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1 Introduction

For most ILP systems that attempt to find a hypothesis by searching through a
space of possible alternatives, the principal problem is that the size of the search
space makes it impossible to perform even a complete (but non-exhaustive)
search. Hence, greedy approaches such as FOIL [1] and restricted variants of
branch and bound techniques (Aleph [2]), etc. are used to restrict the search
space. In this paper, we will concern ourselves principally with systems like Pro-
gol [3], in which search proceeds by examining subspaces constrained by a set of
most-specific clause ⊥1,⊥2, . . . ,⊥n (where n here will be the number of positive
examples) using a greedy covering procedure.

In each iteration of the greedy procedure a Progol-like system selects a
positive example ei, construct a bottom clause ⊥i using the example and the
background knowledge B and then searches for the best clause hi in a lattice
lat(⊥i) subsuming ⊥i. Here “best” is in terms of some objective function such
as pos(hi)− neg(hi)− size(hi), where pos and neg are functions that compute
the positive and negative examples covered by a clause hi

3 and size is a function
that computes some measure of clause size. Once this best clause hi in the lattice
lat(⊥i) is found, all positive examples made redundant by B ∧ hi are removed
from further consideration; and the search continues. A number of questions still
remain, for example: How is the ei to be selected? How much effort should we
expend on any one search? Current ILP systems answer these in ad hoc ways.
It is our aim to show how a theory of optimal search described in [4] can be
applied to answer such questions.

2 Our Contribution

Specifically, this paper presents a method to find an estimate of the optimal effort
(e.g. number of nodes to be explored) to be invested in each search subspace (e.g.
lat(⊥i)). The estimates of effort could then be used to determine the order in
which the search subspaces should be searched (that is, the selection of the ei).

3 More correctly, these functions should include the background knowledge B.
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We base our approach on casting the problem of estimating the hyperpa-
rameter “effort” as a problem of optimal search. In the discrete case, the basic
problem of optimal search [4] is that we are given n bins (each bin being a
search subspace in our case) each of which consists of different balls (clauses)
and the goal is to find a particular ball (best clause) from the whole lot. Given
target distribution p(j) over the bins, allocation function f(j) which specifies
the amount of effort to be placed in bin j and conditional probability b(j, f(j))
of detecting the target in the jth bin expending f(j) amount of effort assuming
target is present in jth bin (see Table 1 for the list of relevant definitions), the
total probability of detecting the target is,

P [f ] =
n∑

j=1

p(j) b(j, f(j)) (1)

where f = [f(1), f(2), . . . , f(n)] is the vector of allocations that needs to be
determined. Further, let c(j, f(j)) be the cost of applying f(j) amount of effort
in bin j. Then the total cost is

C[f ] =
n∑

j=1

c(j, f(j)) (2)

If K is the upperbound on the amount of effort that can be spent to detect the
target, the corresponding constraint would be

C[f ] ≤ K (3)

Hence the optimization problem is,

f∗ = argmax
f

P [f ]

s.t. C[f ] ≤ K
and

∑n
j=1 p(j) = 1

(4)

We cast our effort estimation problem for an ILP system as the discrete
optimal search problem stated in (4). While the different bottom clause-induced
lattices corresponding to search subspaces4 are natural choices as bins, other
choices (such as partitions within a lattice) could also be considered as different
bins. The bottom clauses are constructed from positive examples and potentially
there can be as many lattices as there are positive examples. The “target” is now
the next best clause. Given the search space is lat(⊥j) constructed from example
j, the distribution p(j) indicates how good the lattice lat(⊥j) is compared to
other lattices in terms of containing the target and b(j, f(j)) is the probability
of detecting the target with efforts f(j) assuming target is present in in lattice
lat(⊥j) (here, the maximum number of nodes to be explored). To be usable, we

4 Unfortunately, these search subspaces may not be disjoint.
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Table 1. Notations in Theory of Optimal Search

Notations Description

P [f ] Probability of detecting the target using f allocation function

p(j) Probability that the target can be found in bin j

f(j) Effort allocated to bin j

b(j, f(j))
Conditional probability of detecting the target in jth bin given f(j)
amount of effort is spent in jth bin and assuming target is present in
jth bin

c(j, f(j)) Cost of applying f(j) amount of effort in bin j

still need actual distributions p(j) and b(j, f(j)). While p(j) can be estimated
by sampling from the different lattices5 b(j, f(j)) can be any smooth function
that is directly proportional to the number of nodes to be explored (f(j)) and
inversly proportional to the length of bottom clause (⊥j)). Examples of b(j, f(j))
are:

(1) 1− e
−

“
f(j)
|⊥j |

”
(2) f(j)

|⊥j|
(5)

where |⊥j | is number of literals the in bottom clause ⊥j of example j. In this
case, the optimization problem would be:

f∗ = argmax
f

∑n
j=1(p(j) · b(j, f(j)))

s.t.
∑n

j=1 f(j) ≤ K

and f(j) ≥ 0 ∀ j

(6)

The optimal number of nodes f∗ to be explored in each bottom clause lattice,
obtained for the above formulation can be used in several ways:

1. Instead of randomly or sequentially picking an example to generate the
bottom clause lattice we could use the f∗ information to explore the most
promising lattice first to get best clause. The greedy covering approach can
then proceed as usual to remove the covered positive examples. We would
then recalculate the optimal efforts for remaining example lattices. This pro-
cess should go on until either the search budget K is exhausted or until no
more examples need to be covered.

2. In parallel ILP search, we could rank the different bottom clause lattices
based on f∗ and parallelize the search over the lat(⊥j) for j ∈ [1, n] using
scheduling algorithms to ensure load balancing, where the search process
over lat(⊥j) is restricted to explore f∗(j) number of nodes.

5 For example, one could sample a set of clauses and fit a distribution for clause
goodness to estimate the maximum value of the population [5].
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