensive graph is bound to be te-
dious, error-prone and hard. We chose to focus on deriving
the graph automatically and developing the associated ap-
plications. Profile and collaborative filtering based methods
form part of our future initiative. We aim to start with a
simple list of concepts and use rich knowledge sources like
the web or documents within an enterprise to automatically
determine the concept graph. The concept graph can sub-
sequently be customized by a human expert.

Our learning application aims to structure the learning pro-
cess. We make some simple observations about learning.
First, learning any (fairly) advanced concept involves learn-
ing pre-requisite concepts. Second, outside of the classroom
settings, individuals prefer focused learning and would not
like to spend time on already known (redundant) or periph-
eral (non-relevant) concepts. Therefore, there is a strong
need to arrange the concepts to satisfy the learning goal in
a time effective manner.

We design a web based interface, which the user can interact
with and learn. When a user selects a concept, its associ-
ated graph is displayed. The user can then explore related or
pre-requisite concepts at the click of a button. At each click,
a new graph is displayed to the user, based on her current



(a) (b) (c)

Figure 1: Figures depicting the browsing of a part of the concept DAG for the algorithms domain. Figure (a)
shows the pre-requisites for the concept ‘post-order traversal’, one of which is ‘tree traversal’. If one follows
the pre-requisites for ‘tree traversal’, one comes across the learning graph in Figure (b). One can also see in
Figure (b) that one of the siblings of ‘post-order traversal’ is ‘pre-order traversal. One can further browse
the pre-requisites for ‘pre-order traversal’, as in Figure (c).

browsing context. We describe this property in later sec-
tions. Finally, to take complete advantage of various data
sources like web and enterprise data, we support dynamic
querying, i.e., the user can select a concept and a set of
data sources. These data sources will be polled to find more
information about the concept of interest.

Figure 2 schematically describes our proposed system. The
main components of the system are:

• Structure Derivation: This component primarily
deals with transforming the raw data (definitions of
concepts) into structures. The process starts with ana-
lyzing definitions of concepts and automatically learn-
ing the dependence between the concepts. The con-
cepts are then represented by nodes and the depen-
dence between two concepts is modeled by a directed
edge between the concepts. Deriving structure in this
simplistic fashion introduces ambiguities (presence of
cycles and multiple paths between a pair of nodes).
The solutions to these ambiguous cases amounts to
solving NP-complete problems in graph theory. There-
fore, we use well-known heuristics to overcome these
problems. Apart from being dependence aware, the
final structure has the following two properties. First,
browsing the structure in top-down fashion results in
learning basic (fundamental) to difficult (advanced)
concepts. This property provides directional and nav-
igational cues to the user. The second property is that
the concepts at same height can be learned in any or-
der. This property coupled with knowledge about an-
cestors and descendants provides the user with a list
of related concepts.

• User Interface: The final derived structure is visual-
ized for the learning process. We built a web interface
to leverage other sources of on-line information. An
alphabetical list of concepts (CL) is presented to the
user. The user can select the concept to be learned. An
associated concept tree is presented to the user. The
nodes in the tree correspond to parents, children and
related concepts of CL. The pre-requisites for learning
CL and CL itself are pre-requisite for learning more
advanced concepts. We chose to display this particu-
lar set of concepts to educate the user about extra re-
lated/parent concepts which can be learned by spending

small amount of extra time. We discuss this aspect in
details in subsequent sections. The user can interact
with the tree by selecting other concepts and explor-
ing associated concept trees. Currently, our tool is not
customizable for individuals. However, existing profile
based algorithms can be plugged into our tool and be
extremely beneficial. This integration forms part of
our future initiatives.

• Learning and Searching: The user interacts with
the visual interface to explore concepts. Once the user
has learned fundamental concepts, she can move to
related and advanced concepts. Since this is a web-
based tool, we also provide her with the capability to
search on-line, enterprise data and knowledge reposi-
tories. The user can configure various data sources and
the associated query and result formats. The results
can then presented to the user for further exploration.
The user iterates between second and third compo-
nents to accomplish set learning goals.

2.1 Constructing the concept graph
Let C be a list of N concepts, and let C[i] refer to the the
ith concept in the list. The task is to construct a brows-
able concept DAG (directed acyclic graph) for a particular
domain. Our algorithm for constructing the concept DAG
consists of two steps. In our first step, we construct a graph
Cgraph by making use of references between concepts in con-
cept definitions. In the second step, we extract a concept
DAG CDAG from Cgraph.

