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Abstract Identifying the correct sense of a word in context is crucial for many tasks in nat-
ural language processing (machine translation is an example). State-of-the art methods for
Word Sense Disambiguation (WSD) build models using hand-crafted features that usually
capturing shallow linguistic information. Complex background knowledge, such as semantic
relationships, are typically either not used, or used in specialised manner, due to the limita-
tions of the feature-based modelling techniques used. On the other hand, empirical results
from the use of Inductive Logic Programming (ILP) systems have repeatedly shown that
they can use diverse sources of background knowledge when constructing models. In this
paper, we investigate whether this ability of ILP systems could be used to improve the pre-
dictive accuracy of models for WSD. Specifically, we examine the use of a general-purpose
ILP system as a method to construct a set of features using semantic, syntactic and lexical
information. This feature-set is then used by a common modelling technique in the field
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(a support vector machine) to construct a classifier for predicting the sense of a word. In our
investigation we examine one-shot and incremental approaches to feature-set construction
applied to monolingual and bilingual WSD tasks. The monolingual tasks use 32 verbs and
85 verbs and nouns (in English) from the SENSEVAL-3 and SemEval-2007 benchmarks;
while the bilingual WSD task consists of 7 highly ambiguous verbs in translating from Eng-
lish to Portuguese. The results are encouraging: the ILP-assisted models show substantial
improvements over those that simply use shallow features. In addition, incremental feature-
set construction appears to identify smaller and better sets of features. Taken together, the
results suggest that the use of ILP with diverse sources of background knowledge provide a
way for making substantial progress in the field of WSD.

Keywords ILP - Word sense disambiguation - Feature construction - Randomised search

1 Introduction

Word Sense Disambiguation (WSD) aims to identify the correct sense of an ambiguous word
in a sentence. Usually described as an “intermediate task” (Wilks and Stevenson 1998), it
is necessary in many natural language tasks like machine translation, information retrieval,
question answering, and so on. That it is extremely difficult to completely solve WSD is a
long-standing view (Bar-Hillel 1960) and accuracies with state-of-the art methods are sub-
stantially lower than in other areas of text understanding. Part-of-speech tagging accuracies,
for example, are now over 95%; in contrast, the best WSD results for fine-grained sense
distinctions are still below 80%.

The principal approach adopted for the automatic construction of WSD models is a “shal-
low” one. In this, sample data consisting of sentences with the ambiguous words and their
correct sense are represented using features capturing some limited context around the am-
biguous words in each sentence. For example, features may denote words on either side of
an ambiguous word and the part-of-speech tags of those words. Sample data represented
in this manner are then used by a statistical model constructor to build a general predictive
model for disambiguating words. Results from the literature on benchmark data like those
provided under the various SENSEVAL competitions' suggest that support vector machines
(SVMs) yield models with one of the highest accuracies. As this competition shows, some
improvements have been achieved in the accuracy of predictions, despite of the use of lim-
ited, shallow information sources. On the other hand, it is generally thought that significant
progress in automatic WSD would require a “deep” approach in which access to substan-
tial body of linguistic and world knowledge could assist in resolving ambiguities. However,
the incorporation of large amounts of domain knowledge has been hampered by the follow-
ing: (a) access to such information in electronic form suitable for constructing models; and
(b) modelling techniques capable of utilising diverse sources of domain knowledge. The
first of these difficulties is now greatly alleviated by the availability in electronic form of
very large semantic lexicons like WordNet (Miller et al. 1990), dictionaries, parsers, gram-
mars and so on. In addition, there are now very large amounts of “shallow” data in the
form of electronic text corpora from which statistical information can be readily extracted.
Using these diverse sources of information is, however, beyond the capabilities of exist-
ing general-purpose statistical methods that have been used for WSD. Arguably, Inductive

Igee: http://www.senseval.org.
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Logic Programming (ILP) systems provide a more general-purpose framework for dealing
with such data: there are explicit provisions made for the inclusion of background knowl-
edge of any form; the representation language is powerful enough to capture the contextual
relationships that arise; and modelling is not restricted to being of a particular form (for
example, classification only).

In this paper, we investigate the possibility that an ILP system equipped with deep and
shallow knowledge sources can be used to improve the predictivity of models for WSD.
Specifically, our interest is in ILP as a technique for constructing new features, and our
hypothesis is the following:

ILP-features hypothesis. Feature-construction by ILP provides a general method of
introducing background knowledge for improving the predictive accuracy of WSD
models.

Empirical evidence is sought by investigating the use of ILP-based feature-construction on
124 datasets from three substantial WSD tasks (thus testing general applicability). When
constructing features, an ILP system is provided with background knowledge drawn from
10 different sources (thus testing the ability to use a diverse range of lexical, syntactic and
semantic information). In all cases, we find that when hand-crafted features are augmented
by ILP-constructed features (we call these “ILP-assisted models”), the predictive power of
models does improve significantly.

The rest of the paper is organised as follows. In Sect. 2 we present some related work on
WSD. A specification for ILP implementations that construct features for use in ILP-assisted
models is in Sect. 3.1. We then describe an implementation that meets these specifications in
Sect. 3.2. The empirical evaluation comprising our investigation is described in Sect. 4. This
includes materials (Sect. 4.1) and methods (Sect. 4.2). A summary of results and a related
discussion are in Sect. 5. Section 6 concludes the paper. The paper is accompanied by an
appendix that contains detailed tabulations of the experimental results.

2 Models for word sense disambiguation

The earliest computer-executable models for WSD were manually constructed, capturing
specific aspects of human disambiguation expertise in symbolic structures like semantic
networks (Quillian 1961) and semantic frames (Hirst 1987; McRoy 1992). Early reports
also exist of sub-symbolic neural networks (Cottrell 1989). Most of these techniques appear
to have suffered from the important difficulty in manual acquisition of expert knowledge,
resulting in their application being limited to very small subsets of the languages.

The development of machine readable resources like lexical databases, dictionaries and
thesauri has provided a turning point in WSD, enabling the development of techniques
that used linguistic and extra-linguistic information extracted automatically from these re-
sources (Agirre and Rigau 1996; Lesk 1986; Wilks and Stevenson 1997). While the re-
sources provided ready access to large bodies of knowledge, the actual disambiguation
models continued to be manually codified. This changed with the use of statistical and
machine-learning techniques for constructing models. The characteristic of these methods
is the use of a corpus of examples of disambiguation to construct automatically models
for disambiguation (Pedersen 2002; Schutze 1998; Yarowsky 1995). The most common of
these “corpus-based” techniques employ statistical methods that construct models based on
features representing frequencies estimated from a corpus. For example, these may be the
frequencies of some words on either side of the ambiguous word. While techniques using
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such “shallow” features that refer to the local context of the ambiguous word have yielded
better models than the previous ones, the accuracies obtained are still low, and significant
improvements do not appear to be forthcoming.

More sophisticated corpus-based approaches such as (Stevenson and Wilks 2001) try to
incorporate deeper knowledge using machine readable resources. These are special-purpose
methods aimed at specific tasks and it is not clear how they could be scaled-up for use across
a wide range of WSD tasks. ILP provides a general-purpose approach that can be tailored
to a variety of NLP tasks by the incorporation of appropriate background knowledge. The
use of ILP to build WSD models was first investigated by Specia (Specia 2006a; Specia et
al. 2007a). Preliminary work on the use of ILP to construct features to be used by standard
propositional machine learning algorithms like SVMs can be found in (Specia et al. 2007b,
2007¢). The work here extends these substantially by exploring alternate ways of using ILP
to build features and in terms of experimental results.

3 Feature construction with ILP

‘We motivate the task of feature-construction using the “trains” problem, originally proposed
by Ryzhard Michalski. The task is to construct a model that can discriminate between east-
bound and westbound trains, using properties of their carriages, and the loads carried (see
Fig. 1).

We will assume that the trains can be adequately described by background predicates
that will become evident shortly. Further, let us assume that the 10 trains shown in the figure
are denoted ¢1, 72, ..., 710 and that their classifications are encoded as a set of logical state-
ments of the form: Class(t1, eastbound), Class(t2, eastbound), . .., Class(t10, westbound).
As is quite normal in the use of ILP for feature-construction, we will assume features to be
Boolean valued, and obtained from some clause identified by the ILP program. For exam-
ple, Fig. 2 shows five such features, found by an ILP engine, and the corresponding tabular
representation of the 10 examples in Fig. 1.

