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Abstract. The identification of the correct sense of a word is necessary for
many tasks in automatic natural language processing like machine translation,
information retrieval, speech and text processing. Automatic Word Sense Dis-
ambiguation (WSD) is difficult and accuracies with state-of-the art methods
are substantially lower than in other areas of text understanding like part-of-
speech tagging. One shortcoming of these methods is that they do not utilize
substantial sources of background knowledge, such as semantic taxonomies and
dictionaries, which are now available in electronic form (the methods largely
use shallow syntactic features). Empirical results from the use of Inductive
Logic Programming (ILP) have repeatedly shown the ability of ILP systems
to use diverse sources of background knowledge. In this paper we investigate
the use of ILP for WSD in two different ways: (a) as a stand-alone constructor
of models for WSD; and (b) to build interesting features, which can then be
used by standard model-builders such as SVM. Our investigation is in the form
of experiments that examine a monolingual WSD task using the 32 English
verbs contained in the SENSEVAL-3 benchmark data; and a bilingual WSD
task using 7 highly ambiguous verbs in machine translation from English to
Portuguese. Background knowledge available is from eight sources that pro-
vide a wide range of syntactic and semantic information. For both WSD tasks,
experimental results show that ILP-constructed models and models built us-
ing ILP-generated features have higher accuracies than those obtained using a
state-of-the art feature-based technique equipped with shallow syntactic fea-
tures. This suggests that the use of ILP with diverse sources of background
knowledge can provide one way for making substantial progress in the field of
automatic WSD.

1 Introduction

Word Sense Disambiguation (WSD) aims to identify the correct sense of an ambiguous
word in a sentence. Usually described as an “intermediate task” [36]—that is, not an
end in itself—it is necessary in most natural language tasks like machine translation,
information retrieval, speech and text processing, and so on. That it is extremely
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difficult, possibly impractical, to completely solve WSD is a long-standing view [2]
and accuracies with state-of-the art methods are substantially lower than in other
areas of text understanding. Part-of-speech tagging accuracies, for example, are now
over 95%; in contrast, the best WSD results are still below 80%.

The principal approach adopted for the automatic construction of WSD models
is a “shallow” one. In this, sample data consisting of sentences with the ambiguous
words and their correct sense are represented using features capturing some limited
context around the ambiguous words in each sentence. For example, features may de-
note two to three words on either side of an ambiguous word and the part-of-speech
tags of those words. Sample data represented in this manner are then used by a statis-
tical model constructor to build a general predictive model for disambiguating words.
Results from the literature on benchmark data like those provided under the various
SENSEVAL competitions4 suggest that support vector machines (SVMs) yield models
with one of the highest accuracies. Despite some improvements made in the accuracy
of predictions, it is generally thought that significant progress in automatic WSD
would require a “deep” approach in which access to substantial body of linguistic and
world knowledge could assist in resolving ambiguities. However, the incorporation of
large amounts of domain knowledge has been hampered by the following: (a) access to
such information in electronic form suitable for constructing models; and (b) modeling
techniques capable of utilizing diverse sources of domain knowledge. The first of these
difficulties is now greatly alleviated by the availability in electronic form of very large
semantic lexicons like WordNet [16], dictionaries, parsers, grammars and so on. In
addition, there are now very large amounts of “shallow” data in the form of electronic
text corpora from which statistical information can be readily extracted. Using these
diverse sources of information is, however, beyond the capabilities of existing general-
purpose statistical methods that have been used for WSD. Arguably, Inductive Logic
Programming (ILP) systems provide the most general-purpose framework for dealing
with such data: there are explicit provisions made for the inclusion of background
knowledge of any form; the representation language is powerful enough to capture
the contextual relationships that arise; and modeling is not restricted to being of a
particular form (for example, classification only).

In this paper, we investigate the use of ILP for WSD in two different ways : (a) the
construction of models that can be used directly to disambiguate words; and (b) the
construction of interesting features that can be used by standard feature-based algo-
rithms such as SVMs to build models to disambiguate verbs. We call the two different
kinds of models “ILP models” and “ILP-assisted models”. In each case, background
knowledge is from eight different sources that provide syntactic and semantic infor-
mation that could be useful for disambiguation. The purpose of our investigation
is to examine whether using an ILP system equipped with these diverse sources of
background information can substantially improve the predictive accuracy of WSD
models. Our investigation is in the form of an empirical evaluation of ILP models
and ILP-assisted models on WSD data arising from two different tasks: (1) monolin-
gual disambiguation of 32 English verbs contained in SENSEVAL-3; and (2) bilingual
disambiguation of the Portuguese sense of 7 highly ambiguous English verbs in an
English-to-Portuguese machine translation task.