Let C be a list of N concepts, and let C[i] refer to the the
ith concept in the list. The task is to construct a brows-
able concept DAG (directed acyclic graph) for a particular
domain. Our algorithm for constructing the concept DAG
consists of two steps. In our first step, we construct a graph
Cgraph by making use of references between concepts in con-
cept definitions. In the second step, we extract a concept
DAG CDAG from Cgraph.

We assume the availability of a database of concept defini-
tions for the given domain. Using this definition database,
we construct the concept graph Cgraph for that domain. For
several domains, definition databases exist in the form of
glossaries1 In our experiments, we used the “define:” query

1Some glossaries can be found at http://www.



Figure 2: Schematic Overview of our Approach

operator provided by the Google search engine. A query
operator causes a keyword to be interpreted differently and
produces a specialized output as defined by the operator [6].
The result of a define query consists of a bulleted list of pos-
sible definitions of the given term or phrase gathered from
multiple sources.

Figure 3 lists a subset of the definitions obtained using the
define operator for the concept ‘relation’. Typically, higher-
level concepts are defined using lower-level concepts. We use
this property of definitions in generating the concept DAG.
In Figure 3, occurrences of other concepts from the list C are
marked in rectangular boxes. The occurrence of a concept
in a definition is determined based on the lemma forms of
the concept and its occurrence.

We generate a weighted and directed concept graph Cgraph =
(V, E) as follows. For every concept C[i], 1 ≤ i ≤ N , we cre-
ate a vertex vi in V . An edge is introduced from vi to vj iff
concept C[j] is mentioned in some definition of C[i]. We say
that ‘concept C1 is mentioned in some text’ iff the lemma
form of C1 matches the lemma form of some token in the
text. The weight wij of an edge (vi, vj) is set to the number
of mentions of C[j] in the definitions of C[i].

In the Figure 3, concepts such as ‘set’ and ‘order’ are lower-
level concepts when compared to ‘relation’. However, the
shaded concepts such as ‘binary relations’, ‘predicate’ and
‘logic’ are not necessary for the understanding of ‘relation’.
In fact, on the contrary, to understand the notion of ‘bi-
nary relation’, one needs to first understand the concept
of ‘relation’. The definition of ‘binary relation’ obtained
from Google’s define operator refers to the concept ‘relation’.
Thus, it is evident that the graph Cgraph could contain cy-
cles. However, what we require for learning concepts is a

interactions.org/cms/?pid=1002289, http://www.nist.
gov/dads/, http://en.wikipedia.org/wiki/Particle_
physics and of course, WordNet [9].

concept DAG. We next describe our approach for extracting
a concept DAG CDAG from Cgraph.

2.2 Extracting concept DAG
Extracting a DAG CDAG from Cgraph requires the elimina-
tion of cycles from Cgraph. There could be several sets of
edges whose removal would lead to elimination of cycles. It
is intuitive to choose the set of edges with minimum cardi-
nality as this would cause minimal change with respect to
the original graph. In our case of a weighted digraph, it
makes sense to remove the set of edges with minimum to-
tal weight. The problem of removing minimum number of
edges in a digraph is a standard problem studied in liter-
ature as the minimum feedback arc-set problem (FAS) [11].
Unfortunately, the problem is NP-Hard [7]. However, due to
the wide applicability of the FAS problem, several heuristics
have been proposed for it. For our task, we use a variant
of a fast, effective and simple heuristic for FAS proposed by
Eades, et. al. [5].

Suppose the vertices of Cgraph are ordered in some sequence
S = {v1, v2 . . . vn}. We call an edge (vi, vj) ∈ E, a forward
edge, iff , i < j. Otherwise, we call it a backward edge.
The graph G consisting of all forward edges, is an acyclic
sub-graph of Cgraph. Additionally, if the introduction of a
backward edge e does not create cycles in G, then e could
be added to G.