Suppose that these 6 features are the only features that can be constructed by the ILP
engine, and further, that it is our task to find the best subset of these that can result in the best
model. Clearly, if we simply evaluated models obtained with each of the 63 subsets of the

1. TRAINS GOING EAST 2. TRAINS GOING WEST
: C e e By
2[00} A E;-' 2 [T a ol
s v <z o - s (o -]
=N N N Ry L \o/ O HEE o M

s o HETH e - s lmoHe B

Fig. 1 The trains problem. Trains are classified either as “eastbound” or “westbound”. They have open or
closed carriages of different shapes, lengths, and so on. The carriages contain loads of different shapes and
numbers. The task is to construct a model that, given the description of a train, can predict whether it will be
eastbound or westbound
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A 2 B @ 5 f5 Clas
1= Liff has short and closed car
|0 otherwise 1 1 0 0 0 0 East
f2- {l iff has closed car and contains triangle load 1 0 0 0 0 0 East
0 otherwise 1 1 0 0 0 0 East
Liff has double—all car and contains triangle load
f3= ff . ¢ 1 0 1 0 0 0 East
0 otherwise
4o Liff has car with jagged roof 1 0 1 0 0 0 East
A 0 otherwise 0 0 0 0 0 0 West
5= Liff has long car and contains rectaglular load 0 0 0 1 0 1 West
0 otherwise 0 0 0 0 1 0 West
f6= 1iff has long car and can with jagged roof 0 0 0 1 1 1 West
0 otherwise
0 0 0 0 0 0 ‘West

Fig.2 Some Boolean features for the trains problem, and a corresponding tabular representation of the trains
in Fig. 1

1.0

0.5

Classification accuracy

0 Number of Feature Subsets 2A

Fig. 3 Identifying the best subset of features for a model-construction algorithm A. The X-axis enumerates
the different subsets of features that can be constructed by an ILP engine (F denotes the set of all possible
features that can be constructed by the engine). The Y-axis shows the probability that an instance drawn
randomly using some pre-specified distribution will be correctly classified by a model constructed by A,
given the corresponding subset on the X-axis. We wish to identify the subset kx that yields the highest
probability, without actually constructing all the features in F

set {f1, 2, 3, f4, 5, f6} and return the subset that returned the best model, we would
be done. Now, let us consider a more practical situation. Suppose the features that can be
constructed by an ILP system are not in the 10s, but in the 1000s or even 100s of 1000s. This
would make it intractable to construct models with all possible subsets of features. Further,
suppose that constructing each feature is not straightforward, computationally speaking,
making it impractical to even use the ILP engine to construct all the possible features in the
first place. Are we able to nevertheless determine the subset that would yield the best model
(which we will now interpret to mean the model with the highest classification accuracy)?
The conceptual problem to be addressed is shown in Fig. 3.

Readers will recognise this as somewhat similar to the problem addressed by a ran-
domised procedure for distribution-estimation like Gibb’s sampling. There, if the F features
are given (or at least can be enumerated), then the sampling procedure attempts to converge
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on the best-performing subset without examining the entire space of 217! elements. Clearly,
if we are unable to generate all possible features in F beforehand, we are not in a position to
use these methods. We first propose a minimal specification to be satisfied by any ILP-based
feature constructor.

3.1 Specification

Functionally, ILP can be largely characterised by two classes of programs. The first, pre-
dictive ILP, is concerned with constructing models (sets of rules; or first-order variants of
classification or regression trees) for discriminating accurately amongst two sets of exam-
ples (“positive” and “negative”). The partial specifications provided by (Muggleton 1994)
have formed the basis for deriving programs in this class, and are shown in Fig. 4 (we refer
the reader to (Nienhuys-Cheng and de Wolf 1997) for definitions of the logical terms used).

The second category of ILP systems, descriptive ILP, is concerned with identifying re-
lationships that hold amongst the background knowledge and examples, without a view of
discrimination. The partial specifications for programs in this class are based on the descrip-
tion in (Muggleton and De Raedt 1994), and are shown in Fig. 5.

The idea of exploiting a feature-based model constructor that uses first-order features can
be traced back at least to the LINUS program (Lavrac et al. 1990). More recently, the task
of identifying good features using a first-order logic representation has been the province of
programs developed under the umbrella of “propositionalization” (see Kramer et al. 2001
for a review). Programs in this class are not easily characterised as either predictive or de-
scriptive ILP. Conceptually, solutions involve two steps: (1) a feature-construction step that
identifies (within computational reason) all the features that are consistent with the con-
straints provided by the background knowledge. This is characteristic of a descriptive ILP
program; and (2) a feature-selection step that retains some of the features based on their
utility in classifying the examples. This is characteristic of a predictive ILP program. To this

— B is background knowledge consisting of a finite set of clauses = {C1,Cs, ...}

— E is a finite set of examples = ET U E~ where:
e Positive Examples. ET = {p1,pa, ...} is a non-empty set of definite clauses;
e Negative Examples. E~ = {n1,nz...} is a set of Horn clauses (this may be

empty)
— H, the output of the algorithm given B and E is acceptable if the following con-
ditions are met:

Prior Satisfiability. BU E~ 0O

Posterior Satisfiability. BU H U E~ B~ [,

Prior Necessity. B = Et

Posterior Sufficiency. BUH |=e1 Aea A...

Fig. 4 A partial specification for a predictive ILP system from (Muggleton 1994)

— B is background knowledge consisting of a finite set of clauses = {C1,Ca, ...}
— E is a finite set of examples (this may be empty)
— H, the output of the algorithm given B and F is acceptable if the following con-
dition is met:
Posterior Sufficiency. BUH U E O

Fig. 5 A partial specification for a descriptive ILP system based on (Muggleton and De Raedt 1994)
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extent, we would like specifications for feature construction to reflect a combination of these
two dominant flavours of ILP programs. In particular, we will assume the following:

1. Examples are taken to be some subset of the binary relation X’ x ), where X’ denotes the
set of individuals and Y some finite set of classes. We therefore do not make any special
distinction between positive and negative examples.

2. Given examples of the form described, an ILP system identifies one or more definite
clauses of the form 4; : Class(x, ¢) <= Cp;(x), where x is a variable and c is some class
in the set of classes ). Here, adopting terminology from (Ratnaparkhi 1996), Cp, : X —
{0, 1} is a “context predicate” that corresponds to a conjunction of literals that evaluates
to TRUE (1) or FALSE (0) for any particular individual. We will require that Cp; contains
at least one literal: in logical terms, we therefore require the /; to be definite clauses with
at least two literals (let us call them “mixed definite clauses”, to denote the requirement
for exactly one positive literal and at least one negative literal). To ensure that the clauses
found are not trivial, we require each %; to entail at least one example in E.

3. Features are conjunctions of literals. Given a clause &, : Class(x, ¢) < Cp;(x), found by
the ILP system, we construct a one-to-one mapping to a feature f; as follows: f;(x) =1
iff Cp, (x) =1 (and O otherwise).> An example from a WSD task studied in this paper is
shown in Fig. 7.

4. We would like features identified to be relevant. The notion of relevance of a feature
inaset F ={fi,..., fi} can be captured by a probabilistic statement on feature-based
representation of the examples. Let individuals be elements of the set F; x --- x Fj
(where F; is the set of values of the ith feature: for us all the F; are {0, 1}); and examples
be elements of F; x --- x F; x ). Then, as in (John et al. 1994), (with some abuse
of notation) we can distinguish between the strong relevance of a feature f; in F, if
Pr(Y|F) # Pr(Y|F — {f;}); and its weak relevance if there is some F’ C F such that
fi € F' and f; is strongly relevant in F’. That is, Pr(Y|F’) # Pr(Y|F' — {fi}). As a
minimal requirement, we would like an ILP-based feature-constructor to identify features
that are at least weakly relevant.

With these assumptions, a partial specification for an ILP-based feature constructor is shown
in Fig. 6.

3.2 Implementation

Here we describe an implementation that can be tailored to meet the specification just de-
scribed. Recall that all the specification, with our subsequent modifications, requires is the
following: (1) The implementation returns a set in which each feature is represented as a
conjunction of literals; (2) Each feature is constructed from a mixed definite clause that en-
tails at least one example, given the background knowledge; and (3) Each feature is weakly
relevant, given the background knowledge and examples. Clearly a very large number of
features can be constructed that satisfy these requirements. Consequently, we introduce the
following general constraints for restricting the number of features constructed:

Support. For each clause h; : Class(x, c) <= Cp;(x) we compute P(h;) ={x:ec ENe=
Class(x,c) A BU{h;} U {—e} =0}. P(h;) is the set of individuals correctly classified by
h;, and we denote their number by tp(h;) = | P(h;)| (more correctly of course, we should

2In (Ratnaparkhi 1996) the f; are denoted by f; .. The notation here is more in line with the machine learning
literature.
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— B is background knowledge consisting of a finite subset of Horn clauses =
{C1,Cs,...} drawn from some set B.

— FE is a finite set of examples of the form Class(i,c) where i is a member of a set
of individuals X and c is a member of a set of classes ).

— H is the set of mixed definite clauses of the form h; : Class(z,c) «— Cp,(z),
constructible with predicates, functions and constants in B U E; F the set of
conjunctions of literals that can be constructed with predicates, functions and
constants in BU E.

