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Abstract

In this paper, we introduce the evolving label-set prob-
lem encountered in building real-world text classification
systems. This problem arises when a text classification sys-
tem trained on a label-set encounters documents of unseen
classes at deployment time. We design a Class-Detector
module attached to text classification systems that moni-
tors unlabeled data, detects new classes, and suggests them
to the human administrator for deployment in the original
label-set.

A central notion in our algorithms is the use of abstrac-
tions that group together tokens under human understand-
able concepts and also provide a mechanism of assigning
importance to unseen terms. We present algorithms for se-
lecting documents for a new class based on state-of-the-
art generative models and high performance discrimina-
tive classifiers. Experiments on three real world taxonomies
show that the generative models can select documents com-
prising a new class with high precision, and also automat-
ically trigger the emergence of new classes with more than
85% precision.

1. Introduction

Numerous applications like spam filtering, e-mail rout-
ing, Web directory maintenance, and news filtering, have
fueled extensive text classification research in recent
years [10, 12, 16]. State-of-the-art classifiers routinely
achieve up to 90% accuracy on well-known benchmarks,
and this is surpassed in highly tuned industry-grade text
classification systems [1]. Most text classification research
assumes a fixed representation of features like bag-of-
words, and a partially labeled corpus. Statistical learners
also depend on the deployment to be reasonably related to
the training. Not all these assumptions hold in real-life.

One important challenge in building text classification
systems is that the constitution of unlabeled data changes
over time. Often new classes are introduced and need to
be detected and folded into the system. We call this the

evolving label-setproblem. For example, consider a classi-
fication problem withn classes, where the classes are doc-
uments about certain countries (India, US, UK, . . .). Over a
period of time, a new country’s documents (sayAustralia)
are introduced into the system. The evolving label-set prob-
lem is to detect such (one or more) new classes, propose a
cohesive set of documents for training the new classes, get
user for validation about these fitting in with the label-set,
and fold these new classes into the classification system.
Such problems occur especially when a nascent classifica-
tion system is built from scratch, the entire set of labels is
not known beforehand, and the user’s understanding of the
label-set evolves over time.

Such phenomenon is common place in directory sys-
tems like Dmoz1 that manually classify ever-changing web-
pages. For example, a directory of scientific disciplines
would need to add “bio-informatics” as it emerged as a new
discipline, or add an industry type “cell-phones” when they
started becoming popular. Another example is in the news
domain where new kinds of news stories about recent events
need to be detected and classified. This example is well
studied and callednovelty detectionin the topic detection
and tracking (TDT) track at the TREC2 conferences. The
novelty detection task aims for online clustering of news
stories; it’s goal is to tag novel news stories as interest-
ing and spawn new events for these stories. The evolving
label-set problem on the other hand, occurs in a classifica-
tion setting and new classes need to be carefully spawned
only if they fit into the existing label-set. We review some
of the novelty detection work and point out differences to
the evolving label-set problem in Section 6.

Our main contributions in this paper are as follows: We
design algorithms for identifying new classes in both dis-
criminative and generative settings. We introduce the notion
of abstractions so as to capture the importance of terms not
encountered during training, and also to provide a represen-
tation that more intuitively reveals the classification criteria
to the user. We perform experiments on three very differ-
ent types of real-life taxonomies and show that our methods

1http://dmoz.org
2http://trec.nist.gov



achieve 60–90% precision of discovering unlabeled docu-
ments comprising a new class. We also make the surprising
discovery that while discriminative methods are more ac-
curate than generative ones, as far as the discovery of new
classes is concerned they fare poorly with respect to state-
of-the-art generative methods.

2. Problem Setting

We envision a scenario where a separate module for new
class detection continuously monitors unlabeled documents
as they arrive into a text classification system for label as-
signment. When the module, that we call Class-Detector,
gathers enough evidence of an emerging new class, it sends
a trigger to the administrating user. Alternately, the user
could periodically query the Class-Detector for the presence
of a new class. The Class-Detector then presents to the user
a ranked list of documents that could comprise a new class.
The user can then choose to add a new class to the classi-
fication system with an initial labeled set filtered from this
ranked list.