The rest of the paper is organized as follows. In Section 2 we present some related
work on WSD. The specification of ILP implementations that construct ILP models
4 see: http://www.senseval.org
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and features for use in ILP-assisted models is in Section 3. The experimental evalu-
ation comprising our investigation is described in Section 4. This includes materials
(Section 4.1) and methods (Section 4.2). Results are presented in Section 5. Section 6
concludes the paper.

2 Models for Word Sense Disambiguation

The earliest computer-executable models for WSD are manually constructed, cap-
turing specific aspects of human disambiguation expertise in symbolic structures
like semantic networks [25] and semantic frames [5, 6, 14]. Early reports also exist
of sub-symbolic neural networks [4]. Most of these techniques appear to have suffered
from the important difficulty in manual acquisition of expert knowledge identified by
Feigenbaum (and somewhat anticipated, in the WSD context [2]), resulting in their
application being limited to very small subsets of the languages.

The development of machine readable resources like lexical databases, dictionaries
and thesauri has provided a turning point in automatic processing of natural lan-
guage, enabling the development of techniques that used linguistic and extra-linguistic
information extracted automatically from these resources [12, 27, 1, 35]. While the re-
sources provided ready access to large bodies of knowledge, the actual disambiguation
models continued to be manually codified. This changed with the use of statistical
and machine-learning techniques for constructing models. The characteristic of these
methods is the use of a corpus of examples of disambiguation to construct automat-
ically models for disambiguation. The most common of these “corpus-based” tech-
niques employ statistical methods that construct models based on features represent-
ing frequencies estimated from a corpus. For example, these may be the frequencies of
some words on either side of the ambiguous word [37, 18, 28, 23]. While techniques us-
ing such “shallow” features that refer to the local context of the ambiguous word have
yielded the best models, the accuracies obtained are low, and significant improvements
do not appear to be forthcoming.

More sophisticated corpus-based approaches such as [34] try to incorporate deeper
knowledge using machine readable resources. These are special-purpose methods aimed
at specific tasks and it is not clear how they could be scaled-up for use across a wide
range of WSD tasks. ILP provides a general-purpose approach that can be tailored
to a variety of NLP tasks by the incorporation of appropriate background knowledge.
To date, [30] appears to be the only work dealing with the use of ILP for WSD. The
work here extends this substantially in terms of experimental results; and in exploring
alternate ways of using ILP for WSD.

3 Inductive Logic Programming

Functionally, Inductive Logic Programming (ILP) can bee largely characterised by two
classes of programs. The first, predictive ILP, has been concerned with constructing
models (sets of rules; or first-order variants of classification or regression trees) for
discriminating accurately amongst two sets of examples (“positive” and “negative”).
The partial specifications provided by [19] have formed the basis for deriving programs
in this class. We refer the reader to [21] for definitions of the logical terms used below:

– B is background knowledge consisting of a finite set of clauses = {C1, C2, . . .}
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– E is a finite set of examples = E+ ∪ E− where:
• Positive Examples. E+ = {e1, e2, . . .} is a non-empty set of definite clauses;
• Negative Examples. E− = {f1, f2 . . .} is a set of Horn clauses (this may be

empty)
– H, the output of the algorithm given B and E is acceptable if the following

conditions are met:
• Prior Satisfiability. B ∪ E− 6|= 2

• Posterior Satisfiability. B ∪H ∪ E− 6|= 2;
• Prior Necessity. B 6|= E+

• Posterior Sufficiency. B ∪H |= e1 ∧ e2 ∧ . . .