— F ={f1, foy..., fx} € F, the output of the algorithm given B and FE is a finite set
of features constructed from a set of clauses H = {hi1, ha,...} C H if the following
condition is met:

Posterior Sufficiency.

x For each h; € H, BU{h;} Fe1Vea V..., where {e1,e2,...} CFE
* fi(z) = Cp;(z)

* f; is weakly relevant given B and F.

Fig. 6 A partial specification for an ILP system for feature construction

Clause:
hi : Class(z,voltar) «— Has_expression(z, come_back,voltar)
A Has_pos(z, pcwr_4,nn)

Context Predicate:
Cp,(z) :  Has_expression(x,come_back,voltar) N Has_pos(z, pcwr-4,nn)

Feature:

hi(@) {1 Has_expression(xz, come_back, voltar) A Has_pos(z,pcwr 4,n) = 1
1\T) =

0 otherwise

Fig. 7 Example of a boolean feature constructed from a clause for WSD. The clause shown here identifies
the Portuguese sense of the English verb “to come”. The meanings of the predicate symbols Has_expression
and Has_pos are explained in Sect. 4

include B and E in these functions). Adopting data-mining terminology, we call this the
“support” of a clause. In our implementation, we reduce the number of acceptable clauses
found by the ILP system (and hence the number of features) by placing some minimal
requirement on the support of any clause.

Precision. For each class ¢ € ), we denote N, = {—Class(x, c¢) : Class(x,c’) € EAc #'}.
Then for each clause A; : Class(x, c¢) < Cp;(x) we compute N(h;) ={x:ee€ N. ANe=
—Class(x,c) AN BU {h;} U {e} =01}. N(h;) is the set of individuals incorrectly classi-
fied by a h; as class ¢, and we denote their number by fp(h;) = |N(h;)|. Once again,
using terminology from the data-mining literature, we obtain the precision of a clause
h; as the value tp(h;)/(tp(h;) + fp(h;)). In our implementation, we reduce the num-
ber acceptable clauses found by the ILP system (and hence the number of features)
by requiring the precision of any clause to be greater than some pre-specified num-
ber.
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We note that ensuring that the support of a clause is at least 1 meets the requirement that
the clause entails at least one example. The constraint on precision can be used to ensure
that features constructed are weakly relevant. This follows trivially, since each clause h for
class c results in a feature f and the following contingency table for class values:

Class

0[N — tp(h)| Nz — fp(h)|ne

N, Nz N

If the precision constraint ensures that the precision of a clause % for a class c is greater than
the prior probability of class ¢ (this probability is estimated from the examples E), then
precision(h) = tp(h)/n, > N./N = Pr(Class = c). Now, since Pr(Class =c|f =1) =
precision(h), it follows that Pr(Class| f) # Pr(Class). That is, the corresponding feature
f is weakly relevant.

We will call any clauses (and, with some overloading of terminology, the corresponding
features) that satisfies the support and precision requirements as “acceptable”. We distin-
guish between two different techniques to obtain features:

1. One-shot feature-set construction, that identifies a set of acceptable features without any
feedback from the model constructor (this is, in some sense, a “LINUS-inspired” ap-
proach, Lavrac et al. 1990). In keeping with terminology sometimes used in the ILP
literature, we will call this approach “static feature-set construction”.

2. Incremental feature-set construction, that identifies a set of acceptable features after re-
peated iterations in which feature-construction is guided by feedback from the model
constructor. In keeping with terminology sometimes used in the ILP literature, we will
call this approach “dynamic feature-set construction”.

We present these techniques as instances of the implementation below.
3.3 Randomised feature-set construction

In (Zelezny et al. 2006) an implementation using a randomised local search was proposed to
meet the specification of a predictive ILP system. It is possible to adopt the same approach in
an implementation designed to meet the specifications for feature construction (see Fig. 8).

In Fig. 8 R and M bound the number of random restarts and local moves allowed. Exist-
ing techniques for feature construction can be re-cast as special cases of this procedure, with
appropriate values assigned to R and M ; and definitions of a starting point (Step 3a) and lo-
cal moves (Step 3(f)i). For example, one-shot methods that use an ILP engine to construct a
large number of features independent of the model constructor can be seen as an instance of
the randomised procedure with R =1 and M = 0, with some technique for generating the
“starting subset” in Step 3a. The feature-set constructor provided within the Aleph (Srini-
vasan 1999) system, shown in Fig. 9(a), is an example of a technique that generates features
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1. bestfeatures:= {}

2. bestaccuracy:= 0.0
3. fori =1 to R do begin
(a) currentfeatures:= randomly selected set of features
(b) currentmodel:= model constructed with currentfeatures
(¢) accuracy:= estimated accuracy of currentmodel
(d) if accuracy > bestaccuracy then begin
i. bestfeatures:= currentfeatures
ii. bestaccuracy:= accuracy
(e) end
(f) for j =1 to M do begin
i. nextfeatures:= best local move from currentfeatures
ii. nextmodel:= model constructed with nextfeatures
ili. accuracy:= estimated accuracy of nextmodel
iv. if accuracy > bestaccuracy then begin
A. bestfeatures:= nextfeatures
B. bestaccuracy:= accuracy
v. end
vi. currentfeatures:= nextfeatures
(g) end
4. end

5. return bestfeatures

Fig. 8 A basic randomised local search procedure, adapted to the task of feature construction

using a stratified sample of the examples (a simpler approach of generating k acceptable
features using simple random sampling of the examples is in Fig. 9(b)).

We consider now the more general procedure shown. In this, R and M can take on any

value from the set of natural numbers (including 0). In addition, the starting subset is as-
sumed to be drawn using some distribution that need not be known; and a local move is one
that either adds a single new feature to the existing subset of features, or drops a feature
from the existing subset. We are now immediately confronted with two issues that make it
impractical to use the procedure as shown. First, we have the same difficulty that prevented
us from using an enumerative technique like a Gibb’s sampler: generating the local neigh-
bourhood requires us to obtain all possible single-feature additions. Second, for each local
move, we need to construct a model, which can often be computationally expensive. We
address each of these in turn.
Reducing local moves. We consider a modification of the search procedure in Fig. 8 that
results in only examining a small sample of all the local moves possible before deciding
on the next move in Step 3(f)i. Ideally, we are interested in obtaining a sample that, with
high probability, contains the best local move possible. Assuming there are no ties, and that
the number of possible local moves is very large, it would clearly be undesirable to select
the sample using a uniform distribution over local moves. We propose instead a selection
that uses the errors made by the model-constructor to obtain a sample of local moves. As a
result, features in the local neighbourhood that are relevant to the errors are more likely to
be selected. In some sense, this is somewhat reminiscent of boosting methods: here, instead
of increasing the weights of examples incorrectly classified, the representation language is
enriched in a way that is biased to classify these examples correctly on subsequent iterations
(the possibility of using misclassified examples to guide a stochastic local search amongst
an existing set of features was demonstrated in Paes et al. 2007).

Recall that at any point, a local move from a feature-subset F is obtained by either
dropping an existing feature in F or adding a new feature to F. We are specifically concerned
with the addition step, since in principle, all possible features that can be constructed by the
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strat_features(B, E,Y,k,s,p, L) : Given background knowledge B; a set of examples E; a set
of class-labels ) taken here to be the set of numbers {1,2,...,c}; an upper-bound on the
number of features allowed for each class k (1 < k); the minimal support for acceptable clauses
s (1 < s); the minimal precision for acceptable clauses p (0 < p < 1); and a language L
specifying constraints on acceptable clauses that can be considered in the search for any one
feature; return a set F' of at most k acceptable features for each class.
1. for each i € Y do
2. begin
(a) Let H; :==0
(b) Let E; be all examples in E with class 4
(c) while (|H;| < k) and (E; # 0) do
(d) begin
i. Randomly select an example e € E;
ii. Let j:=k — |H;|
iii. Let H be a set of at most j mixed definite clauses found by an ILP engine such
that H N H; = 0, and each clause h € H satisfies: (1) h € £; (2) BU{h} [= e; and
(3) h is acceptable (that is, support(h) > s; and precision(h) > p).
iv. Let H; := H; UH
v. Let E; := E; — {e}
(e) end
end
Let F be the set of features obtained from the bodies of clauses in H; U Hy - - - H.
return F'

ov W

(a) A procedure for constructing a stratified sample of acceptable features.

srs_features(B, E, k,s,p, L) : Given background knowledge B; a set of examples E; a set of class-
labels ) taken here to be the set of numbers {1,2,...,c}; an upper-bound on the number of
features allowed k (1 < k); the minimal support for acceptable clauses s (1 < s); the minimal
precision for acceptable clauses p (0 < p < 1); and a language L specifying constraints on
acceptable clauses that can be considered in the search for any one feature; return a set F' of
at most k acceptable features.