Our methods for tackling the evolving label-set problem
do not interferewith the working of the main classifier. The
main classifier can be any high-performance well-tuned al-
gorithm; a popular choice being Support Vector Machines
(SVMs) [10]. As we will see later in Section 5 the under-
lying learning model that works best for the detecting new
classes can be very different from the optimal main classi-
fier for label assignment.

Figure 1. System overview

The two main technical components of the Class-
Detector are:

1. The new class triggerthat decides if there is enough
consistent divergence in the unlabeled set to define a
new class, and,

2. Thedocument selectorthat picks a ranked list of doc-
uments comprising a possible new class.

Intuitively, we expect to find a new class when there are
a significant number of unlabeled documents that do not fit
the existing class structure and which are themselves co-
herent enough to be grouped into a class. Converting this
intuition into a robust procedure poses several challenges.

Firstly, separating out the documents forming a possible
new class from mis-classified documents of existing classes
on the basis of being “misfits” in the classification model, is
extremely challenging, particularly in the presence of multi-
labeled documents. If the selected documents contains sev-
eral of these mis-classified documents (say more than 50%),
the user may get confused about the nature and scope of
the proposed new class. In fact, for state-of-the-art one-vs-
others SVM ensembles, we have observed that as many as
30% of the unlabeled documents are rejected by all the bi-
nary classifiers, making them hard to separate from valid
new class documents. We therefore also explore state-of-
the-art generative models to capture the degree of fit of un-
labeled documents.

Secondly, it is likely that documents of new classes will
contain terms that have not been seen during training, and
not all of these are important for classification. Further,
even normal unlabeled documents contain new terms in
abundance, thereby eliminating the possibility of depend-
ing on frequency of new terms to detect new classes. In a
supervised setting, the importance of terms is established
either explicitly using statistical metrics like information
gain, or implicitly, in the classifier via term weights (as in
SVMs). Such metrics that depend on labeled data are not
applicable here. We depend on indirect methods to estab-
lish term importance via a notion of termabstractions that
assigns importance to a family of terms together. Abstrac-
tions indicate various properties of the term based on the
way it is used in the documents. Examples of abstractions
are: Named-Entity (NE) tags, part-of-speech (POS) tags,
formatting features, visual clues in HTML documents, and
match with external dictionaries or keyword ontologies. For
example, a classification system based on regions would as-
sign high importance to location NE tags. Additionally, ab-
stractions help a user better interpret the criteria used for
defining new classes. Abstractions can be clubbed together
to form abstraction sets. The user can choose a small num-
ber of candidate abstraction sets for a label-set by inspec-
tion, domain knowledge, or through validation experiments
in an off-line training phase.

Abstractions – an example: We highlight the importance
of abstractions in understanding a label-set in Figure 2.
With the full vocabulary, for three classes, we show the
four most indicative features used in classification. We also
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show indicative features when only the organization name
NE tag is used for representing documents.

Full vocab
bank,issue,warrant,fee

oil,crude,million,refinery
compuserve,service,subscribe,cost

Organization names
Commonwealth Bank of Aus, Commerzbank, Central Bank, Fleet Fin Group

Gulf Oil, Chinese Petro Corp, Esso Aus Ltd, Natural Gas Corp
Europe Online, Compuserve, First Data Corp, AOL

Figure 2. Indicative features for a label-set

The full vocabulary makes it hard for us to judge what
the classes in the label-set are though we can estimate that
the classes are broadly about commerce, oil, and comput-
ers. However, looking at only the organization names (the
organization name abstraction), we immediately understand
that the label-set is about industry types and the classes per-
tain to a kind of banking, oil companies, and computer data
companies respectively. Indeed, this label-set is taken from
theIndustriesdataset described in Section 5. If new classes
are discovered in unlabeled data based on the full vocabu-
lary, it is not clear that the user will be able to judge the
nature or constitution of the proposed class. On the other
hand, the organization name abstraction will definitely help
the user in understanding and identifying a new industry
type.

The rest of the paper is organized as follows. In Section 3
we present algorithms for selecting a ranked list of docu-
ments comprising a possible new class in a generative and
discriminative setting. In Section 4 we present our method
for automatically triggering the presence of a new class. Fi-
nally, in Section 5 we present detailed experimental results
on real-life datasets.

