
RAD: A Scalable Framework for Annotator
Development

Sanjeet Khaitan #$1, Ganesh Ramakrishnan ∗2, Sachindra Joshi ∗3, Anup Chalamalla ∗4

#InfoSpace Inc.
India Subsidiary, Bangalore

INDIA
1sanjeet.khaitan@infospace.com

∗IBM India Research Lab
New Delhi

INDIA
2ganramkr@in.ibm.com
3jsachind@in.ibm.com
4achalama@in.ibm.com

$Work done while at IBM India Research Lab

Abstract— Developments in semantic search technology have
motivated the need for efficient and scalable entity annotation
techniques. We demonstrate RAD: a tool for Rapid Annotator
Development on a document collection. RAD builds on a re-
cent approach [1] that translates entity annotation rules into
equivalent operations on the inverted index of the collection, to
directly generate an annotation index (which can be used in
search applications). To make the framework scalable, we use
an industrial strength indexer, Lucene [2] and introduce some
modifications to its API.

The index also serves as a suitable representation for making
quick comparisons with an indexed ground truth of annotations
on the same collection to evaluate precision and recall of the an-
notations. RAD achieves at least an order of magnitude speedup
over the standard approach of annotating a document-at-a-time
as adopted by GATE [3]. The speedup factor increases with
increase in the size of the collection, making RAD scalable. We
cache intermediate results from the index operations, enabling
quick update of the annotation index as well as speedy evaluation
when rules are modified. This makes RAD suitable for rapid and
interactive development of annotators.

I. MOTIVATION

Developments in semantic search technology [4], [5], [6]
have motivated the need for efficient and scalable entity
annotation techniques that can be deployed on a large scale.
Entity annotation involves associating one of several well-
defined types with token sequences in unstructured documents.
Example types are ‘person name’, ‘organization’, ‘place’,
‘date’, etc.

In this paper, we will restrict our attention to rule-based en-
tity annotators. A rule for entity annotation is a pair consisting
of a pattern and a type. A pattern defines the sequence of
tokens that need to be identified and the corresponding type
denotes the annotation type for the token sequence. In this
paper, we only consider patterns that are regular expressions
over tokens and over properties of tokens such as (i) which
dictionaries they belong to, (ii) their part of speech and (iii)
orthographic properties.

Manually developing a set of rules that perform annotation
of a document collection to a desired level of precision and
recall requires an iterative and interactive process wherein
effects of slight changes to rules can be measured quickly. To
enable this, it is desirable to have an annotator development
framework that has the following properties:
(a) The annotator should perform close to real time annotation
of reasonably large data sets (around 1 GB).
(b) The annotator should take advantage of the fact that
typically, in an interactive rule development scenario, only
slight modifications are made to rule sets. An example
modification is the addition of rules having common
subexpressions with already evaluated rules. Benefits of such
modifications could be reaped through techniques such as
caching of intermediate rule operations.
(c) It should be possible to perform real time quantitative
evaluation of the annotations produced by the rules against
gold standard annotations (in terms of measures such as
precision and recall).
(d) The framework should also provide a user interface to
enable real time qualitative evaluation of the rules through
visualization of changes in annotations as rules are modified.

Most current rule-based techniques [3], [7] for this task
operate at the document level, such that each rule is evaluated
against one document at a time. The computational complexity
of this approach varies linearly with the number of documents
and the cost for annotating each document, which could be
prohibiting for large document corpora. Another drawback of
this approach is that the entire document collection needs to
be reprocessed for every minor modification made in the set
of rules.

Recently we proposed [1] a framework (henceforward re-
ferred to as IndexAnnot) for annotating a document collection
with typed entities by working solely on its inverted index. The
framework yielded an order of magnitude speedup over a state-

of-the-art document-based annotator [3]. The improvement
achieved was even more pronounced when annotations had to
be produced for a set of rules that were incrementally added.

In this demo, we present a system (RAD) for Rapid
Annotator Development. The underlying annotator rule
engine of RAD is based on the IndexAnnot [1] approach,
which is efficient and scalable. We cache results of
intermediate annotation operations to enable speedy updates
to the annotation index whenever slight changes are made
to the rule base. We use an industrial strength annotator,
Lucene [2] and appropriately extend its API to support the
addition of new index entries (in our case annotation types),
to the index of an existing document collection. Further, if the
collection comes with an accompanying set of gold standard
annotations (the ground truth), we create index entries for
those annotations. We support quick quantitative evaluation of
the rule-based annotations (in terms of precision and recall)
by a simple linear comparison of the postings lists for the
rule-based annotations against the postings lists for the gold
standard annotations.