The second category of ILP programs, descriptive ILP, has been concerned with
identifying relationships that hold amongst the background knowledge and examples,
without a view of discrimination. The partial specifications for programs in this class
are based on the description in [20]:

– B is background knowledge consisting of a finite set of clauses = {C1, C2, . . .}
– E is a finite set of examples (this may be empty)
– H, the output of the algorithm given B and E is acceptable if the following

condition is met:
• Posterior Sufficiency. B ∪H ∪ E 6|= 2

The idea of using a feature-based model constructor that uses first-order features
can be traced back at least to the LINUS program [11]. More recently, the task of
identifying good features using a first-order logic representation has been the province
of programs developed under the umbrella of “propositionalization” (see [9] for a
review). Programs in this class are not easily characterised as either predictive or
descriptive ILP and we have not found explicit specifications for them within the
ILP literature. Conceptually, solutions involve two steps: (1) a feature-construction
step that identifies (within computational reason) all the features that are consistent
with the constraints provided by the background knowledge. This is characteristic
of a descriptive ILP program; and (2) a feature-selection step that retains some of
the features based on their utility in classifying the examples. This is characteristic
of a predictive ILP program. To this extent, we present partial specifications for
feature construction that reflect a combination of the two dominant categories of ILP
programs:

– B is background knowledge consisting of a finite set of clauses = {C1, C2, . . .}
– E is a finite set of examples = E+ ∪ E− where:
• Positive Examples. E+ = {e1, e2, . . .} is a non-empty set of definite clauses;
• Negative Examples. E− = {f1, f2 . . .} is a set of Horn clauses (this may be

empty)
– H is the set of definite clauses, constructible with predicates, functions and con-

stants in B ∪E; F the set of features constructible using a set of individuals and
B; and τ : H 7→ F a function that maps a definite clause h ∈ H to a feature
f ∈ F .

– F = {f1, f2, . . .} ⊆ F , the output of the algorithm given B and E is acceptable
for any set H = {h1, h2, . . .} ⊆ H if the following conditions are met:
• Posterior Sufficiency. B ∪ {hi} |= e1 ∨ e2 ∨ . . ., where {e1, e2, . . .} ⊆ E+



Word Sense Disambiguation using ILP 5

• fi = τ(hi)

The reader would have noted the principal differences in the three Posterior Sufficiency
constraints. For feature construction—at least for the purposes of this paper—clauses
identified are required to entail at least one positive example given B. Obviously more
would be better, but the specification here is a minimal one. This is not the case for
descriptive ILP, and clearly insufficient for the predictive case.

We still need to clarify the meanings of F , H and τ . For the purposes of this
paper, we will assume that the boolean values FALSE and TRUE are represented
by 0 and 1; the features fi are functions of the form fi : X 7→ {0, 1}; and examples E
are some subset of the binary relation X ×Y, where X denotes the set of individuals
and Y some finite set of classes. Positive and negative examples are represented by
the predicate class : X × Y 7→ {0, 1} and we will take each hi ∈ H to be a definite
clause class(X, yk) ← cpi(X), where X is a variable and yk is some class in Y.
Here, adopting terminology from [26], cpi : X 7→ {0, 1} is a “context predicate” and
corresponds to a conjunction of literals that evaluates to true or false for any particular
individual x. With these preliminaries in place, given hi : class(X, yk) ← cpi(X),
fi(x) = τ(hi) = 1 iff cpi(x) = 1 (and 0 otherwise)5.

Given a set of examples represented by individuals and their classes, a program
for feature construction that minimally satisfies this specification would proceed as
follows. First, a set of clauses H is identified for the individuals. Each clause in this
set entails at least one positive example, given the background knowledge B. Next,
each clause hi in H is converted into a boolean feature fi that takes the value 1 (or
0) for any individual for which the body of the clause is true (if the body is false).
Thus, the set of clauses H gives rise to a boolean vector for each individual in the set
of examples. Examples in the WSD context are shown in Figure 1.

Clause:
h1 : class(X, voltar) : −has expression(X, ’come back ’, voltar)

has pos(X, pcwr 4, nn)

Feature:

f1(X) =

{
1 has expression(X, ’come back ’, voltar) ∧ has pos(X, pcwr 4, n) = 1
0 otherwise

Fig. 1. Example of a boolean feature constructed from a clause for WSD. The clause shown
here in Prolog syntax identifies the Portuguese sense of the English verb ‘to come’. The
meanings of the predicate symbols has expression and has pos are explained in Section 4.

5 In [26] the fi are denoted by fi,Y . The notation here is more in line with the machine
learning literature.
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4 Empirical Evaluation

Our objectives are to evaluate empirically the use of ILP in constructing models for
WSD. Specifically, we intend to investigate the performance of two kinds of models:

1. ILP models. These are models constructed by an ILP system for predicting the
correct sense of a word. The models are to be constructed by an implementation
conforming to the specification for predictive ILP systems in Section 3.