3. Selecting documents for a new class

In this section we propose generative and discriminative
methods for selecting unlabeled documents for a likely new
class. First, we present an algorithm for generative clas-
sifiers based on the notion ofsupport. Following this, we
present algorithms for discriminative classifiers based on
the notion of classificationconfidence.

3.1. Generative methods

Generative models for text such as LDA [5], Aspect
[9] and BayesANIL [14] model the process of generation
of documents and document features (e.g. words) from
classes. BayesANIL is a Bayesian model that assumes
conditional independence of words (features) from classes,
given documents, and has been shown to be capable of es-
timating uncertainties associated with the labeling process.

Given a corpus of documentsd ∈ D and some of the docu-
ments labeled with class labelsc ∈ C, the model estimates
the joint distributionPr(c, d) of training documentsd and
class labelsc by using a generalization of the Expectation
Maximization (EM) algorithm. ThePr(c, d) estimate from
BayesANIL can be interpreted as a measure ofsupportfor
membership of documentd in classc. The marginalized
probability Pr(d) =

∑
c∈C

Pr(c, d) can be interpreted as a

measure ofsupportof how well documentd fits into the
existing label-set defined by classesC = {c1, c2...cn}. We
chose BayesANIL over other generative models, because in
empirical experiments reported in [14], the probability es-
timatesPr(c, d) from BayesANIL reflected the notion of
support in the contexts of text classification in the presence
of noisy, approximate and incomplete labeling. Addition-
ally, BayesANIL provides for folding in feature evidence
from unlabeled documents, which is especially important,
given that some features are often poorly represented in the
labeled set. This folding-in is enabled by setting the para-
meterλ in BayesANIL to a non-zero value. In our experi-
ments, we usedλ = 0.001.

Thus, the parametersPr(c, d) and Pr(d), provide for
documents from the model, a good notion ofsupport. We
use this measure ofsupport for the problem of detecting
documents pertaining to classes beyond those already pro-
vided; documents with low support for membership in any
of the existing classes are determined as documents of a
candidate new class. In general, we could make use of any
generative model that (1) provides an estimate of the joint
distributionPr(c, d) or thesupportfor membership of each
document in each class and (2) provides for folding in fea-
ture evidence from unlabeled documents.

We now discuss algorithms for selecting documents from
the unlabeled set to form a candidate new class. A simple
method of selecting documents belonging to a new class is
to select documents with the lowestPr(d) values. We call
this methodSortPrD. Another method for suggesting new
class documents is to seed an(n + 1)th class by documents
with the lowestPr(d) values, re-train the generative model
for (n+1) classes, and select unlabeled documents with the
highestPr(cn+1, d). We call this methodPrDNewClass.
Since sorting based onPr(d) is not perfect, it is likely that
documents selected by both these methods will include doc-
uments of existing classes that were mis-classified either
due to noise or for being multi-labeled. Next, we propose
an algorithm that avoids this limitation.

The GenSuppalgorithm: We project all training and
unlabeled documents in ann-dimensionalsupport space
where the components for a documentd along then di-
mensions are itsn Pr(c, d) values. For training documents
thesePr(c, d) values could be pre-computed once during
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the training phase and stored. We then use a hierarchi-
cal clustering (HAC) algorithm to group similar documents.
We measure the distance between any two documentsd and
d′ by the average KL-distance between theirPr(c, d) and
Pr(c, d′) n-dimensional scores. Ifdis andd′is are the doc-
ument projections in the support space, then distance be-
tweend andd′ is given by:

dist(d, d′) =

n∑
k=1

dk ln(
dk

d′k
) +

n∑
k=1

d′k ln(
d′k
dk

)

2

We tried single-link, complete-link, group-average, and
Ward’s method as cluster combination strategies, and found
Ward’s method [6] to work best. We grew the dendrogram
till we had a large number (say5n) of small clusters. Since
Pr(d) scores gives the probability of generating the docu-
ment from the model, we expect the lowestPr(d) values
to be assigned to the new class or other noisy, multi-labeled
documents. We found this to be true empirically. To get
tight sub-clusters from these candidates, we chose clusters
which had the lowest average value ofPr(d) of its con-
stituents. Figure 3 gives the completeGenSuppalgorithm
(for Generative model method based on Support). We re-
quire each candidate cluster to have a minimum number of
unlabeled documents (say5) to guard against outliers and to
be able to define a new class. We also require clusters to be
pure where the fraction of unlabeled documents is at least
p%; this ensures that the new class lies in an area of the sup-
port space where there are no (or few) training documents
in the vicinity. We chosep as20% in our experiments.

