
Learning Decision Lists with Known Rules for Text Mining

Abstract
Many real-world systems for handling unstructured
text data are rule-based. Examples of such systems
are named entity annotators, information extraction
systems, and text classifiers. In each of these appli-
cations, ordering rules into a decision list is an im-
portant issue. In this paper, we assume that a set of
rules is given and study the problem (MaxDL) of or-
dering them into an optimal decision list with respect
to a given training set. We formalize this problem and
show that it is NP-Hard and cannot even be approxi-
mated within any reasonable factors. We then propose
some heuristic algorithms. We conduct exhaustive ex-
periments to evaluate the performance of the proposed
algorithms in practice. In our experiments we also ob-
serve performance improvement over an existing deci-
sion list learning algorithm, by merely re-ordering the
rules output by it. As an aside, we also prove bounds
on the worst case performance of the algorithms for
variants of the MaxDL problem.

1 Introduction

Rule-based systems have been extensively used for
several problems in text mining. Some problems
in text mining where rule-based systems have been
successfully used are part of speech tagging (Brill,
1992), named entity annotation (Grishman, 1997;
Appelt et al., 1995), information extraction (May-
nard et al., 2001), question answering (Riloff and
Thelen, 2000) and classification (Han et al., 2003; Li
and Yamanishi, 1999; Sasaki and Kita, 1998). Sev-
eral studies have been conducted that compare the
performance of rule-based systems and other ma-
chine learning techniques with mixed results. While
there is no clear winner between the two approaches
in terms of performance, the rule-based approach is
clearly preferred in operational settings (Borthwick,
1999; Varadarajan et al., 2002; Cunningham et al.,
2002). Rule-based systems are human comprehen-
sible and can be improved over time. Therefore, it is

imperative to develop methods that assist in building
rule-based systems.

A rule-based system consists of a set of rules.
These rules can either be manually designed or
could be learnt from a training set using rule-
induction techniques (J. and G, 1994; Cohen, 1995).
Each rule consists of an antecedent or pattern and
a consequent or predicted annotation. In this paper,
we will restrict our attention to a broad class of rules
in which the antecedent describes a series of condi-
tions on the input item and the consequent specifies
the label that applies to instances covered by the an-
tecedent. The conditions could also be expressed as
patterns in regular or more powerful grammars.

In general, rules could be ambiguous, i.e., multi-
ple rules could cover an instance. A common ap-
proach for resolving this ambiguity is to define an
ordering on the rules (Maynard et al., 2001; Borth-
wick, 1999). A decision list is one such mecha-
nism (Rivest, 1987). A set of rules that are intended
to be interpreted in a sequence is called a decision
list. In other words, a decision list is an ordering of
the given set of rules. Given an instance t, the rules
are applied in the specified order until a pattern of a
rule R covers t. The instance t is assigned the pre-
dicted annotation associated with R.

In this paper, we study the problem of arranging a
given set of rules into the “best” decision list. Learn-
ing decision lists using training data has been stud-
ied in the past (Rivest, 1987; J. and G, 1994; Cohen,
1995; Li and Yamanishi, 1999). These methods at-
tempt to simultaneously learn rules and their order-
ing. Typically they use separate and conquer (Wit-
ten and Frank, 2005) strategy and order generated

rules as they are discovered. The generation and or-
dering of rules are not considered as two separate
tasks. In contrast, we assume that the rules are given
to us and study the problem of arranging them into
an optimal decision list, where optimality is deter-
mined over a training data set. Our approach is mo-
tivated by the observation that in many operational
settings, it is easier and preferred to get a set of rules
designed by domain experts (Lewis et al., 2003). Al-
ternatively, the set of rules can be determined using
existing techniques for rule learning (J. and G, 1994;
Cohen, 1995; Califf and Mooney, 1998). The sepa-
ration of rule ordering from rule generation allows
us to analyze the problem of ordering in detail and
to develop effective methods for rule ordering. We
demonstrate the usefulness of the proposed methods
for ordering manually designed rules in the task of
named entity annotation and machine learnt rules in
the task of classification. We also observe perfor-
mance improvement over an existing decision list
learning algorithm, by merely reordering the rules
output by that algorithm.