1. Let H=10
2. Let E’ be a random subset of k examples from E
3. while (|H| < k) and (E’ # 0) do
4. begin
(a) Randomly select an example e € E’
(b) Let j:=k— |H|
(c) Let H’ be a set of at most j mixed definite clauses found by an ILP engine such that
H N H' =0, and each clause h € H' satisfies: (1) h € £; (2) BU {h} =e; and (3) h
is acceptable (that is, support(h) > s; and precision(h) > p).
(d) Let H:= HUH’
(e) Let B/ := E' — {e}
5. end
6. Let F be the set of features obtained from the bodies of clauses in H
7. return F

(b) A procedure for constructing a simple random sample of acceptable features.

Fig. 9 Candidates for using an ILP engine to generate the “starting subset” in the randomised search for
features. support and precision are as described in the text

ILP engine could be considered as candidates. We curtail this in the following ways. First,
we restrict ourselves to samples of features that are related to examples misclassifed by the
model-constructor using the current set of features F (by “related” we mean those that are
TRUE for at least one of the examples in error). Second, in our implementation, we restrict
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ourselves to a single new feature for each such example (by “new”, we mean a feature not
already in F).?

Reducing models constructed. The principal purpose of constructing and evaluating models
in the local neighbourhood is to decide on the best next move to make. This will necessarily
involve either an addition of a new feature to the existing set of features, or the deletion of
an existing feature from the current set of features. That is, we are looking to find the best
new feature to add, or the worst old feature to drop (given the other features in the set, of
course). Correctly, we would form models with each old feature omitted in turn from the
current set and each new feature added in turn to the current set. The best model would
then determine the next move. Using a model-constructor that assigns weights to features
allows us to adopt the following sub-optimal procedure instead. First, we find the feature
with the lowest weight in the current model: this is taken to be the worst old feature. Next,
we construct a single model with all features (old and new). Let us call this the “extended
model”. The best new feature is taken to be the new feature with the highest weight in the
extended model.

The procedure in Fig. 8 with these modifications is shown in Fig. 10. It is evident that
the number of additional models constructed at any point in the search space is now reduced
to just 3: the price we pay is that we are not guaranteed to obtain the same result as actually
performing the individual additions and deletions of features.

It is the randomised local search procedure in Fig. 10, with one small difference, that we
implement in this paper. The difference arises from the comparison of models: in the proce-
dure shown, this is always done using estimated accuracies only. In our implementation, if
estimated accuracies for a pair of models are identical, then the model using fewer features
is preferred (that is, comparisons are done on the pair (A, F') where A is the estimated accu-
racy of the model and F is the number of features used in the model). One additional point
worth clarifying concerns over-fitting the data. Some combination of the following mecha-
nisms are clearly possible: (a) Limiting the amount of local search (using M); (b) Requiring
acceptable features have some reasonable support; and (c) Using a model constructor that
can perform some appropriate trade-off of fit-versus-complexity to avoid over-fitting.

We make the following observations about this implementation:

Termination. It is evident that, provided the ILP engine used construct features terminates,
the procedure in Fig. 10 terminates, since both R and M are finite.

Correctness. All features constructed are obtained from acceptable clauses. That is, the
support of every clause is at least s (s > 1), and, precision is at least p. If p is ensured to be
greater than the prior probability of any class ¢ in the examples E, then from the discussion
earlier, the corresponding features are all weakly relevant.

Incompleteness. The procedure does not identify all weakly relevant features, since the
local search procedure is incomplete.

Output. We assume that the starting subset in Step 3a contains features proportional to n
(for example, with ¢ classes, a starting subset using the Aleph feature-set constructor in
Fig. 9 will produce a set containing no more than cn features). On any restart, a local move
either adds a single feature to the existing set of features; or drops a feature from this set.
Since this done no more than M times, the output contains more than an += M features
(1 <a <o0).

3In the implementation, we select this feature using its discriminatory power given the original set of exam-
ples.
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randsearch_features(B, E,Y,n,s,pL, R, M) : Given background knowledge B; a set of examples
E; a set of class-labels Y taken here to be the set of numbers {1,2,...,c}; a sample size
n (1 < n); the minimal support for acceptable clauses s (1 < s); the minimal precison for
acceptable clauses p (0 < p < 1); and a language L specifying constraints on acceptable clauses
that can be considered in the search for any one feature; the number of random restarts R
(1 £ R); and the number of local moves M (1 < M), return a set of acceptable features F.
1. F:=
2. bestaccuracy:= 0.0
3. for i =1 to R do begin
(a) currentfeatures:= sample of acceptable features given B, E, Y, n, s, pL
(b) currentmodel:= model constructed with currentfeatures
(¢) accuracy:= estimated accuracy of currentmodel
(d) if accuracy > bestaccuracy then begin
i. F:= currentfeatures
ii. bestaccuracy:= accuracy
(e) end
(f) for j =1 to M do begin
i. Fpew:= sample of new acceptable features that are TRUE for errors made by
currentmodel
ii. extendedmodel:= model constructed using currentfeatures and Fjeqw
ili. fworst:= feature in currentfeatures with lowest weight in currentmodel
+:= feature in F, e with highest weight in extendedmodel
v. F7:= set with feature subset obtained by dropping fworst from currentfeatures
vi. FT:= set with feature subset obtained by adding fyes; to currentfeatures
vii. localmoves:= F~ U F+
viii. nextfeatures:= best subset in localmoves
ix. nextmodel:= model constructed with nextfeatures
X. accuracy:= estimated accuracy of nextmodel
xi. if accuracy > bestaccuracy then begin
A. F:= nextfeatures
B. bestaccuracy:= accuracy
xii. end
xiii. currentfeatures:= nextfeatures
xiv. currentmodel:= nextmodel
(g) end
4. end
5. return F

Fig. 10 The randomised local search procedure for feature construction, modified using theory-guided sam-
pling of local moves and the use of feature-weights to reduce model construction. Acceptable features are
obtained using the same technique as the static feature-set constructor: an example for which the feature is
required to be TRUE is selected, and then an acceptable clause found

Based on the observations that: (a) the procedure in Fig. 10 terminates; and (b) with a
value of p that can be determined from the examples, it returns a finite set of weakly relevant
features, each constructed from clauses that entail at least 1 example, we can view it as an
algorithm for feature construction.

4 Empirical evaluation

Our objective is to evaluate empirically if ILP-based features can assist in constructing mod-
els for WSD. Specifically, given different sources of background information, we intend to
investigate the performance of the following kinds of models:

Baseline models. These are models for WSD that use features that are obtained manually
from the different knowledge sources.

ILP-assisted models. These are models constructed by augmenting the hand-crafted fea-
tures with those found by either the static or dynamic feature-set construction techniques,
when provided with access to a richer representation of the same background information
as the Baseline models. When static feature-set construction is used, we denote the result-
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ing ILP-assisted model “ILP-S”; and when dynamic feature-set construction is used, we
denote the corresponding model “ILP-D”.

We wish to investigate whether the ILP-assisted models have a significantly higher pre-
dictive accuracy than the baseline models. Statistical evidence in favour of the ILP-assisted
models will, in turn, be taken as providing support for the “ILP-features hypothesis”, which
we reiterate here:

ILP-features hypothesis. Feature-construction by ILP provides a general method of
introducing background knowledge for improving the predictive accuracy of WSD
models.

Statistically speaking, the null hypothesis for the investigation is there is no difference in
the (average) predictive accuracies of Baseline and ILP-S or ILP-D models. Inability to
reject this hypothesis will be taken as evidence against the usefulness of ILP as a feature-
constructor for WSD.

4.1 Materials
4.1.1 Data

We experiment with datasets contained in three different tasks. Each collection is concerned
with the disambiguation of different sets of ambiguous words, the so called “target words”,
including nouns and verbs, and contain different numbers of classes (possible senses or
translations) and class distributions. The three tasks are:

Monolingual-1. Data consist of the 32 verbs from the SENSEVAL-3 competition. SENSE-
VAL is a joint evaluation effort for WSD and related tasks. We use all the verbs of the
English lexical sample task from the third edition of the competition. The number of ex-
amples for each verb varies from 40 to 398 (average of 186). The number of senses varies
from 3 to 12 with an average of 7 senses. The average accuracy of the majority class is
about 55%. We refer the reader to (Mihalcea et al. 2004) for more information about the
SENSEVAL-3 data.

Monolingual-2. Data consist of 85 verbs and nouns of the English lexical sample task from
the SemEval-2007 competition, the last edition of SENSEVAL. The number of examples
varies from 24 to 3,061 (average of 272.12). The number of senses used in the training ex-
amples for a given word varies from 1 to 13 (average of 3.6). The average accuracy of the
majority class is about 78%. More information about this data set can be found in (Pradhan
et al. 2007).

Bilingual. Data consist of 7 highly frequent and ambiguous, mostly content-light, verbs:
come, get, give, go, look, make, take. The sample corpus comprises around 200 English
sentences for each verb extracted from several corpora, including the European Parliament,
the Bible and fiction books, with the verb translation automatically annotated (Specia et al.
2005). The number of possible translations varies in the corpus from 5 to 17, with an
average of 11 translations. The average accuracy of the majority class in the test data is
about 54%.