Thus, following Eades, et. al. [5] we pose our problem as
that of determining a vertex ordering v1, v2 . . . vn that mini-

mizes the sum of weights

j<i∑
(vi,vj)∈E

wij . Once a ‘good’ vertex

ordering is determined, we construct our DAG following the
steps outlined above. Figure 4 outlines our algorithm that
takes as input a graph Cgraph and outputs a vertex sequence
s. For a vertex v, let d(v) = w+(v) − w−(v), where w+(v)
is the sum of weights of out-going edges from v and w−(v)



Figure 3: Example definitions for the concept ‘relation’ as obtained using the Google ‘define’ operator

is the sum of weights of in-coming edges from v . The al-
gorithm greedily removes vertices (and their incident arcs)
in the following order (i) all sinks, (ii) all sources and (iii)
vertex with the largest value of d(v).

procedure FindBestSequence(Input:Cgraph, Output:S)
S1 ← φ, S2 ← φ;
while Cgraph 6= φ do

while Cgraph contains a sink do
Choose a sink u; S2 ← u.s2; Cgraph ← Cgraph − u;

end while
while Cgraph contains a source do

Choose a source u; S1 ← S1.u; Cgraph ← Cgraph − u;
end while
Choose a vertex u for which w+(u)−w−(u) is maximum;
S1 ← S1.u; Cgraph ← Cgraph − u;
S ← S1.S2

end while

Figure 4: A heuristic for determining a vertex
sequence S that minimizes the number backward
edges in Cgraph.

In Figure 5, we outline the algorithm that takes as input, a
sequence of vertices S and outputs a DAG CDAG that has
the same set of vertices as Cgraph and a subset of its edges
EDAG ⊂ E determined by the sequence S. The algorithm
first includes into EDAG, all edges from E that are forward
with respect to the sequence S. Next, it iterates over all
other edges in E and includes an edge into EDAG if this in-
clusion does not create a cycle with existing edges in EDAG.

3. RANKING DOCUMENTS
In this section, we present an application built on the knowl-
edge base mined previously. We define a framework of cus-
tomizable ranking functions that rank documents in the con-
text of the mined knowledge base (concept graph).

procedure FindConceptDAG(Input:S, Output:CDAG)
Let S = {v1, v2, . . . , vn}
EDAG ← {(vi, vj)|(vi, vj) ∈ E, i < j}; CDAG = (V,EDAG);
for each (vi, vj) ∈ E, i > j do

if (vi, vj) does not form a cycle with edges in EDAG then
Add EDAG ← EDAG ∪ (vi, vj)

end if
end for

Figure 5: The algorithm for extracting a concept
DAG CDAG from Cgraph, using the vertex sequence
S determined using the algorithm in Figure 4.

It is common to get hundreds of thousands and even millions
of documents in some cases as a response to a search query.
The intention of a searcher can be modeled to fulfill certain
information needs. In particular, we address domains where
learning concepts is the intention of the searcher. The huge
number of returned documents make the problem of finding
a relevant document from this set quite difficult. Rank-
ing of documents has been one of the most popular way
to deal with this problem. The returned set of documents
are sorted in the order of their relevance and thus the most
relevant document is placed on the top. To do this, a rele-
vance metric is used to score each document that describes
its relevance to the query. Different search engines employ
different relevance metrics. The relevance metric pagerank
has been found quite useful and popular for general Web
search. However, we argue that for several domains a pager-
ank based scoring is not sufficient and different relevance
metrics need to be defined based on the objective of the
search.

In this paper, we propose a family of relevance metrics which
is useful for educational portals, technical help sites or even



for a general Web search where the intention of search is to
learn a new concept. We use the concept graph to score each
returned document. The concept graph for a domain can be
learned using the method described in the Section 2. In the
following subsections, we first present different examples of
ranking objectives that are useful in education domain. We
would then propose a general framework based on concept
graph that can be used to define appropriate relevance met-
rics.

3.1 Ranking Objectives for Education
Searching a target concept on the Web, Intranet or on an
educational portal is a very popular way of learning new
concepts. The returned documents are ranked in a list. Dif-
ferent users would be at different levels of their learning and
they may have different likings. Thus a general method of
ranking results may not suffice. Consider the case where a
user query consists of a concept Ci and the set Di denote the
set of returned documents. In the following list, we present
three different ranking objectives for Di.

• A novice user may find a document that describes the
pre-requisite concepts of Ci first, and then describes
the concept Ci, the most relevant. Therefore, the doc-
uments in Di should be ranked such that documents
that describe some or all of the pre-requisite concepts
and then the concept Ci should be scored higher.

• A more exploratory user may not only want to learn
the concept Ci but also other concepts that can be
derived or learned using the concept Ci.

• A user may require a comprehensive document that
not only describes the concept Ci but also describe the
pre-requisite concepts and more advanced concepts for
Ci.