1: CandidateClusterSet = {φ}
2: PureClusterSet = {φ}
3: Project all training and unlabeled docs inn-dimensional

space onPr(ci, d) scores
4: Perform HAC using Ward’s method and average

KL-distance
5: Grow the dendrogram to5n clusters
6: for all Clustersdo
7: If cluster has a minimum threshold number of unlabeled

documents: add it toCandidateClusterSet.
8: end for
9: for all Clusters inCandidateClusterSet do

10: If cluster has a minimum fraction of unlabeled
documents vs. labeled: add ittoPureClusterSet

11: end for
12: Select the cluster fromPureClusterSet with lowest

average value ofPr(d) of its constituents
13: Sort unlabeled documents in this cluster byPr(d)

Figure 3. GenSuppalgorithm

3.2. Discriminative methods

Discriminative classifiers like SVMs do not model a doc-
ument’s generation probability, therefore we do not have
equivalents ofPr(d) values for selecting candidate docu-
ments for a new class. We assume a standard one-vs-other
binary ensemble for multi-class classification and design
two algorithms that rely on the “rejection” scores of the bi-
nary classifiers of each of then classes.

NOTA-based method –NotaSVM: Let NOTA denote the
set of unlabeled documents that are rejected by all the bi-
nary SVMs (NOTA stands for None Of The Above classes).
Some of these documents are possibly self-similar, coherent
and belong to a candidate new class; others may be off-
topic, noisy, or multi-labeled. Un-tuned SVMs are known
to produce a significant fraction (up to30%) of such NOTA
predictions. We train a(n + 1)th binary SVM with the
NOTA set as the positive class and the known training data
as the negative class. We expect this SVM to prefer docu-
ments of the new class and accordingly select candidate new
class documents in decreasing order of their scores from the
(n+1)th binary SVM. We call this algorithmNotaSVMand
note that it is similar in spirit toPrDNewClass.

Require: n-class SVM one-vs-others ensemble
Require: n-class outputs for training and unlabeled data

1: Seed a(n + 1)th class with NOTA documents returned by
then-class ensemble

2: Re-train new(n + 1) class SVM one-vs-others ensemble
and apply it to unlabeled documents

3: Rank documents classified positively by the(n + 1)th

binary SVM by distance from separator

Figure 4. NotaSVMalgorithm

We propose a second algorithm along the lines of the
GenSuppalgorithm for generative models.

DisConf algorithm: The DisConfalgorithm is designed
to be the HAC-based discriminative counter-part of the
GenSuppalgorithm. InGenSuppwe represented documents
in thePr(c, d) space. In this case, we represent each docu-
ment by then-dimensional vector of projection scores from
the SVM ensemble. These scores indicate the prediction
confidenceof each classifier. The distance between two
documents is the EuclideanL2 distance metric. An im-
portant difference betweenDisConfandGenSuppis that in
DisConfwe cannot choose a tight cohesive cluster based on
the lowest average value of a ranking function likePr(d).
Instead, we need to apply a heuristic like choosing a clus-
ter which has the most negative average value of document
projections. Remember that for a documentd, most of the
prediction scores in its confidence vector will be negative.
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As we will see in the experiments in Section 5, this is not a
very good heuristic for choosing candidate new classes. The
algorithm is same as 3, except for two differences (1) each
document is projected in the n-dimensional space of SVM
ensembles output confidence scores instead of thePr(ci, d)
scores and (2) theL2 distance metric is used instead of KL-
distance.