2. ILP-assisted models. These are models for predicting the correct sense of a word
that, in addition to existing shallow features, use features constructed by an ILP
system. The models are to be constructed by an implementation conforming to
the specification for feature construction in Section 3.

4.1 Materials

Data

Monolingual task. Data consist of the 32 verbs from the SENSEVAL-3 competi-
tion. SENSEVAL6 is a joint evaluation effort for WSD and related tasks. We use
all the verbs of the English lexical sample task from the third and last edition
of the competition: activate, add, appear, ask, begin, climb, decide, eat, encounter,
expect, express, hear, lose, mean, miss, note, operate, play, produce, provide, re-
ceive, remain, rule, smell, suspend, talk, treat, use, wash, watch, win, and write.
The number of examples for each verb varies from 40 to 398 (average of 186). The
number of senses varies from 3 to 12 with an average of 7 senses. The average
accuracy of the majority class is about 55%. We refer the reader to [15] for more
information about the SENSEVAL-3 data.

Bilingual task. Data consist of 7 highly frequent and ambiguous verbs: come, get,
give, go, look, make, and take. The sample corpus comprises around 200 English
sentences for each verb extracted from a corpus of fiction books, with the verb
translation automatically annotated by a system previously developed [31]. In
that corpus, the number of translations varies from 5 to 17, with an average of 11
translations. The average accuracy of the majority class is about 54%.

Background Knowledge To achieve accurate disambiguation in both tasks is be-
lieved to require a variety of syntactic and semantic information. In what follows,
we describe the background knowledge available for the tasks and illustrate it using
the following sentence (assuming that we are attempting to determine the sense of
‘coming’):

”If there is such a thing as reincarnation, I would not mind coming back as a
squirrel”.

B0. Shallow features. Features corresponding to the predicates in B1-B5, below, con-
veying the same information, but represented by means of attribute-value vectors.

B1. Bag-of-words. The 5 words to the right and left of the verb, extracted from the
corpus and represented using definitions of the form has bag(sentence, word). For
example:

6 http://www.senseval.org
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has bag(snt1,mind).
has bag(snt1, not). . . .

B2. Narrow context. Lemmas of 5 content words to the right and left of the verb, ex-
tracted from the corpus, previously lemmatized by MINIPAR [13]. These are rep-
resented using definitions of the form has narrow(sentence, wordposition, word).
For example:

has narrow(snt1, first content word left,mind).
has narrow(snt1, first content word right, back). . . .

B3. Part-of-speech tags. Part-of-speech (POS) tags of 5 content words to the right
and left of the verb, are obtained using MXPOST [26] and represented using
definitions of the form: haspos(sentence, wordposition, pos). For example:

has pos(snt1, first content word left, nn).
has pos(snt1, first content word right, rb). . . .

B4. Subject-Object relations. Subject and object syntactic relations with respect to
the verb. These were obtained from parsing sentences using MINIPAR and repre-
sented using definitions of the form has rel(sentence, type, word). For example:

has rel(snt1, subject, i).
has rel(snt1, object, nil). . . .

B5. Word collocations. 11 collocations with respect to the verb, extracted from the
corpus: 1st preposition to the right, 1st and 2nd words to the left and right, 1st
noun, 1st adjective, and 1st verb to the left and right. These are represented using
definitions of the form has collocation(sentence, collocation type, collocation).
For example:

has collocation(snt1, first word right, back).
has collocation(snt1, first word left,mind). . . .

B6. Verb restrictions. Selectional restrictions of the verbs, defined in terms of the
semantic features of their arguments in the sentence, extracted using LDOCE [24].
WordNet relations are used when the restrictions imposed by the verb are not
part of the description of its arguments, but can be satisfied by synonyms or
hyperonyms of those arguments. A hierarchy of feature types is used to account
for restrictions established by the verb that are more generic than the features
describing its arguments in the sentence. These are represented by definitions of
the form satisfy restrictions(sentence, rest subject, rest object). For example:

satisfy restrictions(snt1, [human], nil).
satisfy restrictions(snt1, [animal, human], nil).