3.2 Ranking functions
In this section we present a general framework that can be
used to realize any of the ranking objectives given in Sec-
tion 3.1. The framework uses the concept graph that can
be learned as described in Section 2. Let the set D =
{d1, d2, . . . , dn} denote the returned set of documents for
a concept C.

3.2.1 Overview
Figure 6 presents an overview of the ranking framework.
The framework consists of two main components. The first
component is a concept spotter that annotates all the con-
cepts that occur in a document di ∈ D. The second com-
ponent is called a document scorer that takes the annotated
document and give a score for the document based on the
annotated document and position of annotations. We de-
scribe both the components in the following sections.

3.2.2 Concept Spotter
Given a document di ∈ D and a concept graph CDAG, con-
cept spotter annotates all the concepts cj ∈ CDAG that oc-
cur in the document di. Note that the labels associated
with nodes in the graph CDAG denote different concepts.
The annotation process is quite simple. Each word wk in
the document di is converted into its lemma form and then
it is matched against the lemma form of all the concepts that

occur in the graph CDAG. A single concept may be referred
in multiple ways. As an example the concept support vector
machine is also referred as SVM. A list of synonyms or a
domain dependent taxonomy could be used in the matching
process to annotate all the different variants of a concept.

3.2.3 Document Scorer
The document scorer module is responsible to give an over-
all score to a document. The score of a document captures
its relevance based on a user defined objective. Using a do-
main specific knowledge base represented in a concept graph,
we can devise several ranking metrics that capture different
ranking objectives. In this section, we give examples of rank-
ing metrics that use concept graphs to score each document.
In particular, we present three different ranking metrics that
can be used to achieve the example user objectives given in
Section refsec:rankobj. Let the set dc denote all the con-
cepts that occur in a document d and are annotated by the
concept spotter module. Let pre(ci) denote the set of all
the immediate pre-requisite concepts for a given concept ci.
Similarly, the set post(ci) denote all the direct descendant
concepts for the concept ci. For the first objective given in
Section 3.1, the following metric can be used:

Score(d) =

∑
c∈dc∩pre(c) f(c)∑

c∈dc∧c/∈pre(c) f(c)
(1)

Where f is some arbitrary function that captures the impor-
tance of occurrences of the concept given as its argument.
An example of function f could be number of times the con-
cept c occur in a document.

Similarly, for the second and third ranking objectives, given
in Section 3.1, the metrics given in Equation 2 and Equa-
tion 3 can be used respectively:

Score(d) =

∑
c∈dc∩post(c) f(c)∑

c∈dc∧c/∈post(c) f(c)
(2)

Score(d) =

∑
c∈dc∧c∈(post(c)∪pre(c)) f(c)∑
c∈dc∧c/∈(post(c)∪pre(c)) f(c)

(3)

These functions are examples of ranking functions that can
order documents containing pre-requisites before those hav-
ing target concepts and vice-versa. Based on the application
at hand the appropriate ranking function can be chosen and
even customized. Here we have presented only a few exam-
ples of scoring metrics that can be used to achieve certain
ranking objectives. Several other metrics can be devised
using the concept graph to achieve other ranking objectives.

It is important to note that this framework provides easy
and intuitive ways for integration of user personalization in
ranking of search results. For a user, a profile can be created
that captures his present level of knowledge in the concept
graph. The search results in response to a concept given
in query, can be ranked based on this profile such that the
documents that describe concepts that are pre-requisite con-
cepts to the query and are unknown to the user are scored



Figure 6: Overview of Ranking Framework

higher. We plan to integrate a user profile based ranking of
search results in this framework in our future work.

4. VISUAL REPRESENTATION
In this section, we explain elements of the visual interface
of our applications. The algorithms presented in the last
section provide us with structure capturing dependence and
relationships among concepts. However, such a structure
stored in a flat text file (in adjacency matrix or list format) is
virtually useless for learning goals. Without any visual aids,
the user has to follow a cumbersome process of manually
sifting through useful information. We highlight the need
for a visual interface by an example.

Suppose a helpdesk agent wishes to help a customer install a
specific plug-in in a word-processing application. The agent
searches her knowledge base to figure out any dependencies
to other components documented for installation. Depend-
ing on the customer’s scenario, it could happen that the
agent realizes she must explain installation of other plug-
ins, even operating system components on the fly. Since the
agent will not be an expert about these procedures, online
troubleshooting becomes a tedious task. The whole process
has to be repeated. This installation pre-requisites knowl-
edge base needs to be constructed for effective use. A similar
example for learning tree traversal algorithm in computer
science was explained in section 1.