4. Automatically triggering new classes

We now consider the problem of detecting if the selected
documents indeed comprise a new class or not. In gen-
eral, for a classifier there will be several unlabeled docu-
ments not classified in any of the existing classes (NOTA
documents in case of SVMs) or having very low probabil-
ity of being generated by the learned model (lowPr(dj)
in BayesANIL). Typically, most of them are due to noisy
and mis-classified multi-labeled documents and automati-
cally triggering if there is a new class amongst them is a
hard problem.

We approach the problem using BayesANIL’s notion
of support using itsPr(c, d) scores as follows. Let
T = {T1, T2, . . . , Tn} be the training documents for the
original n-class label-set. We keep aside a setV =
{V1, V2, . . . , Vn} of documents for measurement. Another
setU = {U1, U2, . . . , Un} are treated as unlabeled docu-
ments. We introduce a fake class and change the original
label-set by addingTn+1 which is a cohesive set of docu-
ments inUi found by HAC as inGenSupp. Tn+1 is a fake
class as it’s documents are chosen from someUi; for every
suchUi, it’s corresponding classTi already exists in the
original label-set. We re-train thisn + 1 class document
collection using BayesANIL and find the value of two mea-
suresMV andMT :

MV =
∑
d∈V

Pr(cn+1, d), and

MT =
∑

d∈Tn+1

Pr(cn+1, d).

MV measures the support for the validation setV from
the newly added class, andMT measures the support of the
newly added class for itself. We perform this experiment
n times, every time adding documents of an existing class
as a fake class. This gives usn prototype values which we
store asMVi and MTi, wherei = 1 . . . n. TheseMV
andMT vectors prototype the range of values these sup-
port measures take when fake classes are introduced into
the label-set.

We expect that if we really detect a new class from
the unlabeled data, then it’s correspondingMTn+1 value
should be higher that all previousMTi’s. Since the fake
classes always had a corresponding class inT , these docu-
ments inTn+1 share the probability mass ofd ∈ Ti for some
Ti. A real new class will take away some probability mass

from all classes inT andMTn+1 > MTi ∀i = 1 . . . n.
By a converse argument we should getMVn+1 < MTi

∀i = 1 . . . n for a genuine(n + 1)th class because a gen-
uine new class will not have any support for then-class doc-
umentsd ∈ V .

True class MVi MTi

CANA 0.00001526 0.000073
CHINA 0.00001521 0.000093

FRA 0.00001556 0.000077
GFR 0.00001530 0.000111

INDIA 0.00001548 0.000083
NETH 0.00001571 0.000075
RUSS 0.00001607 0.000062
SAFR 0.00001580 0.000071
UK 0.00001621 0.000043

USA 0.00001655 0.000093
AUSTR 0.00001509 0.000121

Figure 5. Discovering Australia

In figure 5 we show some of the20 values for the above
prototyping method. The original label-set had the classes,
USA, UK, Canada, and so on. The classAustraliawas hid-
den in the unlabeled data and had to be discovered. We
measuredMVi andMTi by adding fake classes fromUSA,
UK, Canadaetc. The last row shows values ofMVn+1 and
MTn+1 when theAustraliaclass is really inserted into the
label-set usingGenSupp. We see thatMVn+1 andMTn+1

are respectively minimum and maximum compared to the
prototypes.

We note that the differences in values are small, but
since the evaluation is on a constantV , we can work out
a heuristic which says that the unlabeled data contains a
new class when evaluation of candidate new classes satis-
fiesMVn+1 > MVi andMTn+1 < MTi ∀i = 1 . . . n.

5. Experiments

Dataset: We conducted Class-Detector experiments with
the RCV1 dataset3. The RCV1 dataset is a collection of
one year of Reuters news stories from August′96 to Au-
gust ′97. The news stories are organized into three unre-
lated label-sets:regions, topics, andindustries. The topics
and industrieslabel-sets are hierarchical whileregions is
a flat label-set. Stories are assigned labels from all three
label-sets and multi-labeling within a label-set is common.
As we are dealing with the evolving label-set problem, we
used the news stories of the first two days. The first day’s
stories were taken as training data and the second day’s sto-
ries were taken as unlabeled data for all our Class-Detector
experiments. We considered the20 most populous classes

3http://trec.nist.gov/data/reuters/reuters.html
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each, over all three taxonomies, for these two days. Fortop-
ics, the parent classes CCAT, ECAT, MCAT, GCAT were
not chosen; every document in RCV1 is labeled with all
labels on the path from root to leaf and sincetopics is a
hierarchical label-set we ignored the four top-level classes.
This resulted in 4525 documents for regions, 11637 for top-
ics, and 1571 for industries. This selection gave us good
varied datasets in terms of variety of classes and sizes for
the experiments.