Taken together, the tasks specify 124 independent datasets, with disambiguation required
ranging from 3 to 17 different senses. The total number of examples is approximately
27,000.

4http://www.senseval.org.
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4.1.2 Background knowledge

To achieve accurate disambiguation in both tasks is believed to require a variety of lexical,
syntactic and semantic information. In what follows, we describe the background knowledge
available for the tasks and illustrate it using the following sentence (assuming that we are
attempting to determine the sense of ‘coming’ as target word):

“If there is such a thing as reincarnation, I would not mind coming back as a squirrel.”

Background knowledge is available in the following categories:

BO.

B1.

B2.

B3.

B4.

BS.

Baseline features. Manually identified features using the information encoded in
the predicates below, conveying the same information, but represented by means of
attribute-value vectors.

Bag-of-words. The 5 words to the right and left of the target word, extracted from the
corpus and represented using definitions of the form Has_bag(sentence, word). For
example:

Has_bag(sntl, mind).
Has_bag(sntl, not). ...

Narrow context. Lemmas of 5 content words to the right and left of the target word,
extracted from the corpus, previously lemmatized by MINIPAR (Lin 1993). These are
represented using definitions of the form Has_narrow(sentence, wordposition, word).
For example:

Has_narrow(sntl, first_content_word_left, mind).
Has_narrow(sntl, first_content_word_right, back). . ..

These are not provided for the Bilingual task, since it was thought to be adequately
covered by B5 below.

Part-of-speech tags. Part-of-speech (POS) tags of 5 content words to the right and left
of the target word, are obtained using MXPOST (Ratnaparkhi 1996) and represented
using definitions of the form: Has_pos(sentence, wordposition, pos). For example:

Has_pos(sntl, first_content_word_left, nn).
Has_pos(sntl, first_content_word_right, rb). ...

Subject-Object relations. Subject and object syntactic relations with respect to the
target word—in case it is a verb. If it is a noun, the representation includes the verb
of which it is a subject or object, and the verb/noun it modifies.These were obtained
from parsing sentences using MINIPAR and represented using definitions of the form
Has_rel(sentence, type, word). For example:

Has_rel(sntl, subject, i).
Has_rel(sntl, object, nil). ...

Word collocations. 11 collocations with respect to the target word, extracted from the
corpus: st preposition to the right, 1st and 2nd words to the left and right, 1st noun,
1st adjective, and 1st verb to the left and right. These are represented using definitions
of the form Has_collocation(sentence, collocation_type, collocation). For example:

Has_collocation(snt1, first_word_right, back).
Has_collocation(snt1, first_word_left, mind). . ..
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Bé.

B7.

BS.

B9.

B10.

Verb restrictions. Selectional restrictions of the verbs, when these are the target words,
defined in terms of the semantic features of their arguments in the sentence, extracted
using LDOCE (Procter 1978). If the restrictions imposed by the verb are not part of
the description of its arguments, WordNet relations are used to check whether they can
be satisfied by synonyms or hyperonyms of those arguments. A hierarchy of feature
types is used to account for restrictions established by the verb that are more generic
than the features describing its arguments in the sentence. These are represented by
definitions of the form Satisfy_restrictions(sentence, rest_subject, rest_object). For
example:

Satisfy_restrictions(snt1, [human], nil).
Satisfy_restrictions(snt1, [animal, human), nil).

Dictionary definitions. A relative count of the overlapping words in dictionary de-
finitions of each of the possible senses of the target word (extracted from Parker
and Stahel 1998, for the bilingual task, and from Procter 1978, for the monolin-
gual tasks) and the words surrounding it in the sentence, to find the sense with the
highest number of overlapping words. These are represented by facts of the form
Has_overlap(sentence, translation). For example:

Has_overlap(snt1, voltar).

Phrasal verbs. Phrasal verbs involving the target verb, possibly occurring in a sen-
tence, according to the list of phrasal verbs given by dictionaries and the context
of the verb (5 surrounding words). These are represented by definitions of the form
Has_expression(sentence, verbal_expression). For example:

Has_expression(sntl, ‘come back’).

This is not provided for Monolingual task (1) since it does not consider senses of the
verbs occurring in phrasal verbs.

Frequent bigrams. Bigrams consisting of pairs of adjacent words in a sentence (with-
out the target word) which occur more than 10 times in the corpus and are represented
by definitions of the form Has_bigram(sentence, word;, word,). For example:

Has_bigram(sntl, such, a).
Has_bigram(sntl, back, as). ...

These are available for Monolingual task (2) only.

Frequently related words. Related words consisting of pairs in the sentence that oc-
cur in the corpus more than 10 times related by verb-subject, verb-object, verb-
modifier, subject-modifier, and object-modifier syntactic relations, without includ-
ing the word to be disambiguated. There are represented by facts of the type
Has_related_pair(sentence, word;, word,). For example:

Has_related_pair(sntl, there, is). ...

These are available for Monolingual task (2) only.

Of these definitions, B0 is intended for constructing the Baseline model. BI-B10 are in-
tended for use by an ILP system. For each task we used a different subset of these knowl-
edge sources, according to their availability. Further, although the ILP implementation we
use is entirely capable of exploring intensional definitions of each of B1-B10, we represent
definitions in an extensional form (that is, as a set of ground facts), since this representation
is more efficient. This results in about 1.4 million facts.
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Algorithms We distinguish here between three separate procedures: (1) The feature-
construction algorithm in Fig. 10 for constructing a set of acceptable features; (2) The ILP
engine concerned with identifying clauses required by the feature-set construction algo-
rithms; and (3) The procedure for constructing models given a set of features and their
values for sample instances, along with a class label associated with each instance. We have
an implementation, in the Prolog language, of Fig. 10. For static-feature construction, the
stratified sampling procedure provided within the Aleph system shown in Fig. 9(a) is used to
provide the “starting subset” of features. In other cases, we commence with a simple random
sample of features using the procedure in Fig. 9(b). For (2) we use a basic branch-and-bound
search procedure provided within Aleph, that attempts to find all clauses that satisfy a given
set of constraints and entail at least one example. The feature-based model constructor (3) is
a linear SVM (the specific implementation used is the one provided in the WEKA toolbox
called SMO.). We will refer to (1) as “the feature constructor”; (2) as “the ILP learner” and
(3) as “the feature-based learner.”

4.2 Method

Our method is straightforward:

For each verb in each task (that is, 32 words in Monolingual-1, 85 words in Monolingual-
2 and 7 words in the Bilingual task):

1. Obtain the best model possible using the feature-based learner and the features in BO.
Call this the Baseline model.

2. Construct a set of features using, in turn, the static and dynamic feature construction
that uses the ILP learner, equipped with background knowledge definitions B1-B10.
Call the corresponding sets of features “Static” and “Dynamic”.

3. Obtain the best model possible using the feature-based learner supplied with data for
features BO U Static. Call this model “ILP-S”. Similarly, obtain “ILP-D” using features
B0 U Dynamic. For simplicity, we will refer to these models collectively as “ILP-
assisted models”.

4. Compare the performance of the Baseline model against that of the ILP-assisted mod-
els.

The following details are relevant:

(a) For the monolingual tasks, we use the training/test data as provided by SENSEVAL-
3 and SemEval-2007 benchmarks. These specify different percentages for training and
test, depending on the target word. For the bilingual task, we use 25% of the data to
estimate the performance of disambiguation models. For all the data sets, performance
is measured by the accuracy of prediction on the test set (that is, the percentage of test
examples whose sense is predicted correctly).

(b) The ILP learner constructs a set of acceptable clauses in line with the specifications
described in Sect. 3.1. Positive examples for the ILP learner are provided by the correct
sense (or translation in the bilingual case) of the target word in a sentence. Negative
examples are generated automatically using all other senses (or translations). Clauses
for a class are thus found using a “one-versus-the-rest” approach.

5 http://www.cs.waikato.ac.nz/~ml/weka/.
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(c) For each target word and task, constructing the “best possible model” requires determin-
ing optimal values for some parameters of the procedures involved. We estimate these
values using an instance of the method proposed in (Kohavi and John 1995) that pro-
ceeds as follows. First, we decide on the relevant parameters. Second, we obtain, using
the training set only, unbiased estimates of the predictive accuracy of the models for
each target word arising from systematic variation across some small number of values
for these parameters. Values that yielded the best average predictive accuracy across all
target words are taken to be optimal ones. This procedure is not perfect: correctly, op-
timal values may change from one target word to another; and even if they did not, the
results obtained may be a local maximum (that is, better models may result from further
informed variation of values).