This manual recursive process is not too efficient for learn-
ing. Therefore, it is imperative that the derived structure
(knowledge base) is presented to the user in an interactive
environment. Next, we explain our web-based interface and
its key components (along with the motivation behind them)
in detail. We also discuss the use of these components in the
overall visual learning process.

• Concept Index: The concept index is the list of all
concepts in a domain of interest. There are two ob-
vious ways of displaying this list; hierarchical and al-

phabetical. The hierarchical version is similar to direc-
tory structure usually employed in operating systems
where the parent folder is displayed and sub-folders
are recursively displayed by delving into the parent
folder. In this case, the parent folder is a concept and
sub-folders are pre-requisite concepts. This scheme is
not very suitable here because an advanced concept
can have many pre-requisite each of which can in turn
have other pre-requisites. The view will be clumsy and
the user will have horizontally scroll in our interface.
Alphabetical listing circumvents this problem. More-
over, the alphabetical version also maps very nicely to
indexes provided at the end of textbooks. This scheme
is more traditional and allows an user to concentrate
on learning concepts rather than on learning the tool.
The list is displayed in the left pane of our tool. The
user can select the concept of interest from the list and
its associated concept tree is displayed on the right.

• Concept Tree: For the selected target concept, it’s
concept tree shows the target concept and it’s pre-
requisite nodes. In addition to these ancestor nodes
(from a learning point of view), we also show one
level of descendants from our concept index. These
are nodes which need the target concept as their pre-
requisite. This maintains context-sensitivity and the
usefulness of showing ancestors and descendants is ev-
ident from our earlier example of tree traversal.

• Concept Definitions: The actual definitions of the
selected concept is shown in the top of the right pane.
The view is changed dynamically when the user selects
a new concept either from the concept index or by
clicking on a node of the concept tree. Clicking nodes
in concept trees redirects to equivalent right panes as
if the relevant link was clicked in the concept index.

• Concept Search: To make use of other information
sources like web-repositories or enterprise data, we pro-
vide the capability of search. The user specifies the
data source, query format and result set. These data



Figure 7: Screenshots

sources are then queries for the selected concept and
result displayed in lower part of the right pane. Please
note that these data sources may provide very differ-
ent types of information. For example, the enterprise
data can be a patent database which returns all the
patents where the concept occurred as a key word.

The user selects a concept from the concept index and the
associated concept tree is presented. Next, the user identifies
the pre-requisite to be learned and clicks on the correspond-
ing node. Now a new concept tree is displayed. The key
point to note here is that due to context sensitivity of the
concept tree the parent node (original target to be learned)
is displayed. In our user study we found that this property
helps the user stay focused and reduces navigational time.
Once the user has learned all pre-requisites, she reads the
definition of the target concept. Next, based on her interest,
the user may search other data sources and refine or broaden
her understanding.

5. EXPERIMENTS
In this section we present an evaluation of the ideas proposed
in this work. As described, our aim was to explore building
domain-specific knowledge bases that facilitate learning, ei-
ther for it’s sake or for fulfilling business needs. We modeled
the knowledge base as a concept graph relating concepts of
interest and the associated documents containing mentions
or descriptions of these concepts. We also presented two
sample applications based on this knowledge base (concept
graph and associated document collection). In section 2 we
presented effective interactive learning facilitated by a sim-
ple user interface. In section 3 we presented a family of
ranking functions which can be employed to fulfill different
application needs.

We wish to evaluate the goodness of our approach to build-
ing knowledge bases. Here, we present a user study that
brings out some measure of the goodness and usefulness of

our mined concept graph. We used the interactive inter-
face described in section 4 for our evaluation. In this paper,
we only wish to explore the idea of using concept graphs
to build knowledge bases. We present no evaluation of the
applications of learning and searching (ranking) themselves;
these would be big independent exercises.

We evaluate the ‘correctness’ of our algorithms and the ‘use-
fulness’ of the presentation style of the concept graph. Our
dataset processing algorithms explained in 2 draw up a di-
rected graph modeling all pre-requisite relations in a large
given list of concepts. It is impractical to evaluate such a
large graph as a whole (for the computer science algorithms
domain we had a sparse graph with about 1000 nodes). We
resort to evaluating different aspects of sub-graphs related
to individual concepts.