Abstractions: We experimented with the full vocabulary
(globalG), the location (L), organization (O), person name
(P) NE tags, and the singular noun (N) POS tag, among
other NE and POS abstractions. We also tried combined
abstraction sets; however due to lack of space, in the rest of
this section we report results only with{G,P,L} for regions
and{G,O,P} for topicsand industries. We found these to
be the most appropriate and understandable abstractions for
these datasets.

We used a custom developed named-entity tagger [13]
for finding theP, L, O abstractions. We note that this tag-
ging was imperfect and noisy, yet our Class-Detector meth-
ods worked well. We used SVMLight4 for our experiments
with SVMs, and a Java implementation of BayesANIL [14].
For HAC we used Peter Kleiweg’s clustering software5

with our own implementation of KL-distance. All experi-
ments were run on a dual-processor Pentium Xeon server
running Debian Linux with2GB RAM.

5.1. Selecting new class documents

For each of the three datasets, we hid one class from the
training data (first day stories) and introduced it in the un-
labeled data (second day stories). The training data thus
had19 classes and the unlabeled data had20 classes. We
checked if our algorithms could detect this new class from
the unlabeled data and suggest a good set of documents
comprising this class for user inspection. Our algorithms
present a ranked list of suggestions and we measure the
precision of these suggestions. Precision is the ratio of cor-
rectly suggested new-class documents to the total number
of suggestions. We used20 suggestions for the reported ex-
periments; results with varying number of suggestions were
similar. In our opinion,20 is a good number for the user
to be able to judge the existence of a new class fitting into
the existing label-set. For each dataset, we report the aver-
age precision over all20 class-detection experiments hiding
each class one-by-one. We report results for the following
four methods:

4http://svmlight.joachims.org
5http://www.let.rug.nl/ ∼kleiweg/clustering/

clustering.html

• GenSuppwith 20 suggestions denotedG20,

• SortPrDwith 20 suggestions denotedP20,

• NotaSVMwith 20 suggestions, and

• DisConf

In Figure 6, 7, and 8 we show the precision values for the
regions, topics and industriesdatasets with three abstrac-
tions each. The precision values in each dataset are aver-
aged over20 experiments. These graphs reveal interesting
results about the various methods and the role of abstrac-
tions.

First, when we compare the generative methodGenSupp
G20 with theSortPrD baseline P20, we find that G20 is
either better or at par with P20 in seven out of nine dataset-
abstractions combinations. This illustrates that while the
Pr(d) scores are valuable for detecting new classes, they
by itself do not suffice, and it is important to account for
coherency of the selected documents in defining a possi-
ble new class. The only exception is thetopics taxonomy
where we see thatP20 outperforms or is marginally bet-
ter thanG20. The characteristic of this dataset is that it
is hierarchical and inherently multi-labeled. A document
with a leaf label, is assigned all labels on the path from the
root to the leaf. Our choice of20 classes in this dataset
contained five such parent-child pairs. Such multi-labeling
paired the parent and child labels together and the docu-
ments of the hidden classes were already present in the orig-
inal label-set. BayesANIL considered this noisy labeling
and automatically assigned lowPr(d) scores to these docu-
ments leading to better performance of P20 over G20. We
would like to mention here thatPrDNewClassdid worse
than G20 and P20 in most of the cases we tried.PrDNew-
Classseeds a new(n + 1)th class with documents sorted
onPr(d) scores which are not very precise. This new class
learned by BayesANIL contains a lot of labeling noise and
suggestions based onPr(cn+1, d) end up with lower aver-
age precision than other generative models.