B7. Dictionary definitions. A relative count of the overlapping words in dictionary
definitions of each of the possible translations of the verb (from [22]) and the
words surrounding it in the sentence. These are represented by facts of the form
has highest overlap(sentence, translation). For example:

has highest overlap(snt1, voltar).
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B8. Phrasal verbs. Phrasal verbs possibly occurring in a sentence, according to the list
of phrasal verbs given by dictionaries and the context of the verb (5 surrounding
words). These are represented by definitions of the form has expression(sentence,
verbal expression). For example:

has expression(snt1, ’come back’).

Of these definitions, B0 is intended for use by a feature-based model constructor. B1–
B8 are intended for use by an ILP system. The ILP implementation we use is capable
of exploring intensional definitions of each of B1–B8. However, it is more efficient to
represent the definitions in an extensional form (that is, as a set of ground facts). For
the tasks here, the background knowledge B1–B8 amount to about 204, 000 ground
facts for the monolingual task and 24, 000 for the bilingual task. For comparison, the
monolingual task has about 10 times more background facts than the carcinogenesis
benchmark described in [33]; and about 20 times more facts than the mutagenesis
benchmark [7]. The bilingual task is comparable to these two benchmarks.

Algorithms We use implementations within the ILP system Aleph [32] to construct
disambiguation models and to construct features. Feature-based model construction
is performed by a linear SVM (the specific implementation used is the one provided in
the WEKA toolbox called SMO7). For convenience, we will call the Aleph implemen-
tation the “ILP learner” and the SVM implementation the “feature-based learner.”

4.2 Method

We adopt the following method:

For each verb in each task (that is, 32 verbs in the monolingual task and 7 verbs
in the bilingual task):
1. Obtain the best possible model using the feature-based learner and the fea-

tures in B0. Call this the “baseline model”8.
2. Obtain the best possible model using the ILP learner, equipped with back-

ground knowledge definitions B1–B8. Call this the “ILP model”.
3. Construct at most k features using the ILP learner, equipped with background

knowledge definitions B1–B8. Call these features “B9”.
4. Obtain the best model possible using the feature-based learner with features

in B0 and B9. Call this the “ILP-assisted model”.
5. Compare the performance of the baseline model against that of the ILP model

and the ILP-assisted model.

The following details are relevant:

(a) The SENSEVAL-3 benchmark specifies 34% of the data that are to be used to
estimate the performance of disambiguation models. For uniformity, we randomly

7 http://www.cs.waikato.ac.nz/˜ml/weka/
8 The term “baseline” is not used in a pejorative sense: models constructed with shallow

features of the form in B0 in fact represent the state-of-the-art, and any other techniques
would have to perform at least as well as these.
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use 34% of the bilingual data for performance evaluation (the test set). The re-
maining 66% in each task is available for model construction (the training set).
Performance will be measured by the accuracy of prediction on the test set (that
is, the percentage of test examples whose sense is predicted correctly).

(b) The ILP learner constructs a set of clauses in line with the specifications for
predictive ILP as described in Section 3. Positive examples for the ILP learner
are provided by the correct sense (or translation in the bilingual case) of the
verb in a sentence. Negative examples are generated automatically using all other
senses (or translations). The specifications do not, however, describe how the
clauses constructed are to be used to predict the sense or translation of verbs
in the test data. We use the following method. Clauses are evaluated in order of
their identification by the ILP learner and the class of an example is determined
by the first clause for which literals in the body are satisfied by the example. If no
such clause exists, then the example is assigned the majority class, as computed
on the training data. In effect, this treats the clauses as a decision list, with the
addition to the end of a default rule assigning the majority class.

(c) For each verb and task, constructing the “best possible model” requires deter-
mining optimal values for some parameters of the feature-based or ILP learner.
We estimate these values using an instance of the method proposed in [8] that
proceeds as follows. First, we decide on the relevant parameters. Second, we ob-
tain, using the training set only, unbiased estimates of the predictive accuracy
of the models for each verb arising from systematic variation across some small
number of values for these parameters. Values that yielded the best average pre-
dictive accuracy across all verbs are taken to be optimal ones. This procedure is
not perfect: correctly, optimal values may change from one verb to another; and
even if they did not, the results obtained may be a local maximum (that is, better
models may result from further informed variation of values).

