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Abstract

Supervised machine learning based state-of-the-art com-
puter vision techniques are in general data hungry. Their
data curation poses the challenges of expensive human la-
beling, inadequate computing resources and larger experi-
ment turn around times. Training data subset selection and
active learning techniques have been proposed as possible
solutions to these challenges. A special class of subset se-
lection functions naturally model notions of diversity, cover-
age and representation and can be used to eliminate redun-
dancy thus lending themselves well for training data subset
selection. They can also help improve the efficiency of ac-
tive learning in further reducing human labeling efforts by
selecting a subset of the examples obtained using the con-
ventional uncertainty sampling based techniques. In this
work, we empirically demonstrate the effectiveness of two
diversity models, namely the Facility-Location and Disper-
sion models for training-data subset selection and reducing
labeling effort. We demonstrate this across the board for a
variety of computer vision tasks including Gender Recog-
nition, Face Recognition, Scene Recognition, Object Detec-
tion and Object Recognition. Our results show that diver-
sity based subset selection done in the right way can in-
crease the accuracy by upto 5 - 10% over existing baselines,
particularly in settings in which less training data is avail-
able. This allows the training of complex machine learning
models like Convolutional Neural Networks with much less
training data and labeling costs while incurring minimal
performance loss.

1. Introduction

Deep Convolutional Neural Network based models are
today the state-of-the-art for most computer vision tasks.
Seeds of the idea of deep learning were sown around
the late 90’s [28] and it gained popularity in 2012 when
AlexNet [25] won the challenging ILSVRC (ImageNet
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Large-Scale Visual Recognition Challenge) 2012 competi-
tion [46], demonstrating an astounding improvement over
the then state-of-the-art image classification techniques.
This was soon followed by an upsurge of deep models for
computer vision tasks from all over the community. This
renewed interest in CNNss is due to the accessibility of large
training sets and increased computational power, thanks
to GPUs. VGGNet [53] demonstrated that a simpler, but
deeper model can be used to improve accuracies. Then
came the even deeper GoogLeNet [59], the first CNN to
be fundamentally architecturally different from AlexNet.
GoogLeNet introduced the idea that CNN layers didn’t
always have to be stacked up sequentially. ResNet [20]
was even deeper, a phenomenal 152 layer deep network
with an incredible error rate of 3.57%, beating humans
in the image classification task. State-of-the-art face
recognition techniques such as DeepFace [60], DeepID3
[57], Deep Face Recognition [38] and FaceNet [47] also
consist of deep convolutional networks. Similar is the
story with state-of-the-art scene recognition techniques
[69], and techniques for other computer vision tasks such
as age and gender classification [29] etc. Similarly, for
object detection tasks, the first significant advancement
in deep learning was made by RCNNs [17], which was
followed by Fast RCNN [16] and then Faster RCNN
[44] toward performance improvement. More recently,
YOLO [42] and YOLO9000 [43] have emerged as the
state-of-the-art in object detection. YOLO’s architecture is
inspired by GooglLeNet and consists of 24 convolutional
layers followed by two fully connected layers.

Every coin, however, has two sides and so is the case
with deep learning. While deeper models are increasingly
improving for computer vision tasks, they pose the follow-
ing challenges: a) Increased training complexity and com-
putational costs, b) Larger inference time, ¢) Larger experi-
mental turn around times and difficulty in hyper-parameter
tuning, and d) Higher costs and more time for labeling.

Training complexity and huge data requirements are ow-
ing to the depth of the network and the large number of



parameters to be learnt. A large deep neural net with a large
number of parameters to learn (and hence a large degree
of freedom) has a very complex and extremely non-convex
error surface to traverse and thus it requires a great deal of
data to successfully search for a reasonably optimal point on
that surface. Each of the CNN architectures (AlexNet [25],
ZFNet [68], VGGNet and GoogleNet were trained over a
span of several days (and in even weeks in some cases) on a
couple of GPUs. Training with several GPUs together can
reduce the time taken, but this results in slow experimen-
tal turn around time especially for hyper-parameter tuning
which is very important for getting these models to work in
practice.

Orthogonal to the challenge of training complexity is the
challenge of unavailability of labeled data. Human labeling
efforts are costly and grow exponentially with the size of
the dataset [63]. A lot of data today comes from videos,
which have a naturally associated redundancy.

1.1. Existing Work

In this section, we review existing work addressing
the problems of increased training complexity, larger turn
around times, increased complexity for inference (runtime)
and increased labeling costs.