Second, we find that abstractions do play an important
role in some of the taxonomies. For the industries dataset,
the O andP abstractions provide higher precision thanG
which includes all terms. For regions, the person name ab-
stractionP provides slightly higher precision thanG for the
GenSuppmethod. We investigated why location nameL
was not the best abstraction for this dataset. We found that
the dataset was highly skewed in class distribution. The
USA class in the dataset accounted for about half of the doc-
uments and these USA documents were also multi-labeled.
Hence, since common location names were already seen
in the dataset,L did not prove to be as good asP for this
dataset.

Third, in all three cases the discriminative methods (No-
taSVM and DisConf) performed significantly worse than
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Figure 6. Regions – select-
ing documents. Y -axis rep-
resents average precision

Figure 7. Topics – selecting
documents

Figure 8. Industries – se-
lecting documents

the generative methods. However, even for the discrimi-
native methods we find that abstractions matter.NotaSVM
performs slightly better thanDisConfbecause it iteratively
trains another class over documents predicted NOTA by
the original label-set. When we inspected the results of
DisConf, we found that there were high-precision clus-
ters present in the results of the hierarchical clustering, but
we were unable to pick those clusters for suggesting doc-
uments. This shows us that one-vs-others SVM output
scores, though having similar values for similar documents,
do not have large variability and theDisConfheuristic for
choosing clusters fails. We tried another heuristic inDis-
Conf that selected clusters whose average of the least neg-
ative (for NOTA as well as non-NOTA) scores was lowest.
This heuristic too did not perform much better than the orig-
inal DisConf heuristic. This shows us that it is hard for
heuristics based on distances from separator of SVMs to
distinguish between new class documents and noisy, multi-
labeled mis-classified documents. This also shows that the
measure of support is more important for the evolving label-
set problem than that of confidence. Discriminative models
do not provide such a measure [4] and hence are not very
useful for detecting evolving label-sets.

This was a somewhat surprising finding of our experi-
ments because discriminative methods like SVMs are pop-
ularly believed to out-perform generative methods for text
classification tasks. In the next section, we show that this
holds for our dataset too.

5.2. Baseline accuracy

Figure 9 shows the micro-averageF1 results for all the
three datasets (Reg forregions, Top for topics, and Ind for
industries) for their chosen three abstractions. SVM and
BayesANIL micro-averagedF1 values are reported.

SVM outperforms BayesANIL in text classification per-
formance for nearly all dataset and abstraction combina-
tions. It is interesting to see that in the case of thetop-
ics dataset, TopO and TopP actually do better classification
than TopG which looks at the full vocabulary. This affirms

Figure 9. Micro-average F1 for SVM and
BayesANIL

our faith in the notion of abstractions – the correct abstrac-
tions capture most of the information in the label-set.

5.3. Detecting new classes

We report experiments for detecting new classes accord-
ing to theMT andMV measures outlined in Section 4. For
theregionsdataset, we experimented withG andL. For each
of the20 classes, we hid the class in the training data, intro-
duced it in the unlabeled data, and determined the fake-class
prototype values ofMT andMV . In Figure 10, we report
the number of times we successfully triggered a new class
detection (out of20). We see thatMT is a better measure
thanMV . MTn+1 is higher than all fakeMTi values more
number of times because the fake classes have low support
for documents determined to belong to them but which ac-
tually come from an existing class.MV performed com-
paritively poorly. We also see that abstractions perform bet-
ter than the full vocabulary in trigger new classes and have
lesser false negatives.
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Regions MV MT
G 8 14
L 12 17

Figure 10. Regions – number of times new
classes triggered (out of 20)

6. Related Work

Our work is related to the work on Topic Detection and
Tracking (TDT) [3, 2, 15] but the problem setting and ap-
proaches are different. The aim of TDT is to monitor an
online feed of news stories and to detect the first occur-
rence of a new real world event reported in the news. This is
called First Story Detection (FSD) and is followed by track-
ing further follow up news stories about the event. Most
popular techniques at new event detection and tracking (Al-
lan et al. [3, 15]) involve a single pass clustering algorithm
with well-tuned novelty detection thresholds. Incoming sto-
ries are compared to prototypes (average vectors) of ex-
isting events. If incoming stories are more than a thresh-
old away from existing events, a new event is spawned.
Some of these systems also explore the use of named-entity
tags [7, 15] to define more meaningful similarities between
documents. This is related to our method of using abstrac-
tions, but our notion of abstractions is more general and
not limited to a fixed set of NE tags unlike in news sto-
ries. In summary, most work on TDT needs to rely on un-
supervised clustering techniques using word-based or NE
tags-based similarity. In contrast in our classification set-
ting, the set of categories is smaller and known in advance.
This makes it possible to project documents in a space that
better captures their grouping as far as the set of classes in
concerned. Also, most TDT systems cannot handle multi-
labeled (multi-event) stories.