(d) The principal parameter for the feature-based learners concerns the extent of
feature-selection to be performed. Values experimented with were: selecting 50, 100,
150, 200, 250, 500 or all features (we use the subset feature selection method within
WEKA). For the monolingual task the best average accuracy for baseline models
was obtained with 150 features; and with 250 features for the ILP-assisted case.
For the bilingual task, the best average accuracy for baseline models used all fea-
tures. The ILP-assisted models case required 500 features. For the the ILP-learner,
the principal parameters selected were: the choice between a greedy and non-
greedy rule construction strategy (as implemented by the induce and induce max
procedures within Aleph); the maximal length of clauses; and the minimum accu-
racy of clauses. Maximal clause lengths examined were 4 and 8. Minimum clause
accuracies examined were 1.0 and 0.8. For the monolingual task, the best aver-
age accuracies were obtained with the non-greedy strategy, in conjunction with
a maximal clause length of 8 literals and minimal clause accuracy of 1.0. The
bilingual task also required the non-greedy strategy and a maximal clause length
of 8 literals, but a minimal clause accuracy of 0.8.

(e) In all cases, the value of k (the maximum number of features constructed) is 5000.
(f) Comparison of performance is done using the Wilcoxon signed-rank test [29].

This is a non-parametric test of the null hypothesis that there is no significant
difference between the median performance of a pair of algorithms. The test works
by ranking the absolute value of the differences observed in performance of the
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pair of algorithms. Ties are discarded and the ranks are then given signs depending
on whether the performance of the first algorithm is higher or lower than that of
the second. If the null hypothesis holds, the sum of the signed ranks should be
approximately 0. The probabilities of observing the actual signed rank sum can
be obtained by an exact calculation (if the number of entries is less than 10), or
by using a normal approximation.

5 Results and Discussion

Figures 2 and 3 tabulate the performance of baseline, ILP, and ILP-assisted models—
these two collectively termed ILP-based models—on the two disambiguation tasks. It
is also standard practice to include the performance of a classifier that simply predicts
the most frequent sense of the verb. The principal details in these tabulations are
these: (1) The “majority class” classifier clearly performs poorest; (2) For both tasks,
the accuracies of the baseline models are usually lower than the ILP-based models.
Discarding ties, the baseline model has the highest accuracy only for 5 of the 32
verbs in the monolingual task and for 0 of the 7 verbs in the bilingual task; (3) ILP
models and ILP-assisted models appear to be comparable in their performance in the
monolingual task, while ILP models are uniformly better than ILP-assisted models
for the bilingual task.

We turn now to the question of whether the differences observed between the
models are in fact significant. The probabilities calculated by using the Wilcoxon
test are shown in Fig. 4. The tabulations suggest that one or the other of the ILP-
based models perform substantially better than the baseline or majority class models.
However, they also suggest that a simple choice between ILP and ILP-assisted models
is not evident: ILP-assisted models appear to be the best choice for the monolingual
task and it is evident that ILP models are uniformly best for the bilingual task.9

It is curious that the two ILP-based approaches are comparable on the monolingual
task and are completely incommensurate on the bilingual task. Closer study of the
performance of the ILP model reveals the substantial role of the default rule predicting
the majority class (as described in Section 4.2). Removal of this rule lowers the ILP
column’s median accuracy by about 11% for the monolingual task and 8% for the
bilingual task (the two ILP-based methods are then comparable on the bilingual
task). Since it is not evident that the use of the default rule will always yield such
beneficial results to the ILP model, and ILP-assisted models do not require such a rule,
the ILP-assisted approach probably represent a more reliable route for constructing
WSD models.

For the monolingual task, we are also able to compare the performance of ILP-
based models to those of models produced by the best supervised techniques for the
same data. SENSEVAL’s evaluation software provides estimates on the performance
9 We note here that repeated cross-comparisons of this form will yield occasions on which one

or the other model will seem better. For repeated comparisons of a given pair of algorithms
on different random samples of data, it is possible to apply a correction (known as the
Bonferroni adjustment) for this problem. The situation of repeated comparisons of different
pairs of algorithms on a given set of data (as is here) does not, on the surface, appear to
be amenable to the same correction. However, the spirit of the correction and the small
number of verbs in the bilingual case suggests caution in interpreting the probabilities
tabulated.
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Verb Senses Accuracy
Majority class Baseline ILP ILP-assisted