We determine the ordering of the given set of rules
based on a training set. A training set consists of a
set of pairs (ti, ai) where ti is an instance and ai
is its actual annotation. Given a set of rules and a
training data set, we define the problem as follows:
Arrange the rules into a decision list such that max-
imum number of instances are assigned the correct
annotation. We refer to this problem as the MAXDL
problem. We are not aware of any prior work that
studies the MAXDL problem. In this paper, we for-
malize the MAXDL problem. We show that the
problem is NP hard and cannot approximated within
a factor of n1−ε, for any ε > 0. We then pro-
pose some heuristics and present an experimental
study of these heuristics. Our experimental results
show performance improvement over an existing de-
cision list learning algorithm, by merely reordering
the rules output by that algorithm. We also illustrate
the performance improvements obtained by apply-
ing our algorithms for ordering named entity anno-
tation rules and classification rules.

Since the general MAXDL cannot be approxi-
mated, in the appendix, we study special cases of the
problem that are obtained by considering how easy
it is to annotate an instance correctly.

In the rest of the paper we formalize the MAXDL

problem (§2), show it is NP-hard and can’t be ap-
proximated withinreasonable factors (§3), and pro-
pose heuristics in a greedy framework (§4). We
present a experiments in Section§5 and conclude
with Section§6.

2 MAXDL Problem Definition and
Notations

MAXDL Problem:
The input consists of a set of instances T =
{t1, t2, . . . , tm}, a set of annotations A and a set of
rulesR = {R1, R2, . . . , Rn}. Each ruleRi = (p, a)
is a pair, where p is called the pattern and a ∈ A is
called the predicted annotation. The patten p will be
given as a set p ⊆ I; we say that the instances in
p are covered by R. The input also includes a map-
ping A : T 7→ A, that provides for each instance t
an annotation A(t), called the actual annotation of
t. The pair (T , A) is the training data.

Given the above input, a decision list L is an or-
dering (i.e. permutation) of the input rules. The list
L assigns an annotation to each instance t as defined
below. We consider each rule according to the order-
ing given by L until we find a rule Ri = (p, a) that
covers t and assign the annotation a to t. We denote
by L(t) the annotation assigned by L to t. Thus, L
defines a function L : I 7→ A. We say that the list
L correctly annotates an instance t, if the annota-
tion assigned by L matches the actual annotation of
t, i.e., L(t) = A(t).

Given the above input, the MAXDL problem is to
to construct a decision list L such that the number
of instances correctly annotated by L, is maximized
i.e., we want to maximize |{t|A(t) = L(t)}| .
Notations:
LetR = (p, a) be a rule and t be an instance covered
by R. We say that a rule R correctly covers t, if
a = A(t). Similarly, R said to incorrectly cover t, if
a 6= A(t).

Let L be a decision list. We say that an instance
t is happy under L, if L correctly annotates t, i.e.,
L(t) = A(t). Let Happy(L) denote the set of in-
stances that are happy under L. Notice that the
MAXDL problem asks for a decision list L such that
|Happy(L)| is maximized.

3 NP-Hardness and Inapproximability

In this section, we prove that the MAXDL problem
is NP-Hard and also show that the problem cannot
even be approximated with any constant factor.

Theorem 1 The MAXDL problem is NP-Hard.

Proof: We give a reduction from the maximum inde-
pendent set problem (MAXIS), a well-known NP-
Hard problem (Garey and Johnson, 1979). Recall
that an independent set in a graph refers to any sub-
set of vertices such that no two vertices from the set
share an edge. The MAXIS problem is to find the
largest independent set in a given undirected graph.

Let G = (V,E) be the input graph having vertex
set V = {v1, v2, . . . , vn}. We create an instance of
the MAXDL problem as follows. For each vertex
vi, we add an annotation ai toA, an instance ti to T
and a rule Ri to R. We declare ai to be the actual
annotation of ti. The predicted annotation of Ri is
set to ai. We define Ri to cover only the instance
ti and the instances corresponding to the neighbors
of vi. Meaning, Ri covers the instances in the set
{ti} ∪ {tj |(vi, vj) ∈ E}. This completes the reduc-
tion. We claim that given a decision list L having
k happy instances, we can construct an independent
set of size k and vice versa. The NP-Hardness of
MAXDL follows from the claim. We now proceed
to prove the claim.

Consider a decision list L. Notice that for any
instance ti, Ri is the only rule that correctly covers
ti. Take any two different instances ti and tj that are
happy under L. Without loss of generality, assume
that Ri appears before Rj in L. Now, if Ri covers
tj , tj would be unhappy under L. So, Ri does not
cover tj , which implies that vj is not a neighbor of
vi (i.e., (vi, vj) 6∈ E). Hence, the set I = {vi|ti ∈
Happy(L)} is an independent set ofG. We note that
|I| = |Happy(L)|.