5.1 Datasets
In order to evaluate the correctness and usefulness of the
concept ordering generated by our methodology, we picked
two domains; viz; “algorithms” and “particle physics”. For
each domain, we extract a list of concepts from Wikipedia 2.
We obtain a total of 522 concepts for the “algorithms” do-
main and 457 concepts for the“particle physics”domain. We
then use the “define” query operator provided by Google to
build a concept definition database for each domain. For the
“algorithms”domain we obtain 5191 definitions and for“par-
ticle physics” domain we obtain a total of 2650 definitions.
We note that we can use any knowledge source (including
enterprise knowledge bases) to collect definitions or men-
tions for concepts; we used web search for its simplicity and
availability. Our techniques removed 663 edges resulting in
cycles (18.6% of all edges) for the “algorithms” domain and
49 edges (3.8% of all) were removed in the “particle physics”
domain.

5.2 Evaluation methodology
2http://en.wikipedia.org



As described in section 4, we have a navigable web-based
interface that lists concepts in selected domains of interest.
The user can explore any target concept of interest; it’s cor-
responding learning graph is displayed. A target concept’s
learning graph contains pre-requisite concepts (ancestors)
and higher-level concepts (descendents) for which the target
concept is a pre-requisite. Only one-level ancestors and de-
scendants are retained for simplicity of the learning graph as
described in 4. In this section, we evaluate the ‘correctness’
and ‘usefulness’ of these graphs.

We conducted an elaborate user study to try and quantify
these abstract notions. We requested 40 colleagues, all com-
puter science graduates at least, to help in evaluating sam-
ple concepts along notions of correctness and usefulness. We
use the standard information retrieval (IR) measures of pre-
cision and recall. We would like note here that it is not
clear what a standard evaluation of such abstract notions
would be. We explain our choices next; we believe precision
matches the notion of correctness, and recall matches the
notion of usefulness.

In IR, retrieval effectiveness of a query is evaluated in terms
of precision and recall. An IR system attempts to retrieve
a relevant document set for a given query from a large col-
lection of documents. For a query, precision measures the
fraction of relevant documents, to all documents retrieved
by the system. Congruently, our user’s learning need can be
viewed as a query and the precision of a learning graph can
be measured as precision = #correct directed edges

#edges
. This can

be evaluated with simple yes/no decisions on every directed
edge by experts. Volunteers returned precision scores for a
set of learning graphs shown in our web-based tool. We re-
port average precision of the graphs, averaged over users, in
5.3.

The recall effectiveness of the system in response to a query
is measured as the fraction of relevant documents retrieved,
to all relevant documents present in the document collec-
tion. To be able to calculate recall, the total number of
relevant documents in the document collection needs to be
known before hand. In our case, the recall effectiveness of
a target concept’s learning graph is measured as recall =
#correct directed edges

#expected edges
. Estimating the denominator poses sev-

eral challenges here, as also in IR systems, where it is only
possible to define the full set of relevant documents for a
specialized set of queries; that too from extensive domain
knowledge. We asked volunteers, a different set than those
measuring precision, to provide us with a comprehensive list
of pre-requisite concepts for each of the target concepts from
a sampled list. We collected answers, and cleaned-up and
canonicalized concept-names by matching with our domain-
specific list. This provided us the denominator for recall cal-
culations, and the numerator was obtained from our learn-
ing graphs. We report average recall of the graphs, averaged
over users, in 5.3. We also discuss a non-trivial study with
novice users to evaluate the usability of our tool in 5.3.1.

5.3 Results and Discussion
We report the average precision and recall of the methods
presented in this paper next. Table 1 reports the average
precision of 15 learning graphs of target concepts evaluated
by 20 expert users. We note that the precision values for a
large variety of intermediate and advanced algorithms con-

cepts are very high. Averaged over number of edges and
users, we can conclude that most of the learning graphs for
these target concepts were accurate.

Target concept Precision
Complete binary tree 0.95
Manhattan distance 0.94
Post-order traversal 0.91

Minimum spanning tree 0.78
Venn diagram 0.69

Shell sort 0.97
Fibonacci heap 0.94

Recurrence relation 0.75
Undirected graph 0.47

NP-complete 0.81
Clique 0.60

Depth first search 0.90
Substring 0.56

Big-O notation 1.00
Hamiltonian Cycle 0.77

Table 1: Average precision - 20 users for 15 concepts

Table 2 reports the average recall for 15 target concepts and
their learning graphs evaluated by 5 different expert users.
These users only checked for completeness with respect to
the starting list of domain-specific concepts. We see that
the learning graphs selected report fairly high recall. How-
ever, we would like to state that the deviation across users
is somewhat high because of the difficulty stated above in
measuring recall.