activate 5 82.46±3.56 85.09±3.34 52.63±4.68 83.33±3.49
add 6 45.80±4.35 82.44±3.32 73.28±3.87 82.44±3.32
appear 3 44.70±4.33 68.18±4.05 87.88±2.84 71.21±3.94
ask 6 27.78±3.99 53.17±4.45 40.48±4.37 50.00±4.45
begin 4 59.74±5.59 57.14±5.64 55.84±5.66 74.03±5.00
climb 5 55.22±6.08 71.64±5.51 59.70±5.99 83.58±4.53
decide 4 67.74±5.94 77.42±5.31 77.42±5.31 77.42±5.31
eat 7 88.37±3.46 88.37±3.46 83.72±3.98 87.21±3.60
encounter 4 50.77±6.20 73.85±5.45 67.69±5.80 72.31±5.55
expect 3 74.36±4.94 75.64±4.86 79.49±4.57 92.31±3.02
express 4 69.09±6.23 67.27±6.33 70.91±6.12 72.73±6.01
hear 7 46.88±8.82 53.13±8.82 65.62±8.40 65.63±8.40
lose 9 52.78±8.32 58.33±8.22 55.56±8.28 58.33±8.22
mean 7 52.50±7.90 77.50±6.60 55.00±7.87 70.00±7.25
miss 8 33.33±8.61 36.67±8.80 56.67±9.05 33.33±8.61
note 3 38.81±5.95 58.21±6.03 82.09±4.68 88.06±3.96
operate 5 16.67±8.78 72.22±10.56 83.33±8.78 77.78±9.80
play 12 46.15±6.91 53.85±6.91 46.15±6.91 53.85±6.91
produce 6 52.13±5.15 63.83±4.96 75.53±4.43 67.02±4.85
provide 6 85.51±4.24 89.86±3.63 88.41±3.85 89.86±3.63
receive 9 88.89±6.05 88.89±6.05 92.59±5.04 88.89±6.05
remain 3 78.57±4.90 84.29±4.35 80.00±4.78 87.14±4.00
rule 5 50.00±9.13 66.67±8.61 86.67±6.21 83.33±6.80
smell 7 40.74±6.69 79.63±5.48 68.52±6.32 77.78±5.66
suspend 7 35.94±6.00 60.94±6.10 60.94±6.10 57.81±6.17
talk 9 72.60±5.22 73.97±5.14 73.97±5.14 73.97±5.14
treat 9 28.07±5.95 40.35±6.50 57.89±6.54 47.37±6.61
use 5 71.43±12.07 85.71±9.35 92.86±6.88 92.86±6.88
wash 12 67.65±8.02 70.59±7.81 61.76±8.33 73.53±7.57
watch 7 74.51±6.10 74.51±6.10 76.47±5.94 74.51±6.10
win 7 44.74±8.07 52.63±8.10 47.37±8.10 60.53±7.93
write 8 26.09±9.16 52.17±10.42 56.52±10.34 34.78±9.93

Mean 7 55.31 68.56 69.15 71.97
Median 6 52.31 71.11 69.71 74.03

Fig. 2. Estimates of accuracies of disambiguation models on the monolingual task. “Senses”
refers to the numbers of possible senses of each verb. The column labeled “Majority class”
gives the accuracy of models that simply predict the most common sense of each verb. The
entries in boldface represent the highest accuracy obtained for a verb.
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Verb Translations Accuracy
Majority class Baseline ILP ILP-assisted

come 11 50.30±7.62 67.44±7.15 86.67±5.07 76.74±6.44
get 17 21.00±6.70 32.43±7.70 51.28±8.00 40.54±8.07
give 5 88.80±4.81 97.67±2.30 97.78±2.20 95.35±3.21
go 11 68.50±6.78 72.34±6.52 85.71±5.00 78.72±5.97
look 7 50.30±7.45 77.78±6.20 82.98±5.48 82.22±5.70
make 11 70.00±7.25 75.00±6.85 76.19±6.57 75.00±6.85
take 13 28.50±8.24 46.67±9.11 62.50±8.56 60.00±8.94

Mean 11 53.91 67.05 77.59 72.65
Median 11 50.30 72.34 82.98 76.74

Fig. 3. Estimates of accuracies of disambiguation models on the bilingual task. “Transla-
tions” refers to the numbers of possible translations of each verb into Portuguese.