Conversely, consider an independent set I of G.
Let R(I) = {Ri|vi ∈ I}. Form a decision list L by
first arranging the rules from R(I) in any arbitrary
order followed by arranging the rest of rules in any
arbitray order. Notice that for any vertex vi ∈ I ,
Ri correctly covers ti and no other rule appearing
before Ri covers ti. Thus, ti is happy under L. It
follows that |Happy(L)| ≥ |I|.

We have proved that the MAXDL problem is NP-
Hard. 2

We next show that the MAXDL problem can-
not be approximated within any reasonable factors.
In our NP-Hardness reduction, we had shown that
given a decision list L, we can construct an inde-
pendent set I such that |Happy(L)| = |I|, and
vice versa. This means that any approximation al-
gorithm for the MAXDL problem can be translated
(by combining it with our NP-Hardness reduction)
into an equally good approximation algorithm for
the MAXIS problem. Thus the known inapprox-
imability result for the MAXIS problem (Zucker-
man, 2006) translates to the following result for the
MAXDL problem.

Corollary 1 If NP 6= P then for any ε > 0,
the MAXDL problem cannot approximated within a
factor of n1−ε. In particular, the problem is not ap-
proximable within any constant factor, unless NP =
P.

4 Heuristic Algorithms for the MAXDL
Problem

As the MAXDL problem is hard to approximate, we
turn to heuristic approaches. All our heuristics fall
into a natural greedy framework, described below.

4.1 A Greedy Framework
Our greedy framework for finding a decision list is
as follows. In each iteration we greedily choose a
rule and output it. For this purpose, we use some
scoring function for assigning scores to the rules and
choose the rule having the maximum score. Then
the chosen rule is deleted. The process is contin-
ued until all the rules are output. The above proce-
dure gives us a decision list. We present this general
framework in the Figure 1. The only unspecified part
in the above framework is the scoring function. In-
tuitively, the scoring function tries to measure the
goodness of a rule.

Given rule setR = {R1, R2, . . . , Rn}, instance set T and the actual annotations
A(·)
whileR 6= null do

(re)compute scores for each rule in R, based on the scoring function
select the rule R that has the maximum score
remove R from the setR
remove from T all the instances covered by R

end while

Figure 1: A Greedy Framework for MAXDL prob-
lem

The following additional notations will be useful

in defining the scoring functions proposed in this pa-
per.

Notations: Consider a MAXDL input I. For
each rule R and instance t, we define the following
sets.

InstR = {t|R covers t}
Inst

+
R

= {t|R correctly covers t}
Inst
−
R

= {t|R incorrectly covers t}

Rulest = {R|t is covered by R}
Rules

+
t = {R|t is correctly covered by R}

Rules
−
t = {R|t is incorrectly covered by R}

4.2 Simple Precision Scoring
We now present our first candidate scoring function,
which we call simple precision scoring. A natural
score for a rule R is its precision: the fraction of in-
stances covered correctly by R among the instances
covered by it.

ScoreSP(R) =
|Inst+

R
|

|InstR|
=

|Inst+
R
|

|Inst+
R
| + |Inst−

R
|

4.3 Weighted Precision Scoring
Under ScoreSP, the score of a rule R is determined
only by the number of instances covered correctly
(|Inst+

R|) and incorrectly (|Inst−R|). The nature
of instances are not taken into account. The vari-
ants of ScoreSP proposed here assign weights to in-
stances, based on which the scores are computed.
We can construct examples where the ScoreSP per-
forms badly, while the weight-based methods dis-
cussed below produce the optimal list.

We assign weights to the instances based on how
easy it is to make them happy. For an instance t,
define the happiness quotient h(t) to be the fraction
of rules that correctly cover t among all the rules that
cover t:

h(t) =
|Rules+t |
|Rulest|

.

The value h(t) is a measure of how easy it is to
make t happy; the larger the value of h(t), it is
easier to make t happy. For instance, if h(t) ≈ 1,
then |Rules+

t | ≈ |Rulest|, meaning that almost any
rule that covers t will annotate it correctly. Thus,
it is easy to make t happy. On the other extreme,
if h(t) ≈ 0, then only a small fraction of the rules
that cover t annotate it correctly. Thus it is harder to
make t happy.