II. BACKGROUND: ENTITY ANNOTATION USING INVERTED
INDEX OPERATIONS

Fig. 1. Back-end process in the RAD tool

Figure 1 shows the process for entity annotation presented
in [1], which forms the backend process in the RAD tool. A
given document collection D is tokenized and segmented into
sentences. The tokens are stored in an inverted index I . The
inverted index I has an ordered list U of the unique tokens u1,
u2, ..uW that occur in the collection, where W is the number
of tokens in I . Additionally, for each unique token ui, I has
a postings list L(ui) =< l1, l2, . . . lcnt(ui) > of locations in
D at which ui occurs. cnt(ui) is the length of L(ui). In the
approach described in [1], we designed each entry posting list
entry lk to have four fields: (1) a document identifier, lk.did,
(2) a sentence identifier, lk.sid, (3) the begin position of the
particular occurrence of ui, lk.first and (4) the end position
of the same occurrence of ui, lk.last. The entries in a postings
list are sorted first by did, then by sid, followed by first and
finally by last.

The input grammar used in [1] is the same as that used for
named entity annotations in GATE [3]. The GATE architecture
for text engineering uses the Java Annotations Pattern Engine
(JAPE) for its information extraction task. JAPE is a pattern

matching language. [1] supports two classes of properties
for tokens that are required by grammars such as JAPE:
(1) orthographic properties such as an uppercase character
followed by lower case characters, and (2) dictionaries
(gazetteers) to which a token or a token sequence belongs.
Examples of dictionaries are ‘location’ and ‘person name’.
The set of tokens along with entity types specified by either
of these two properties are referred to as Basic Entities. The
instances of basic entities specified by orthographic properties
must be single tokens. However, instances of basic entities
specified using dictionary containment properties can be
token sequences.

A. Generation of postings list for basic and derived entities

The module (1) of the system in Figure 1, identifies postings
lists for each basic entity type. These postings lists are entered
as index entries in I for the corresponding types. For example,
if the input rules require tokens/token sequences that satisfy
Capsword or Location Dictionary properties, a postings list is
created for each of these basic types. The postings lists of to-
kens satisfying the same orthographic property are merged. A
rule for NE annotation may require a token to satisfy multiple
properties such as Location Dictionary as well as Capsword.
The postings list for tokens that satisfy multiple properties
are determined by performing an operation parallelint(L, L′)
over the postings lists of the corresponding basic entities. The
parallelint(L, L′) operation returns a postings list such that
each entry in the returned list occurs in both L as well as L′.

The module (2) of the system shown in Figure 1 identifies
instances of each annotation type, by performing index-based
operations on the postings lists of basic entity types and other
tokens. The different operation types and the sequence of their
application will be discussed in the remainder of this section.
Every intermediate postings list generated by module (2) has
a field Opt. When any expression in the JAPE grammar is
optional (or has the ’*’ or ’?’ operators associated), the value
of Opt for the corresponding postings list is set to ‘true’.

Operations on Postings Lists: (a) merge(L1, L2, . . . , Ln):
Returns a postings list such that each entry in the returned list
occurs at least in one of the lists L1 or L2 or Ln. The Opt
field of the resultant list is a disjunction of the Opt fields of
the input lists.

(b) consint(L, L′): Returns a postings list such that each
entry in the returned list points to a token sequence which
consists of two consecutive subsequences @sa and @sb
within the same sentence, such that, the list L has an entry
for @sa and L′ has an entry for @sb. If either of L or L′ has
its Opt field set to true, the resultant list is merged with the
corresponding optional postings list(s).

B. Inverted Index-based Annotation using an AND/OR Tree

Each annotation pattern (which is a regular expression over
basic entities) is first translated into an AND/OR Tree [1].
An AND/OR Tree specifies a bottom-up sequence of consint

and merge operations on postings lists to obtain a postings
list for the annotation type at the root. Associated with each
node in the tree is a regular expression and a postings list
of all the matches in the collection for that node’s regular
expression. There are two types of nodes: AND node where
the output list is computed from the consecutive intersection
(consint) of the lists of two children nodes and OR node
where the output list is computed by merging the lists of all
the children nodes. Additionally, each node has two binary
properties: Opt and selfLoop. The first property is set if
the regular expression being matched is of the form ‘R?’,
where ‘?’ denotes that the regular expression R is optional.
The second property is set if the regular expression is of the
form ‘R+’, where ‘+’ is the kleen operator denoting one or
more occurrences. For the case of ‘R*’, both properties are
set. The AND/OR Tree is recursively built by scanning the
regular expression from left to right and identifying every
sub-regular expression for which a sub-tree could be built.
Details of the algorithm that builds the AND/OR Tree from
a regular expression are provided in [1].

III. DESCRIPTION OF THE SYSTEM

The goal of annotator development is generating a set of
rules that annotate a document collection to a desired level
of precision and recall. This development requires an iterative
and interactive process [5] wherein effects of slight changes
to rules can be measured quickly. RAD has been developed
keeping this goal in mind.