(d) Full-scale experimentation for optimal settings for parameters requires systematic joint
variation of values of critical parameters for the feature constructor, ILP learner and the
feature-based learner. For reasons of tractablility, we restrict this here to an exploration
of parameter values for the feature-based learner (here, a linear SVM) only. For the other
two procedures, we select values that allow reasonably large numbers of features to be
generated (see below). The principal parameters for the feature-based learner are taken
to be: the C parameter used by the linear SVM and F, the number of features to be se-
lected. The following C values were investigated: 0.1, 1.0, 10, 100, and 1000. Given a
total of N features, F' values considered were N /64, N/32, N/16, N/8, N/4, N/2, and
N (we obtain the best subset of such features using software tools for feature-selection
provided within WEKA). The predictive accuracy with each (C, F) setting is estimated
and the values that yield the best results are used to construct the final model (the pre-
dictive accuracy estimate is obtained using an average over 5 repeats of predictions on
20% of the training data sampled to form a “validation” set).

(e) For the record, parameter settings for the feature-constructor and ILP learner were as
follows. For the former the value of k£ (the maximum number of features constructed for
each class) is 5000; the minimal support s required is 2; and the minimal precision 0.6.
We note that this value of precision does always guarantee weak relevance in all datasets
(where the prior probability of a class is > 0.6). In such cases, not all the features may
be weakly relevant. In addition, the search is bounded by requiring clauses to have no
more than 10 literals in the context-predicate (that is, the body of clauses has at most 10
literals). Search for clauses is restricted to no more than 10,000 nodes. All these settings
are admittedly ad hoc, with the intent being to place, within computational reason, as
few constraints as possible on feature generation.

(f) Comparison of performance is done using the Wilcoxon signed-rank test (Siegel 1956).
This is a non-parametric test of the null hypothesis that there is no significant difference
between the median performance of a pair of algorithms. The test works by ranking the
absolute value of the differences observed in performance of the pair of algorithms. Ties
are discarded and the ranks are then given signs depending on whether the performance
of the first algorithm is higher or lower than that of the second. If the null hypothe-
sis holds, the sum of the signed ranks should be approximately 0. The probabilities of
observing the actual signed rank sum can be obtained by an exact calculation (if the
number of entries is less than 10), or by using a normal approximation. We note that the
comparing a pair of algorithms using the Wilcoxon test is equivalent to determining if
the area under the ROC curves of the algorithms differ significantly (Hand 1997).

(g) We note also that given that the ILP-assisted models are constructed with access to all
features available for the Baseline model, we would expect that the predictive accuracies
of the ILP-assisted models should, in principle, never be worse. That is, the alternate hy-
pothesis for the Wilcoxon test is a uni-directional one that the median accuracy of the
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ILP-assisted model (ILP-S or ILP-D) is higher than the Baseline model. However, in
practise, ILP-assisted models could be worse either due to overfitting, or due to limi-
tations of the feature-selection procedure employed (if any). Given this, we adopt the
bi-directional alternate hypothesis, that the median accuracies of the ILP-assisted mod-
els are not equal to the Baseline model. This means obtaining two-tailed probabilities
for the signed rank-differences.

5 Results and discussion

Tables 1, 2 and 3 tabulate the performance of the Baseline and ILP-assisted models on
the three different WSD tasks. It is also standard practise to include the performance of a
classifier that simply predicts the most frequent sense of the target word, which we denote
in these tabulations as the “Majority class” model. The principal details in these tabulations
are these: (1) The majority class models are better, on average, than the baseline models for
Monolingual-2. However, its performance is significantly worse than the ILP-based models.
We will leave them out of any further discussion related to the principal hypothesis being
investigate here; (2) For all three tasks, average accuracies of the baseline models are lower
than the ILP-assisted models.

We turn now to the question of whether the differences in accuracies observed between
the Baseline and ILP-assisted models are in fact significant. The relevant probabilities cal-
culated by using the Wilcoxon test are shown in Table 4.5 The tabulations show that, overall
(see Table 4(a)), there is very little evidence in favour of the null hypothesis that the median
accuracies of the ILP-assisted models are the same as the Baseline model. Closer examina-
tion of the individual tasks (Table 4(b)—(d)) suggests that we can be quite confident about
this with ILP-D. ILP-S is also better, but some of the probabilities on Monolingual (1) and
Bilingual tasks are slightly lower than what would usually be considered significant.

Based on these tabulations we conclude that there is indeed evidence in favour of the
ILP-features conjecture, using ILP-S or ILP-D as an example of what is achievable with
ILP assistance.

5.1 Going beyond the “ILP-features hypothesis”

We turn now to some issues that are not immediately relevant the principal hypothesis in-
vestigated in the paper, but are nevertheless of interest:

1. Statistical evidence in favour of the ILP-features hypothesis is of little direct interest to
those working in automatic machine-translation. How do the ILP-S and ILP-D models
perform compared to the state-of-the-art in WSD?

2. Itis of some interest to ILP-practitioners to know which of ILP-S or ILP-D is better as a
technique for feature-construction.

3. The results here merely constitute a kind of empirical existence proof that it is possible to
use an ILP system to construct useful features. There is nothing to suggest here that we
have obtained the best possible results from using ILP: can we do better using a different
ILP system for constructing features?’

6These were obtained from the program kindly provided by Richard Lowry at http://faculty.vassar.edu/lowry/
wilcoxon.html.

TThis does not, of course, address the question of whether features capturing some or all of the information
found by the ILP learner could be hand-crafted. This is beyond the scope of this paper.
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Table 1 Estimates of accuracies of disambiguation models for datasets in Monolingual-1 task. “Micro” and
“Macro” refer to averages weighted, and un-weighted by the number of examples

Word Majority class Baseline ILP-S ILP-D
activate 82.46 £3.56 81.58 +3.63 82.45+3.56 92.98 £2.39
add 45.80 £4.35 81.68 +3.38 83.21+3.27 85.50£3.08
appear 44.70 £4.33 70.45+£3.97 71.21+£3.94 88.64 +2.76
ask 27.78 =3.99 53.97+4.44 53.17+£4.45 60.32 £4.36
begin 59.74 £5.59 63.64 +5.48 72.73 £5.08 74.03 £5.00
climb 55.22+£6.08 71.64£5.51 86.57+4.17 85.07+£4.35
decide 67.74 £5.94 79.03 £5.17 80.64 £5.02 79.03 £5.17
eat 88.37+£3.46 87.21+3.60 88.37+£3.46 87.21£3.60
encounter 50.77 £6.20 73.85+£545 72.30£5.55 73.85+£5.45
expect 74.36 £4.94 79.49 £4.57 92.31 £3.02 92.31+£3.02
express 69.09 £6.23 67.27+£6.33 67.27 £6.33 78.18 £5.57
hear 46.88 +8.82 62.50 £8.56 62.50 £ 8.56 65.63 £8.40
lose 52.78 £8.32 52.78 £8.32 52.70 £8.32 52.78 £8.32
mean 52.50+7.90 72.50 £7.06 75.00 £6.85 75.00 £ 6.85
miss 33.33 +£8.61 36.67 +8.80 36.66 = 8.80 40.00 £ 8.94
note 38.81+£5.95 53.73+£6.09 88.06 +3.96 88.06 +3.96
operate 16.67 £8.78 66.67 £11.11 72.22 £10.56 72.22 £10.56
play 46.15£6.91 53.85+6.91 55.77 £6.89 55.77+6.89
produce 52.13+£5.15 63.83 £4.96 65.96 £4.89 74.47 £4.50
provide 85.51+4.24 89.86 +3.63 86.96 +4.05 89.86 £3.63
receive 88.89 £6.05 88.89 +6.05 88.89 +6.05 88.89 £6.05
remain 78.57 £4.90 84.29 +4.35 85.71+4.18 87.14£4.00
rule 50.00£9.13 66.67 £8.61 83.33+6.80 86.67 £6.21
smell 40.74 £ 6.69 79.63 £5.48 7592 £5.82 74.07 £5.96
suspend 35.94£6.00 56.25£6.20 56.25 £6.20 57.81£6.17
talk 72.60 £5.22 73.97+5.14 73.97£5.14 73.97 £5.14
treat 28.07 £5.95 47.37+£6.61 57.89 £6.54 50.88 £6.62
use 71.43 £12.07 92.86 + 6.88 92.86 + 6.88 92.86 + 6.88
wash 67.65£8.02 73.53+£7.57 61.76 £8.33 64.71 £8.20
watch 74.51 £6.10 76.47 £5.94 72.54 £6.25 74.51 £6.10
win 44.74 £8.07 47.37+8.10 57.89 £8.01 60.53 £7.93
write 26.09+£9.16 47.83 £10.42 39.13+£10.18 52.17+£10.42
Micro 56.26 69.94 73.14 76.60

Macro 55.31 68.67 71.63 74.22

We consider each of these questions in turn. A comparison of the ILP models against
the state-of-the-art models reported for the Monolingual-1, Monolingual-2, and Bilingual
datasets is shown in Tables 5, 6 and 7. A simple comparison of the averages show the ILP-
based models to be better than the state-of-the-art on Monolingual-1 and Bilingual tasks, but
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Table 2 Estimates of accuracies of disambiguation models for datasets in Monolingual-2 task