When we schedule a rule R, the instances in
Inst+

R become happy and those in Inst−R become
unhappy. Our new scoring functions give credit to
R for each instance in Inst+

R and award a penalty
R for each instance in Inst−R. The credit and the
penalty depend on the happiness quotient of the in-
stance. Informally, we want to give more credit R
for making hard instances happy; similarly, we want
to penalize R for making easy instances unhappy. A

natural way of accomplishing the above is to award
a credit of (1 − h(t)) for each instance t ∈ Inst+

R

and a penalty of h(t) for each instance t ∈ Inst−R.
Below, we formally define the above quantities as
gain and loss associated with R. For each rule R,
define

Gain(R) =
∑

t∈Inst+
R

(1− h(t))

Loss(R) =
∑

t∈Inst−
R

h(t)

Based on the above quantities, we define a natural
scoring function, called Weighted Precision:

ScoreWP(R) =
Gain(R)

Gain(R) + Loss(R)

4.4 Refined Weighted Precision Scoring
Our third scoring function is a refinement of the
weighted precision scoring. In ScoreWP, we com-
pute the happiness quotient of a token by taking in
account the number of rules that cover the token and
among those the ones that cover it correctly. The re-
finement is obtained by also considering the nature
of these rules.

We define

hRP(t) =

∑
R∈Rules+t

precision(R)∑
R∈Rulest precision(R)

.

(Recall that precision of a rule is defined as
precision(R) = |Inst+

R|/|InstR|.)
Gain, loss and the scoring function are defined

similar to that of ScoreWP:
GainRP(R) =

∑
t∈Inst+

R

(1− hRP(t))

LossRP(R) =
∑

t∈Inst−
R

hRP(t)

The scoring function ScoreRP is defined as

ScoreRP(R) =
GainRP(R)

GainRP(R) + LossRP(R)

5 Experiments

In this section, we describe rule-ordering experi-
ments on different real-world tasks. 1) named-entity
(NE) annotation that relied on hand-crafted rules in
MUC-6 and MUC-7 – we are not aware of any auto-
matic rule-ordering work for this. 2) The second ap-
plication we consider is rule-based multi-class text
classification. We order rules learnt on benchmark
text classification datasets and observe consistent
improvements by merely re-ordering rules learnt by
other rule learners.

5.1 Named Entity Annotation

Rule-based named entity annotation is a natural in-
stance of a decision list problem. Typically, rule-
based NE annotation systems (Cunningham et al.,
2002) require rules to be manually written as well
as ordered manually. In this section, we show that
our proposed rule-ordering algorithms perform bet-
ter than the natural heuristic. Note that we do not
intend to build a rule-based decision list which per-
forms better than existing methods.
Setup: In our problem formulation of MAXDL ,
the set of instances T and mapping A from in-
stances to actual annotations, together form a train-
ing set. We have access to a set of documents
D = {d1, d2, . . . , dm}, that have all its named en-
tities annotated. To generate pairs (T , A) using the
set of documentsD, let Tdi

represent the set of token
sequences that are annotated in a document di ∈ D.
Let A(t) be the actual annotation for an instance
t ∈ Tdi

. Given a set of rules R and a document
collection D, each rule R ∈ R is applied to each
document di ∈ D. The set of token sequences (in-
stances here) which R covers (InstR), is included
in the set of instances T . For all instances t ∈ Tdi

,
we add a mapping t → A(t) in A. For all other
instances t ∈ {InstR − Tdi

}, we have a mapping
t → null included in A. We perform these addi-
tions for each document and rule pair. Finally, we
add a rule R∗ = (∗, null) to the rule setR. The pat-
tern ∗ matches every instance t ∈

⋃
R∈R,R 6=R∗

InstR

and associates a null annotation with the instance.
We report experiments on the MUC-7 NE dataset.

We only consider “person name”, “organization”
and “place name” annotations. We use two differ-
ent rule sets containing about 30 rules each.

The rules were in the JAPE (Cunningham, 1999)
format. The dictionaries for these rules were
collected from the GATE (Cunningham et al., 2002)
package. We present experiments with ScoreSP,
ScoreWP and ScorePRWP.