Figure 2 shows the high-level architecture of the RAD tool.
The tool uses the technique for annotation described in [1]
and gives an order of magnitude speedup over the document-
at-a-time paradigm, enabling the quick annotation of any pre-
indexed large document collection.

Given a document collection (D), a Lucene-based inverted
index (BI) is first created for the collection. The rules and
dictionaries for NEA are stored in a rule-base (RB). Using
the technique described in [1], rules and dictionaries in the
rule base are matched directly against the base inverted index
to create index entries for named entities in the annotation
index (AI).

If the document collection comes with an accompanying
set of gold standard annotations (the ground truth G), these
annotations can be stored in the gold annotation index (GI).
The advantage of creating the gold annotation index is that pre-
cision and recall for the rule-base can be quickly computed by
simply comparing the entries in the annotation index against
the entries in the gold index. The base inverted index, the
annotation index and the gold index are just logically separate
parts of a common Lucene index (LI). All the indexes are
stored using Lucene [2]. Some details regarding the integration
of Lucene are provided in Section III-A.

RAD comes with a user interface (UI) that has the
following facilities:
(a) It allows the user to specify the document collection and
create a base inverted index.

(b) It has an editor for creating and modifying the rule base
and the rules therein.
(c) It facilitates the rapid creation of annotation index using
a set of specified rule base and base inverted index.
(d) Given the gold annotation set for a document collection,
it allows the user to populate the gold annotation index.
(e) It quickly evaluates the precision and recall for a specified
rule base and a document collection by comparing the
resultant annotation index against the gold index.
(f) The user interface enables the user to browse through
annotations for individual documents, and help refine rules
by providing diagnosis of mistakes in the annotations.

For a set of 8 rules across 4 NE types, the process of
named entity annotation directly using the inverted index
yields speedup factors of 8 and 13 over GATE for the Reuters
and Enron corpora respectively. The annotation index also
holds a cache (C) of intermediate postings lists generated
from previous index operations. The cache enables the reuse
of results of common sequences of operations on postings
lists across different NE rules. The cache also enables rapid
update of the annotation index when named entity rules are
modified. E.g., when NEA is performed for an additional set
of 4 rules, the speedup factors increase to 23 and 37 for the
Reuters and Enron corpora respectively.

A. Index Storage using Lucene

Lucene [2] is an open source search engine project written
in JAVA. It provides API for creating and managing inverted
indexes. For every unique term T , it maintains a postings
list loc1, loc2, . . . locn, where each location loci contains two
elements doci and posi, which are the document number
and the term position in the document respectively. The
annotation postings lists are very similar to those of the
terms postings lists except that an annotation can span several
words in a document. In order to store annotation information
in Lucene’s inverted index format we split the annotation
postings list into two. The first postings list contains the
begin positions of the annotations and the second stores the
end positions. It is easy to see that a linear merge algorithm
will yield the actual postings list for the annotation. Given the
index for an existing collection, Lucene does not provide any
API for introducing new terms whose postings lists refer to the
same collection. We extended the Lucene API to enable the
addition of new terms (which are annotation types in our case).

IV. DEMONSTRATION

Our demonstration will showcase the RAD system using
two document collections (i) the publicly available Enron
data set consisting of about 250,000 email messages and
(b) a combination of Reuters-21578 and the 20 Newsgroups
data sets. We illustrate using some homegrown rules for
4 types, viz., Person name, Organization, Location and
Date. We also demonstrate the speedup for incremental

Fig. 2. High Level Architecture of the RAD tool

annotation by introducing new rules for the 4 types. We then
present how RAD could help improve the quality of rules
quickly and interactively, with the help of gold annotations.
We show a side-by-side comparison with the GATE annotator.

REFERENCES

[1] G. Ramakrishnan, S. Balakrishnan, and S. Joshi. (2006) Entity annotation
based on inverse index operations.

[2] Apache. Apache lucene: A high performance, full featured text search
engine. [Online]. Available: http://lucene.apache.org

[3] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan, “GATE: A
framework and graphical development environment for robust NLP tools
and applications,” in Proceedings of ACL, 2002.

[4] S. Dill, N. Eiron, D. Gibson, D. Gruhl, and R. G. et. al., “Semtag
and seeker: bootstrapping the semantic web via automated semantic
annotation,” in Proceedings of the WWW, 2003.

[5] E. Kandogan, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and
H. Zhu, “Avatar semantic search: a database approach to information
retrieval,” in Proceedings of the ACM SIGMOD, 2006.

[6] S. Chakrabarti, K. Puniyani, and S. Das, “Optimizing scoring functions
and indexes for proximity search in type-annotated corpora,” in Proceed-
ings of WWW, 2006.

[7] D. Appelt, J. Hobbs, J. Bear, D. Israel, M. Kameyama, D. Martin,
K. Myers, and M. Tyson, “Sri intnl fastus system: Muc-6 test results
and analysis,” in Proc. of MUC, 1995.