Concept drift in classification is another related field of
work, but it is quite different from our setting where the
set of labels itself changes over time. In concept drift, the
distribution of indicative words, and pattern of anoneclass
changes over time. A method of dealing with concept drifts
in SVMs is provided in Klinkenberget al. [11]. An inter-
esting future work for us would be discovery of new classes
in the face of concept drifts of existing classes.

7. Conclusions

We have introduced the evolving label-set problem and
presented generative and discriminative methods for deal-
ing with this problem in text classification systems. We in-
troduced the notion of abstractions, which helps the user
in understanding label-sets. We use abstractions as a basis
for checking the existence of new classes in unlabeled data.

We presented theGenSupp, SortPrD, andPrDNewClassal-
gorithms which use state-of-the-art generative models, and
theNotaSVMandDisConfalgorithms using discriminative
classifiers. An interesting result of our experiments was that
though discriminative models were better in text classifica-
tion performance, generative models outperformed them in
Class-Detector experiments.

In future work, we would like to integrate evolving label-
set detection in working text classification systems and
workbenches like HIClass [8]. In this paper we have con-
sidered the introduction of one class at a time. These need
to be extended to detect more than one class at time.

References

[1] 3rd workshop on operational text classification. OTC 2003,
In conjunction with SIGKDD ’03.

[2] J. Allan, V. Lavrenko, and H. Jin. First story detection in
TDT is hard. InProc. of CIKM 2000.

[3] J. Allan, R. Papka, and V. Lavrenko. Online new event detec-
tion and tracking. InProc. of SIGIR ’98.

[4] R. K. Ando and T. Zhang. A framework for learning pre-
dictive structures from multiple tasks and unlabeled data. In
Technical Report RC23462, IBM T.J. Watson Research Cen-
ter, 2004.

[5] D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. In
Proc. of NIPS14, 2002.

[6] A. El-Hamdouchi and P. Willett. Hierarchic document clus-
tering using ward’s method. InInformation Processing and
Management, 1986.

[7] E. Gabrilovich, S. Dumais, and E. Horvitz. Newsjunkie: pro-
viding personalized newsfeeds via analysis of information
novelty. InProc. of WWW ’04, 2004.

[8] S. Godbole, A. Harpale, S. Sarawagi, and S. Chakrabarti.
Document classification through interactive supervision of
document and term labels. InProc. of ECML/PKDD ’04.

[9] T. Hofmann. Probabilistic latent semantic analysis. InProc.
of UAI’99.

[10] T. Joachims. Text categorization with support vector ma-
chines: learning with many relevant features. InProc. of
ECML-98.

[11] R. Klinkenberg and T. Joachims. Detecting concept drift
with support vector machines. InProc. of ICML-00.

[12] K. Nigam, J. Lafferty, and A. McCallum. Using maximum
entropy for text classification. InProc. of IJCAI-99 Workshop
on Machine Learning for Information Filtering.

[13] G. Ramakrishnan.Bridging chasms in text mining through
Word and Entity Associations. PhD thesis, IIT Bombay, 2005.

[14] G. Ramakrishnan, K. P. Chitrapura, R. Krishnapuram, and
P. Bhattacharya. A model for handling approximate, noisy
or incomplete labeling in text classification. InProc. of
ICML 2005.http://www.cse.itib.ac.in/ ∼hare/
bayesanil.pdf .

[15] Y. Yang, J. Zhang, J. Carbonell, and C. Jin. Topic-
conditioned novelty detection. InProc of SIGKDD ’02.

[16] J. Zhang and Y. Yang. Robustness of regularized linear clas-
sification methods in text categorization. InProc. of SIGIR
’03.

8