Target concept Recall
Complete binary tree 0.83
Manhattan distance 0.80
Post-order traversal 0.80

Minimum spanning tree 1.00
Venn diagram 0.87

Shell sort 0.90
Fibonacci heap 0.70

Recurrence relation 0.57
Undirected graph 1.00

NP-complete 0.85
Clique 1.00

Depth first search 0.90
Substring 0.90

Big-O notation 0.80
Hamiltonian Cycle 0.70

Table 2: Average recall - 5 users for 15 concepts

5.3.1 Measuring recall with novices
Ideally the usefulness of such a learning tool should be eval-
uated by novices rather than experts, as experts would be
implicitly biased in feigning ignorance of pre-requisites for
given target concepts. We conducted a study with two
novices to try and get a clearer picture of the usability of
our tool. We selected two non computer science graduates
who had no training in algorithms.

We asked them to start at the Wikipedia page (or at similar
web-based knowledge sources) for complete binary trees. As



expected, they deemed it necessary to first learn about bi-
nary trees and in turn about trees. They had to get familiar
with the abstract notion of data structures (with our help
and intervention). While learning about trees they had to
learn base concepts like root, internal nodes, children, and
leaf nodes. They counted about 7 concepts they had to learn
on the way to learning about complete binary trees. When
shown our learning graph for complete binary trees, they
identified 5 of the concepts they had to learn when starting
without guidance on the web. We could hence assign a recall
score of 5/7 for complete binary trees. We tried to repeat
this experiment with other novices and concepts.

We’d like to admit that this study failed, retrospectively, for
a variety of reasons. It was unfair to expect novices to ac-
tually follow links and try to learn concepts in a completely
new advanced field of study. We should have conducted
this study with users having some basic familiarity with
software and computer science rather than selecting rank
novices. We were constrained by dataset availability to be
able to do such fair, though time-consuming, user studies.
We hence resorted to the judgment of experts for measuring
recall. On a similar note, as mentioned earlier, for the par-
ticle physics dataset and graphs we had available, we found
no suitable experts for evaluation. Part of our future work
involves precision and recall validation in different domains,
for different starting lists of concepts, and exploiting richer
sources of information.

6. RELATED WORK
In this section, we discuss some related efforts to the work
presented in this paper. Chi et al. [3, 2] proposed ScentIndex
which transforms the traditional book index to meet the par-
ticular requirement expressed by the user. The user inputs
her request in the form of key words. The system searches
for the most relevant index entries and displays it to her.
Moreover, the system also highlights associated passages of
the book. The final toolkit is very useful. However, no ex-
plicit modeling of dependence among concepts is done. It
is unclear which of the most relevant index entries actually
captures pre-requisite dependence. The focus of ScentIn-
dex was to find conceptually related entries. Moreover, the
ScentIndex system does not provide any ordering in which
the concepts should be learned.

Chen et. al. [1] proposed an approach that uses journal
and conference papers as resource to analyze the relation-
ships among concepts in e-learning domains. They treat
keywords listed in a research articles as essential concepts
and construct a concept map based on the co-occurrence of
keywords. Thus a concept map generated by their method,
captures general relationships among concepts and does not
focus on pre-requisite relationship.

The most pertinent and closely related work was presented
by Khodor et al. [8]. The authors described Biology Concept
Framework (BCF) to aid in organizing teaching material and
lectures. BCF is organized in a multi level hierarchical fash-
ion (very similar to the structure we derive). The authors
define top-level concepts which are most general concepts
and need to be learned before proceeding to advanced con-
cepts. Moreover, these concepts are independent of each
other in the sense that the concepts can be learned in any
order. The next levels in the BCF are concepts and de-

tails which require the knowledge of one or more top level
concepts. The key difference is that BCF was constructed
manually by experts. No automatic algorithms were used
to derive the structure, top level concepts and their relation
with other advance concepts. Moreover, BCF is intended to
be used by course instructors(experts), on the other hand
our effort resulted in an interactive tool which non-experts
can use and learn from

There are a few methods proposed in the literature that use
user profiling techniques for knowledge personalization in e-
learning context [12, 10, 4]. The profiling based algorithms
can be useful in our approach and can be used as a pre-
processing step. However in this paper, we focus on deriving
and visualizing a concept graph for a given domain and leave
personalization issues for our future work.