Results: We compare our methods on the MUC-7
training data set as well as the test data set in Ta-
ble 1 with ScoreSP as the baseline. We also eval-
uated Random rule-ordering as a strawman which
gave train and test accuracies of 52.5% and 38.3%

respectively on rule-set 1, and 48.5% and 41.5% re-
spectively on rule-set 2. All our proposed methods
performed about 25% better than Random. In all
the cases our proposed methods perform better than
ScoreSP. The result shows that our proposed meth-
ods generalize better than simple ScoreSP.

Rule-sets Accuracy ScoreSP ScoreWP ScorePRWP

Rule-set 1
Trng 76.4 76.7 78.9
Test 50.0 52.7 54.5

Rule-set 2
Training 70.1 71.6 73.3
Test 49.1 51.4 52.0

Table 1: Accuracies (in %) for different algorithms

Dataset Acc-
(avg. # rules) -uracy JRip ScoreSP ScoreWP ScorePRWP

la2s (37)
Trng 86.16±0.39 86.02±0.16 86.68±0.16 87.04±0.17
Test 76.93±0.43 77.88±0.16 78.05±0.17 78.1±0.15

oh5 (28)
Trng 86.95±0.41 88.26±0.21 88.8±0.16 89.06±0.17
Test 76.43±0.58 79.08±0.37 79.37±0.38 79.24±0.35

tr45 (17)
Trng 91.88±0.38 92.61±0.18 92.84±0.23 93.3±0.21
Test 78.9±0.47 80.99±0.29 81.19±0.28 81.3±0.3

Table 2: Accuracies (in %) for RipRules

Data set Accu- Multi-class
-racy J48 NaiveBayes ScoreSP ScoreWP ScorePRWP

la2s (18)
Trng 94.75±0.39 85.78±0.29 94.64±0.14 95.9±0.03 95.99±0.01
Test 73.43±0.64 73.68±0.37 78.0±0.21 78.46±0.23 78.64±0.29

oh5 (30)
Trng 95.08±0.21 99.56±0.09 96.27±0.14 98.43±0.09 98.45±0.09
Test 78.08±0.76 74.16±0.77 82.72±0.25 83.16±0.24 83.98±0.26

tr45 (30)
Trng 97.91±0.11 87.16±1.18 97.71±0.14 98.93±0.06 98.98±0.05
Test 85.25±1.02 69.91±1.33 84.06±0.44 86.1±0.39 86.42±0.41

Table 3: Accuracies (in %) for BinRules

5.2 Ordering classification rules
In this section, we show another application of our
algorithms in ordering classification rules (Witten
and Frank, 2005). The antecedent of a classifica-
tion rule is a series of tests on the input and the
consequent gives the class label. Since different
rules can assign conflicting classes, rule-ordering
becomes important in choosing a correct class.
These rules come from a variety of sources and
could be hand-crafted or machine-learnt. Machine
learnt rules could be generated using association
mining (Agrawal and Srikant, 1994), inductive
logic programming (Lavrac and Dzeroski, 1994),
or Ripper (Cohen, 1995). Even classifiers can
be seen as rules, e.g., linear discriminants are
rules that assign one of two classes to exclusive
partitions of input space. There is great value in ap-
proaching text classification in this setting because
real-world settings employ hand-tuned rule-based

classifiers (Lewis et al., 2003). Due to domain
specificity and unavailability of hand-tuned rules
we illustrate rule-ordering on: (1) rules induced
by Ripper (Cohen, 1995) (RipRules), and (2) a
heterogeneous set of rules obtained from naive
Bayes and decision trees (BinRules).

Setup: We used benchmark text classification
datasets (Forman, 2003) available from the Weka
site1. These multi-class datasets represent 229
binary text classification problems, with positive
class size avg. 149, and class skews avg. 1 : 31.
These are subsets of various benchmark tasks like
Reuters, TREC, and Ohsumed (oh). We present
only a subset of the results (with only ScoreWP

and ScorePRWP) here for lack of space. We report
experiments over 10 random 50 : 50 train-test splits.
The training split is used to learn rules and their
ordering. The orderings are evaluated on the test
split and average train and test accuracies reported.