Network Architechture Modifications for reducing
training/inference time: One way researchers have ad-
dressed this challenge is through architectural modifications
to the network. For example, by making significant archi-
tectural changes, GoogLeNet improved utilization of the
computing resources inside the network thus allowing for
increased depth and width of the network while keeping the
computational budget constant. Similarly, by explicitly re-
formulating the layers as learnt residual functions with ref-
erence to the layer inputs, instead of learning unreferenced
functions, ResNet allows for easy training of much deeper
networks. Highway networks [56] introduce a new archi-
tecture allowing a network to be trained directly through
simple gradient descent. With the goal of reducing training
complexity, some other studies [2, 21, 22] have also fo-
cused on model compression techniques. On similar lines,
studies like [29] propose simpler network architectures in
favor of availability of limited training data.

Transfer Learning for reduced training/inference time:
Other approaches advocate use of pre-trained models,
trained on large data sets and presented as ‘ready-to-use’
but they rarely work out of the box for domain specific
computer vision tasks (such as detecting security sensitive
objects). This idea is called Transfer Learning [7]. Trans-
fer learning allows models trained on one task to be easily
reused for a different task [37]. Several studies [7, 67, 32]
have analyzed the transferability of features in deep convo-
lutional networks across different computer vision tasks. It
has been demonstrated that transferring features even from
distant tasks can be better than using random features.
Reducing Labeling Costs: Several approaches have been
proposed to reduce labeling costs. In [36] the authors de-
scribe a weakly supervised convolutional neural network
(CNN) for object classification that relies only on image-
level labels, yet can learn from cluttered scenes contain-

ing multiple objects to produce their approximate locations.
Zero-shot learning [54, 3] and one-shot learning [62] tech-
niques also help address the issue of dearth of annotated
examples. In [15], Gavves et al combine techniques from
transfer learning, active learning and zero-shot learning to
reuse existing knowledge and reduce labeling efforts. Zero-
shot learning techniques don’t expect any annotated sam-
ples, unlike active learning and transfer learning that as-
sume either the availability of at least a few labeled tar-
get training samples or an overlap with existing labels from
other datasets. [6] propose a technique of combining self
supervised learning tasks (i.e. where training data can be
collected without manual labeling).

Active Learning in Computer Vision: The core idea be-
hind active learning [48] is that a machine learning algo-
rithm can achieve greater accuracy with fewer training la-
bels if it is allowed to choose the data from which it learns.
There have been very few studies in active learning and sub-
set selection for Computer Vision tasks. Using an informa-
tion theoretic objective function such as mutual informa-
tion between the labels, Sourati et al developed a frame-
work [55] for evaluating and maximizing this objective
for batch mode active learning. Another recent study has
adapted batch active learning to deep models [9]. Most
batch-active learning techniques involve the computation of
the Fisher matrix which is intractable for deep networks.
Their method relies on computationally tractable approxi-
mation of the Fisher matrix, thus making them relevant in
the context of deep learning.

Diversified Data Subset Selection and Active Learning:
A common approach to training data subset selection is
to use the concept of a coreset [1], which aims to effi-
ciently approximate various geometric extent measures over
a large set of data instances via a small subset. Submodular
functions naturally model the notion of diversity, represen-
tation and coverage and hence submodular function opti-
mization has been applied to recommendation systems to
recommend relevant and diverse items that explicitly ac-
count for the coverage of user interests [52]. Submodular
Functions form natural models for training data subset se-
lection [65, 66]. In particular, the data-likelihood functions
for the Naive Bayes and Nearest Neighbor classifiers turn
out to be Feature based and Facility Location functions re-
spectively [65]. Therefore the training data subset selection
problem for these classifiers turns out to be a constrained
submodular maximization problem.

1.2. Our Contributions

In this paper, we present a unified framework for data
subset selection using two models for data summarization.
The first is Facility Location (which models representation)
and the second is Minimum Dispersion (which models di-
versity). We argue for the utility of these functions and
intuitively highlight the cases in which one of the models
would work better compared to the other. We subsequently
provide four concrete use-cases of our framework. We di-
vide our applications into supervised data selection (where
you know the labels), unsupervised data selection (where
we have no label information) and active learning.