Word Majority class Baseline ILP-S ILP-D

allow 97.14 £2.82 97.14£0.48 97.14£0.48 94.29 £ 0.66
announce 100.00 £ 0.00 100.00 £ 0.00 100.00 £ 0.00 100.00 £ 0.00
approve 91.67£7.98 91.67 £2.30 91.67 £2.30 91.67 £2.30
area 70.27+£7.51 62.16 + 1.31 72.97+1.20 72.97+£1.20
ask 51.72£6.56 50.00 £0.86 50.00 £ 0.86 50.00 £0.86
authority 23.81£9.29 47.62 £2.38 85.71+1.67 47.62 +£2.38
base 10.00 £6.71 30.00 £2.29 55.00 £2.49 50.00 £2.5
begin 56.25+£7.16 45.83 +£1.04 66.67 £0.98 68.75 £0.97
believe 78.18 £5.57 67.27 £0.85 63.64 £0.87 63.64 £0.87
bill 75.49 £4.26 66.67 £0.46 96.08 £0.19 96.08 £0.19
build 7391 £6.47 60.87 £ 1.06 60.87 £ 1.06 65.22 £1.04
buy 76.09 £6.29 69.57 £ 1.00 65.22 +£1.04 67.39 £1.02
capital 96.49 £2.44 96.49 £ 0.32 96.49 £ 0.32 94.74 £0.39
care 28.57+£17.07 42.86 £7.07 42.86 £7.07 42.86 £7.07
carrier 71.43 £9.86 7143 +£2.15 7143 +£2.15 7143 £2.15
chance 40.00 £ 12.65 20.00 £2.67 60.00 £3.27 60.00 £3.27
claim 80.00 £ 10.33 80.00 +2.67 80.00 +2.67 80.00 +2.67
come 23.26 £6.44 20.93 £0.95 6279 £1.12 65.12£1.11
complain 85.71+£9.35 85.71+£2.50 85.71+£2.50 85.71+£2.50
complete 93.75 £6.05 93.75 £1.51 93.75 £1.51 93.75 £1.51
condition 76.47 £7.27 73.53 £1.30 73.53 £1.30 64.71 £1.41
contribute 50.00 £ 11.79 38.89+£2.71 7222 £2.49 33.33+2.62
defense 28.57 £9.86 14.29 £+ 1.67 42.86 +2.36 33.33+224
describe 100.00 £ 0.00 100.00 £ 0.00 100.00 £ 0.00 100.00 £ 0.00
development 62.07 £9.01 62.07 £ 1.67 7241+ 1.54 72.41+£1.54
do 90.16 +3.81 90.16 £ 0.49 90.16 £0.49 80.33 +£0.65
drug 86.96 +4.97 76.09 +0.93 73.91+£0.95 76.09 £ 0.93
effect 76.67x£7.72 63.33+1.61 93.33+0.83 93.33+£0.83
end 52.38 £10.90 47.62 £2.38 90.48 +1.40 95.24+1.01
enjoy 57.14+£13.23 50.00 £3.57 57.14+£3.53 50.00 £3.57
examine 100.00 £ 0.00 100.00 £ 0.00 100.00 £ 0.00 100.00 £ 0.00
exchange 73.77+£5.63 63.93 £0.79 86.89 +0.55 86.89 +0.55
exist 100.00 £ 0.00 100.00 £ 0.00 100.00 £ 0.00 100.00 £ 0.00
explain 88.89 +£7.41 88.89+ 1.75 94.44 +1.27 94.44 +£1.27
feel 68.63 £ 6.50 68.63 £0.91 60.78 £0.96 60.78 £ 0.96
find 82.14+7.24 78.57+£1.47 89.29+1.10 85.71+1.25
future 86.30+2.85 77.40 £0.29 89.04 £0.21 83.56 +0.25
g0 45.90 £6.38 3279 £0.77 68.85£0.76 63.93 £0.79
grant 80.00 &+ 17.89 80.00 & 8.00 100.00 £ 0.00 100.00 £ 0.00
hold 37.504+9.88 25.00+1.80 45.83 £2.08 25.00 £ 1.80
hour 89.58 £4.41 85.424+0.74 89.58 £ 0.64 87.5+0.69
job 82.05+6.15 76.92 £ 1.08 7436 £1.12 7436 £1.12
join 38.89+£11.49 38.89+£2.71 33.33 £2.62 27.78 £2.49
keep 56.25 £5.55 46.25+0.62 57.5£0.62 46.25 +0.62
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Table 2 (Continued)

Word Majority class Baseline ILP-S ILP-D

kill 87.50 +8.27 87.50 £2.07 87.5+2.07 87.5+£2.07
lead 38.46 £7.79 30.77+1.18 69.23 £1.18 3333+ 1.21
maintain 90.00 £9.49 80.00 +4.00 100.00 £ 0.00 100.00 £ 0.00
management 71.11 £6.76 62.22 £1.08 75.56 £0.95 82.22+0.85
move 97.87 £2.10 97.87 £0.31 97.87 £0.31 97.87 £0.31
need 71.43 +£6.04 57.14£0.88 89.29+£0.55 87.50 +0.59
network 90.91 +3.88 76.36 £0.77 89.09 +0.57 87.27 +£0.61
occur 86.36 +7.32 77.27+£1.90 95.45+0.95 77.27+£1.90
order 91.23+3.75 91.23 £0.50 85.96 +0.61 85.96 £ 0.61
part 66.20 £5.61 50.7 £0.70 53.52+£0.70 52.11£0.70
people 90.43 £2.74 86.09 +0.30 86.09 +0.30 86.09 +0.30
plant 98.44 £1.55 98.44£0.19 98.44£0.19 100.00 £ 0.00
point 81.33+3.18 70.00 £0.31 90.00 £ 0.20 78.67 £0.27
policy 97.44£2.53 97.44 £0.40 94.87 £0.57 94.87 £0.57
position 46.67 +7.44 28.89 £1.01 31.11+£1.03 31.11+1.03
power 27.66 + 6.52 53.19 £ 1.06 82.98+£0.8 76.60 £0.9
prepare 77.78 £9.80 55.56 £2.76 83.33+2.07 88.89+1.75
president 72.88 £3.34 68.36 £0.26 97.18 £0.09 96.61 £0.10
produce 75.00 £6.53 72.73 £1.01 63.64 +1.09 63.64 £ 1.09
promise 75.00 £ 15.31 75.00 £5.41 87.5+4.13 75.00 £5.41
propose 85.714+9.35 85.71+£2.50 85.71+£2.50 85.71+£2.50
prove 68.18 +9.93 45.45 £2.26 68.18+2.12 54.55+£2.26
raise 14.71 £6.07 8.82+0.83 29.41+1.34 29.41+1.34
rate 86.21+2.86 79.31£0.28 79.31£0.28 79.31£0.28
recall 86.67 +8.78 86.67 £2.27 86.67 £2.27 86.67 £2.27
receive 95.83 £2.88 95.83 £0.42 93.75+£0.5 95.83 £0.42
regard 71.43 £12.07 78.57+£2.93 85.71£2.50 92.86 +1.84
remember 100.00 £ 0.00 100.00 £ 0.00 100.00 £ 0.00 100.00 £ 0.00
replace 100.00 £ 0.00 100.00 £ 0.00 100.00 £ 0.00 100.00 £ 0.00
report 91.43+4.73 91.43+0.80 91.43+0.80 91.43 £0.80
rush 100.00 £ 0.00 100.00 £ 0.00 100.00 £ 0.00 100.00 £ 0.00
say 98.71 £ 0.49 98.52+£0.02 97.78 £0.03 97.78 £0.03
see 44.44 £6.76 37.04 +0.89 55.56+0.92 57.41£0.92
set 28.57+£6.97 19.05 £0.93 61.9+1.16 57.14+£1.18
share 97.14+0.73 95.62 £ 0.04 96.57 +0.03 96.57 £ 0.03
source 37.14 £8.17 2571 £1.25 82.86 £1.08 60.00 £ 1.40
space 78.57 £10.97 92.86 £ 1.84 92.86 +1.84 92.86 £ 1.84
system 48.57+5.97 40.00£0.70 37.14 £ 0.69 37.14+£0.69
turn 38.71+6.19 22.58 £0.67 54.84+£0.80 53.23 £0.80
value 98.31 £1.68 94.92 £0.37 96.61 £0.31 96.61 £0.31
work 55.81+7.57 46.51 £1.16 65.12+1.11 65.12+1.11
Micro 78.10 73.14 82.50 80.30

Macro 71.69 67.53 78.52 73.39
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Table 3 Estimates of accuracies of disambiguation models for datasets in the bilingual task

Word Majority class Baseline ILP-S ILP-D

come 50.30 £7.45 60.00 £7.30 75.56 £ 6.41 75.56 +6.41
get 21.00 £6.52 30.77£7.39 64.10 £7.68 76.92£6.75
give 88.80£4.70 95.56 £3.07 100.00 £ 0.00 100.00 £ 0.00
g0 68.50 £ 6.64 73.47 £6.31 77.55£5.96 75.51£6.14
look 50.30 £7.29 78.72£5.97 76.59 £6.18 80.85£5.74
make 70.00 +7.07 78.57+6.33 78.57+6.33 90.48 £4.53
take 28.50+7.98 43.75+8.77 56.25 +8.77 53.13£8.82
Micro 55.69 67.56 76.59 79.93