Results:
The RipRules setting: We induce rules (from
the train split) using the JRip implementation in
Weka2 (Witten and Frank, 2005). We apply our vari-
ous algorithms to merely re-order the rules output by
JRip. In Table 2 we present results comparing JRip
output with their re-ordered versions obtained from
ScoreSP, ScoreWP and ScorePRWP. Along with the
name of each data set, the average number of rules
induced from the training splits are also mentioned
in parentheses. The best accuracies are marked in
bold. We observe that the re-ordered rule-sets us-
ing ScoreWP and ScorePRWP perform better than both
baselines ScoreSP and JRip with lower deviations.
The BinRules setting: For an n-class problem we
obtain classification rules by training a heteroge-
neous collection of one-vs-rest binary classifiers.
Each classifier is either a naive Bayes or a decision
tree classifier trained to discriminate one class from
the rest (2n classifiers). We treat each binary clas-
sifier as a classification rule that covers an instance
if the binary classifier assigns its associated class to
that instance. In addition, corresponding to every
class, we introduce a default classification rule that

1http://www.cs.waikato.ac.nz/ml/weka/
index_datasets.html

2http://www.cs.waikato.ac.nz/ml/weka/

assigns the associated class to any instance it en-
counters. This gives us 3n rules. We used the naive
Bayes and J48 implementations in Weka to obtain
binary rules, ordered using ScoreWP and ScorePRWP,
and compared with ScoreSP baseline in Table 3.
We also show individual classifier accuracy, and the
best are marked bold. It is encouraging to note that
all our rule-ordering techniques always outperform
their multi-class counterparts on the test data set. We
outperform the baseline ScoreSP method on all data
sets with lower deviations.

6 Conclusions

In this paper, we formulated and studied the
MAXDL problem. We proved the hardness of the
problem. We then proposed some heuristic ap-
proaches and established the usefulness of our meth-
ods experimentally. We observed improved perfor-
mance in classification task by merely reordering the
rules obtained by an existing decision list learning
algorithm. In future work, we would like to ex-
plore how rule-ordering formulation can be applied
to ordering heterogeneous classifiers in the ensem-
ble learning setting.

References

Rakesh Agrawal and Ramakrishnan Srikant. 1994. Fast
algorithms for mining association rules. In VLDB,
pages 487–499.

D. Appelt, J. Hobbs, J. Bear, D. Israel, M. Kameyama,
D. Martin, K. Myers, and M. Tyson. 1995. Sri inter-
national fastus system: Muc-6 test results and analysis.
In MUC6 ’95: Proc. of the 6th conf. on Message un-
derstanding.

A. Borthwick. 1999. A Maximum Entropy Approach to
Named Entity Recognition. Ph.D. thesis, New York
University.

Eric Brill. 1992. A simple rule-based part-of-speech tag-
ger. In Proceedings of ANLP.

M. E. Califf and R. J. Mooney. 1998. Relational learning
of pattern-match rules for information extraction. In
Working Notes of AAAI Spring Symposium on Apply-
ing Machine Learning to Discourse Processing.

William W. Cohen. 1995. Fast effective rule induction.
In ICML, pages 115–123.

H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan. 2002. GATE: A framework and graphi-
cal development environment for robust NLP tools and
applications. In Proceedings of ACL.

H. Cunningham. 1999. JAPE: a Java Annotation Patterns
Engine. Research Memorandum CS – 99 – 06, Depart-
ment of Computer Science, University of Sheffield,
May.

George Forman. 2003. An extensive empirical study
of feature selection metrics for text classification.
JMLR Special Issue on Variable and Feature Selection,
3:1289–1305.

M. R. Garey and D. S. Johnson. 1979. Computers and
Intractability. Freeman.

R. Grishman. 1997. Information extraction: Techniques
and challenges. In SCIE ’97: Intnl. summer School on
Information Extraction.

Hui Han, Eren Manavoglu, C. Lee Giles, and Hongyuan
Zha. 2003. Rule-based word clustering for text classi-
fication. In SIGIR, pages 445–446. ACM Press.

Furnkranz J. and Widmer G. 1994. Incremental re-
duced error pruning. In Machine Learning: Proc. of
the Eleventh International Conference.

Nada Lavrac and Saso Dzeroski. 1994. Inductive
Logic Programming:Techniques and Applications. El-
lis Horwood, New York.

David D. Lewis, Rayid Ghani, Dunja Mladenic, Isabelle
Moulinier, and Mark Wasson. 2003. Workshop on
operational text classification. In conjunction with
SIGKDD.

Hang Li and Kenji Yamanishi. 1999. Text classification
using ESC-based stochastic decision lists. In CIKM.

D. Maynard, V. Tablan, C. Ursu, H. Cunningham, and
Y. Wilks. 2001. Named entity recognition from di-
verse text types. In RANLP.