7. CONCLUSION AND FUTURE WORK
In this paper, we explored building of domain-specific knowl-
edge bases for enabling certain learning oriented applications
in service arms of organizations. We described the usefulness
of these knowledge bases modeled as concept graphs captur-
ing pre-requisite relationships between concepts. These con-
cept graphs and their associated document collection serve
as an effective knowledge base in certain applications.

We presented algorithms to automatically mine the concept
graph in a given domain with little human intervention. The
final concept graph can be tweaked by experts. We also pre-
sented a visual toolkit to facilitate the learning process where
dependencies between concepts are presented to the user in-
teractively. The user can recursively learn pre-requisite con-
cepts to thoroughly understand target concepts of interest
according to learning and information goals. The toolkit
also allows the user to query on-line or enterprise databases
and knowledge repositories. We also presented a family of
ranking functions that rank documents while being aware of
the concept graph. One application may require documents
containing pre-requisites of a target concept to have a high
rank while another application may need details about the
target concept like definitions, details, and usage.

We evaluated correctness and usefulness of our concept graph
mining approaches by conducting a moderately large user
study. We used widely accepted evaluation metrics - pre-
cision and recall- to measure correctness and usefulness re-
spectively. We did not evaluate the presented applications,
leaving such to application builders, rather concentrated on
building useful knowledge bases from concept graphs.

Some ongoing and future initiatives planned for extending
our toolkit.

• Integration of profile based algorithms to facilitate user
personalization forms a key part of future work.

• Incorporating each user’s existing skill-set to set up a
domain-specific baseline will further result in focused
learning and reduce learning time. Currently, we are
investigating the use of three levels beginner, medium
and expert to quantify a user’s existing skill set.

• We would like to build an integrated appliance incor-
porating ranking, learning, and visualizing in specific



industrial settings.

• Finally, we would like to conduct a more extensive user
study for other domains and with novices to validate
the full power of such knowledge bases.

8. REFERENCES
[1] N.-S. Chen, P. Kinshuk, C.-W. Wei, and H.-J. Chen.

Mining e-learning domain concept map from academic
articles. In ICALT ’06: Proceedings of the Sixth IEEE
International Conference on Advanced Learning
Technologies, pages 694–698, Washington, DC, USA,
2006. IEEE Computer Society.

[2] E. H. Chi, L. Hong, J. Heiser, and S. K. Card. ebooks
with indexes that reorganize conceptually. In Proc. of
CHI, 2004.

[3] E. H. Chi, L. Hong, J. Heiser, and S. K. Card.
Scentindex: Conceptually reorganizing subject indexes
for reading. In Proc. of IEEE Symposium on Visual
Analytics Science and Technology, 2006.

[4] P. Dolog, N. Henze, W. Nejdl, and M. Sintek.
Personalization in distributed e-learning environments.
In WWW Alt. ’04: Proceedings of the 13th
international World Wide Web conference on
Alternate track papers & posters, pages 170–179, New
York, NY, USA, 2004. ACM Press.

[5] P. Eades, X. Lin, and W. F. Smyth. A fast and
effective heuristic for the feedback arc set problem.
Information Processing Letters, 47(6):319–323, 1993.

[6] Google. Advanced google search operators, 2002.

[7] R. Karp. Reducibility among combinatorial problems.
In Complexity of Computer Communications, pages
85–103, 1972.

[8] J. Khodor, D. G. Halme, and G. C. Walker. A
hierarchical biological concept framework: A tool for
course design. Cell Biology Education, 3:111–121,
2004.

[9] G. Miller, R. Beckwith, C. Fellbaum, and M. Gross,
D. Wordnet: An on-line lexical database. International
Journal of Lexicography, 3:235–244, 1990.

[10] E. Mor and J. Minguill&#243;n. E-learning
personalization based on itineraries and long-term
navigational behavior. In WWW Alt. ’04: Proceedings
of the 13th international World Wide Web conference
on Alternate track papers & posters, pages 264–265,
New York, NY, USA, 2004. ACM Press.

[11] P. Slater. Inconsistencies in a schedule of paired
comparisons. Biometrika, 48:303–312, 1961.

[12] C. B. Teo and R. K. L. Gay. A knowledge-driven
model to personalize e-learning. J. Educ. Resour.
Comput., 6(1):3, 2006.