Majority class Baseline ILP

Baseline < 0.001, 0.020 − −
ILP < 0.001, 0.020 0.849, 0.020 −

ILP-assisted < 0.001, 0.020 0.037, 0.075 0.134, 0.020

Fig. 4. Probablities of observing the differences in accuracies for the monolingual and bilin-
gual tasks, under the assumption that median accuracies of the pair of algorithms being
compared are equal. Each entry consists of a pair of probability estimates, corresponding to
the mono and bilingual tasks.

of the systems according to two different levels of sense distinction: fine and coarse-
grained. The former comprises average accuracies in the normally understood sense.
Comparative results are shown in Fig. 5. Syntalex-1 to Syntalex-4 approaches are
presented in [17]. Syntalex-1 uses bagged decision trees with narrow context part-of-
speech features. Syntalex-2 uses bagged decision trees, but with broad context part-
of-speech features. Syntalex-3 uses an ensemble of bagged decision trees with narrow
context part-of-speech features and bigrams. Syntalex-4 uses the same features as
Syntalex-3, but with unified decision trees. CLaC1 and CLaC2 are presented in [10].
CLaC1 uses a Naive Bayes algorithm with a dynamically adjusted context window
around the target word. CLaC2 uses a Maximum Entropy learner instead, and also
syntactic features and the hyperonyms of the neighbor words. Finally, MC-WSD [3] is
a multi-class averaged perceptron classifier with one component trained on the data
provided by SENSEVAL and other trained on WordNet glosses. Syntactic and narrow
context features are explored. As we can see, among all the approaches, our ILP models
are outperformed only by MC-WSD for fine-grained distinctions and therefore it is
evident that the ILP-based models are comparable to the state-of-the-art in the field.
In practice, we would expect that all these methods would be able to use features
constructed by an ILP system. Improvements in their performance similar to those
seen from the baseline classifier may then follow.
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Models Accuracy

MC-WSD 72.50
ILP-assisted 71.97
ILP 69.15
Syntalex-3 67.60
Syntalex-1 67.00
CLaC1 67.00
Syntalex-2 66.50
CLaC2 66.00
Syntalex-4 65.30

Fig. 5. Comparative average fine-grained accuracies of the best models reported for the
SENSEVAL-3 competition.

6 Concluding Remarks

Word sense disambiguation, a necessary component for a variety of natural language
processing tasks, remains amongst the hardest to model adequately. It is of course
possible that the vagaries of natural language may place a limit on the accuracy with
which a model could identify correctly the sense of an ambiguous word, but it is not
clear that this limit has been reached with the modelling techniques that constitute
the current state-of-the-art. The performance of these techniques depends largely on
the adequacy of the features used to represent the problem. As it stands, these features
are usually hand-crafted and largely of a syntactic nature. For substantial, scalable
progress it is believed that knowledge that accounts for more elaborate semantic in-
formation needs to be incorporated: however, no adequate general-purpose techniques
have been forthcoming. In this paper, we have investigated the use of Inductive Logic
Programming as a mechanism for incorporating multiple sources of syntactic and se-
mantic information into the construction of models for WSD. The investigation has
been in the form of empirical studies of using ILP to construct models for monolin-
gual and bilingual WSD tasks and the results suggest that the use of ILP can improve
predictive accuracies. These studies represent the first extensive application of ILP to
the task of constructing WSD models.

We believe much of the gains observed with ILP stems from the use of substan-
tial amounts of background knowledge. For the work here, this knowledge has been
obtained by translations of information in standard corpora or electronic lexical re-
sources. This is promising, as it suggests that these translators, in conjunction with
ILP, may provide a set of tools for the automatic incorporation of deep knowledge into
the construction of general WSD models. Turning specifically to the tasks addressed
here, further improvements could be achieved with the inclusion of other kinds of
background knowledge. For example, for the bilingual task, the “translation context”
for a verb may help greatly. This refers to the translations into the target language
of the words forming the context of the verb.

The use of other ILP implementations may also provide improvements in predic-
tive accuracies, thus strengthening the case for the use of ILP further. On the basis
of results here there is little to chose between ILP-models and ILP-assisted models,
although we believe that the latter may provide a more reliable approach for con-
structing WSD models. There does not appear to be any inherent limitation in using
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a feature-based representation for verb disambiguation: a finding that may extend to
other WSD tasks. The key is to get a good set of features, and results here suggest
that ILP could provide a reliable method of identifying these.
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