Ellen Riloff and Michael Thelen. 2000. A rule-based
question answering system for reading comprehension
tests. In ANLP/NAACL 2000 Workshop on Reading
comprehension tests as evaluation for computer-based
language understanding sytems.

Ronald L. Rivest. 1987. Learning decision lists. Ma-
chine Learning, 2(3):229–246.

Minoru Sasaki and Kenji Kita. 1998. Rule-based text
categorization using hierarchical categories. In Pro-
ceedings of SMC-98, IEEE International Conference
on Systems, Man, and Cybernetics, pages 2827–2830.

Sundar Varadarajan, Kas Kasravi, and Ronen Feldman.
2002. Text-mining: Application development chal-
lenges. In Proceedings of the Twenty-second SGAI In-
ternational Conference on Knowledge Based Systems
and Applied Artificial Intelligence.

Ian H. Witten and Eibe Frank. 2005. Data Mining: Prac-
tical Machine Learning Tools and Techniques. Mor-
gan Kaufmann.

D. Zuckerman. 2006. Linear degree extractors and the
inapproximability of max-clique and chromatic num-
ber. In STOC.

A Approximation Ratios for Special Cases
of the MAXDL Problem

As shown by Corollory 1, the MAXDL problem can-
not be approximated within any constant factors. In
this section, we consider special cases of the prob-
lem and prove approximation gurantees.

The special cases are obtained by placing restric-
tions on the nature of instances and rules covering
them. For α > 0, let α-MAXDL problem be the
special case where for each instance t, among the
rules covering t at lease α fraction of them cover it
correctly. Equivalently, we require that h(t) ≥ α.
By adapting the proof of Theorem 1, we can show
that α-MAXDL is NP-hard, for any α > 0.

Let Greedy[ScoreWP] denote the greedy al-
gorithm with ScoreWP as the scoring function.
We show that the above algorithm is an α-
approximation algorithm for the α-MAXDL prob-
lem. The claim follows from a more generic result
discussed below.

Consider the scoring function ScoreWP. For a
MAXDL input I, we define

HQ(I) =
∑
t∈T

h(t)

Notice in the case of α-MAXDL inputs I, HQ(I) ≥
α. We prove the following result regarding any
MAXDL input.

Theorem 2 Let I be any MAXDL input and L be
the list output by Greedy[ScoreWP] on input I.
Then, |Happy(L)| ≥ HQ(I)

Proof Sketch: The proof uses the following claim.
Claim: In any input I, there exists a rule R∗ such

that |Inst+
R∗ | ≥ Σt∈InstR∗h(t).

Proof of Claim: We consider the following sum and
derive an equality:∑

R

∑
t∈InstR

h(t) =
∑
t

∑
R∈Rules(t)

h(t)

=
∑
t

Rules+(t)

=
∑
R

Inst+
R.

The claim is obtained by equating the first and the
last terms, and by applying an averaging argument.
2

The theorem is now proved via a simple inductive
argument on the number of rules in the given input.
Let I be any MAXDL input having n rules and let
L be the greedy algorithm’s output on I. Let R1 be
the first rule in L and L′ be the rest of the list, so that
L = R1 ◦ L′. Then,

|Happy(L)| = |Inst+
R1
|+ |Happy(L′)|. (1)

We shall derive lowerbounds for the above two
terms.

Since L′ has one less rule, using the induction hy-
pothesis, we can show that

|Happy(L′)| ≥
∑

t6∈InstR1

h(t). (2)

Next, consider the term |Inst+
R1
|. The

claim above provides a rule R∗ such that
Inst+

R∗ ≥ Σth(t). Notice that ScoreWP(R1) ≥
ScoreWP(R∗), since the algorithm selected R1.
From this fact, we can show that

|Inst+
R1
| ≥

∑
t∈InstR1

h(t). (3)

Combining Equations 2 and 3 with Equation 1, we
get |Happy(L)| ≥ HQ(I). 2

Let I be a α-MAXDL input having n instances.
Then, HQ(I) ≥ αn. It follows from Theorem 2 that
Greedy[ScoreWP] outputs a list having at least αn
happy instances. Since the optimal can have at most
n happy instances, we get that the above algorithm
is an α-approximation algorithm.

Theorem 3 For any α > 0, the Greedy[ScoreWP]
is an α-approximation algorithm for the α-MAXDL
problem.