Macro 53.91 65.83 75.52 78.92

Table 4 Probabilities of observing the differences in accuracies for the monolingual and bilingual tasks,
under the null hypothesis that median accuracies of the pair of algorithms being compared are equal. Each
entry consists two-tailed probability estimates of the null hypothesis being true. Note that the Majority class is
significantly better than Baseline on Monolingual-2 which results in a relatively high probability of observing
the differences between the two overall (0.60)

Majority Base ILP-S ILP-D
(a) Overall
Majority - - - -
Base 0.69 - - -
ILP-S < 0.0001 < 0.0001 - -
ILP-D < 0.0001 < 0.0001 0.42 -
(b) Monolingual-1
Majority - - - -
Base < 0.0001 - - -
ILP-S < 0.0001 0.06 - -
ILP-D < 0.0001 0.0006 0.002 -
(¢) Monolingual-2
Majority - - - -
Base 0.0001 - - -
ILP-S 0.0002 0.0001 - -
ILP-D 0.053 < 0.0001 0.0013 -
(d) Bilingual
Majority - - - -
Base 0.02 - - -
ILP-S 0.02 0.08 - -
ILP-D 0.02 0.02 >0.10 -

to be worse than the top 5 submissions made for Monlingual(2).® Thus, the best we can say

8We note that fourth-best model on Monolingual-2 is, in fact our ILP-S procedure with differences arising
from random sampling of features.
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Table 5 A comparison of the ILP-based models against the best submissions made for the SENSEVAL-3
competition, that is, in the Monolingual-1 dataset. The best model, MC-WSD, is a multi-class averaged per-
ceptron classifier with one component trained on the data provided by SENSEVAL and on WordNet glosses

Models Accuracy
ILP-D 76.60
ILP-S 73.14
MC-WSD (Ciaramita and Johnson 2004) 72.50
Syntalex-3 (Mohammad and Pedersen 2004) 67.60
Syntalex-1 (Mohammad and Pedersen 2004) 67.00
CLaCl (Lamyjiri et al. 2004) 67.00
Syntalex-2 (Mohammad and Pedersen 2004) 66.50
CLaC2 (Lamyjiri et al. 2004) 66.00
Syntalex-4 (Mohammad and Pedersen 2004) 65.30
Majority class 55.31

Table 6 A comparison of the ILP-based models against the best submissions made for the Semeval compe-
tition, that is, in the Monolingual-2 dataset. The best submission, NUS-ML is a SVM model. Note that our
accuracies do not include words that have a single class on training and test dataset. If these words were taken
into account, we achieve slightly higher accuracies (83.2 for ILP-S and 81.1 for ILP-D)

Models Accuracy
NUS-ML (Cai et al. 2007) 88.70
UBC-ALM (Agirre and Lopez de Lacalle 2007) 86.90
I2R (Niu et al. 2007) 86.40
USP-IBM-2 (Specia et al. 2007d) 85.70
USP-IBM-1 (Specia et al. 2007d) 85.10
ILP-S* 82.57
ILP-D* 80.36
Majority class 78.10

at this point is that the ILP-based models are good, but perhaps not always the best possible.
Of course, this form of adversarial comparison is not how we intend the ILP-based feature
constructors to be used. In practise, we would expect other model construction techniques to
incorporate the ILP features when constructing their models. Unfortunately, we are unable
to assess how well such a collaborative method would perform, as we have been unable to
get executable model-construction procedures for any of the non ILP-based submissions.

The difference between static and dynamic feature construction techniques embodied
within ILP-S and ILP-D. On the evidence in the Appendix of this paper and Table 4, it ap-
pears that, for WSD tasks at least, there is little to chose between the two methods. Although
accuracies are not significantly different, ILP-D models may be preferable on grounds of re-
quiring substantially fewer features—this is after the feature selection step—than ILP-S (and
sometimes even the baseline models: see Table 8), arising from the use of a partially correct
model to direct the construction of only those features that may be necessary to correct the
model.
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Table 7 A comparison of the

ILP-D and ILP-S with other Models Accuracy

models reported earlier in Specia

(2006b) for the Bilingual dataset ILP-D 79.93
ILP-S 76.59
Aleph 76.00
SVM 68.00
C4.5 63.00
Majority 55.69

Table 8 Average numbers of features used by the different models

Model Task

Monolingual-1 Monolingual-2 Bilingual
Baseline 136 282 102
ILP-S 2429 2813 2918
ILP-D 179 133 63

Do either the ILP-S and ILP-D models here contain the best features constructible with
ILP? Clearly not: we already have evidence in Table 6 of an ILP-based model (USP-IBM-2)
that uses the ILP-S procedure to achieve better results, using the same ILP system as the
one used here (the differences being due to sampling variations). Better features may also
result by using a different ILP system. Experiments conducted with features constructed
by the ILP system RSD (Zelezny and Lavrag 2006) obtain results roughly comparable to
the models here (average macro-accuracies of 70.06, 78.54 and 74.35 on Monolingual-1,
Monolingual-2 and Bilingual data respectively).

6 Concluding remarks

Word sense disambiguation, a necessary component for a variety of natural language
processing tasks, remains amongst the hardest to model adequately. It is of course possible
that the vagaries of natural language may place a limit on the accuracy with which a model
could identify correctly the sense of an ambiguous word, but it is not clear that this limit
has been reached with the modelling techniques that constitute the current state-of-the-art.
The performance of these techniques depends largely on the adequacy of the features used
to represent the problem. As it stands, these features are usually hand-crafted and largely
of a lexical nature. For substantial, scalable progress it is believed that knowledge that ac-
counts for more elaborate syntactic and semantic information needs to be incorporated. In
this paper, we have investigated the use of Inductive Logic Programming as a mechanism for
incorporating multiple sources of syntactic and semantic information into the construction
of models for WSD. The investigation has been in the form of empirical studies of using
ILP to construct features that are then used to construct predictive models for monolingual
and bilingual WSD tasks and the results provide evidence that this approach can yield better
models.

We believe much of the gains observed with ILP stems from the use of substantial
amounts of background knowledge. For the work here, this knowledge has been obtained
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by translations of information in standard corpora or electronic lexical resources. This is
promising, as it suggests that these translators, in conjunction with ILP, may provide a set
of tools for the automatic incorporation of deep knowledge into the construction of general
WSD models. Turning specifically to the findings of this paper, a combination of randomised
search and incremental feature-set construction by an ILP engine appears to be a promising
method to construct good features for WSD.

There are a number of ways in which the work here can be improved and extended. We
list the main limitations here under three categories. On the conceptual front, it is evident
that we have not provided any guarantees of optimality on the feature-subset constructed.
While this is typical of randomised methods of the type proposed here, it would nevertheless
be useful to obtain some performance bounds, however loose. Our specification of a feature-
construction algorithm—to the best of our knowledge, the only one to be proposed in the
ILP literature—can be refined to require the algorithm to return strongly relevant features
(in the sense described by John et al. 1994).

On the implementation front, our implementation of dynamic feature-set construction is
based on the simplest kind of randomised search (GSAT). Better methods exist and need
to be investigated (for example, WalkSat). Further, we could consider other neighbourhood
definitions for the local search such as adding or dropping upto k features. Of course, we
are not restricted to use SVMs, or even the specific variant of SVM here, as our model
constructor. Our experiments on the monolingual tasks here suggest that there is no signifi-
cant difference between a “1-norm” SVM and the standard approach we have used here, but
other model construction techniques may yield better results. We note that the feature-set
constructor when used in conjunction with an SVM is an instance of SVILP, as proposed
in (Muggleton et al. 2005). More generally, by interleaving feature and statistical model
construction in the dynamic feature-set constructor, we are effectively performing a form of
statistical relational learning. The applicability of this approach to this wider area needs to
be investigated.

On the application front, the background knowledge used here is by no means exhaus-
tive of the kind available for the WSD tasks studied here. For example, for the bilingual
task, the “translation context” for a target word may help greatly. This refers to the trans-
lations into the target language of the words forming the context of the target word. Our
preliminary experiments show that this does improve accuracies on the bilingual task. Fur-
ther, the algorithms we have described here are unlikely to be the only ones to satisfy the
specifications for feature-constructors. While the procedures in the paper establish a case
for ILP-based feature construction in WSD, other feature-construction methods such as the
ones in (Landwehr et al. 2006) and (Davis et al. 2007) may yield even better models, thus
strengthening the case for ILP further.

On the flip side, it is evident that the feature-construction algorithm we have proposed
here are not specific to WSD data. The use of the algorithm to model data concerned with
tasks other than WSD, while outside the scope of this paper, has obvious wider interest.
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