1. Application 1: Supervised Data Subset Selection for
Quick Training/Inference: This application investi-
gates the use of data subset selection for quick model
training and inference. As an example, we look
at KNN classification with features extracted from
CNNs. This is particularly relevant here since com-
plexity of inference of this non-parametric classifier is
directly proportional to the number of training exam-
ples.

2. Application 2: Supervised Data Subset Selection for
Quick Hyper-parameter tuning: Another application
of data subset selection is selection of a representative
yet smaller subset for hyper-parameter tuning for faster
turn-around time. With this smaller subset (say, for ex-
ample 5% of the data), we can run several quicker ex-
periments to find the optimal hyper-parameters. Once
the hyper-parameters have been tuned, we can then
train it on the full data.

3. Application 3: Unsupervised Data Subset Selection
for Labeling from Video Data: Often we need to cus-
tom train models on specific scenarios (e.g. data from
self driving cars), and often this data comes from
videos. We can use unsupervised data summarization
to get a representative set of frames (from, say, a large
video) which can then be labeled to create a training
dataset. The role of diversity is clearly evident here
since videos tend to have a lot of redundancy in them.

4. Application 4: Diversified Active Learning: Lastly, we
use our submodular data subset selection for diversi-
fied active learning, wherein we combine active learn-
ing (for example, uncertainty sampling) with diversi-
fied selection.

We provide insights into the choice of two different sum-
marization models for subset selection. The models have
very diverse characteristics, and we try to argue scenarios
where we might want to use one over the other. We em-
pirically demonstrate the utility of our framework and all
the applications above across the board for several complex
computer vision tasks including Gender Recognition, Ob-
ject Recognition, Object Detection, Face Recognition and
Scene Recognition. We show how using the right submod-
ular models can provide as much as 5 - 10% improvements
over existing baselines in each of these four applications.
We also point out here that the techniques proposed here
are orthogonal to related work on transfer Learning, Zero
shot learning and self supervised learning. As an example,
one of the flavors we consider for diversified active learn-
ing, is where we don’t train an end-to-end CNN but use
transfer learning for training the models. It will be interest-
ing to study how this work can be extended to other flavors
including zero shot learning, semi-supervised learning etc.

2. Data Subset Selection and Active Learning
2.1. Data Subset Selection

GivenasetV = {1,2,3,--- ,n} of items which we also
call the Ground Set, define a utility function (set function)

f: 2V — R, which measures how good a subset X C V
is. The goal is then to have a subset X which maximizes f
with a constraint that the size of the set is less than or equal
to k. It is easy to see that maximizing a generic set function
becomes computationally infeasible as V' grows.

Problem 1: max{f(X) such that | X| < k} (1)

A special class of set functions, called submodular func-
tions [35], however, makes this optimization easy. Sub-
modular functions exhibit a property that intuitively for-
malizes the idea of “diminishing returns”. That is, adding
some instance x to the set A provides more gain in terms of
the target function than adding x to a larger set A’, where
A C A’. Informally, since A’ is a superset of A and al-
ready contains more information, adding x will not help as
much. Using a greedy algorithm to optimize a submodular
function (for selecting a subset) gives a lower-bound per-
formance guarantee of a factor of 1 — 1/e of optimal [35]
to Problem 1, and in practice these greedy solutions are of-
ten within a factor of 0.98 of the optimal [24]. This makes
it advantageous to formulate (or approximate) the objective
function for data selection as a submodular function.

Several diversity and coverage functions are submod-
ular, since they satisfy this diminishing returns property.
The ground-set V' and the items {1,2,--- ,n} depend on
the choice of the task at hand. Submodular functions have
been used for several summarization tasks including Image
summarization [61], video summarization [19], document
summarization [31], training data summarization and active
learning [65] etc.

Building on these lines, in this work we demonstrate the
utility of subset selection in allowing us to train machine
learning models using a subset of training data without sig-
nificant loss in accuracy. In particular, we focus on Facility-
Location function, which models the notion of representa-
tiveness and the Dispersion function, which models the no-
tion of diversity.

Representation:  Representation based functions attempt
to directly model representation, in that they try to find
a representative subset of items, akin to centroids and
medoids in clustering. The Facility-Location function [34]
is closely related to k-medoid clustering. Denote s;; as
the similarity between images ¢ and j. We can then define
f(X) =>_,cy max;ex s;;. For each image 7, we compute
the representative from X which is closest to ¢ and add the
similarities for all images. Note that this function, requires
computing a O(n?) similarity function. However, as shown
in [64], we can approximate this with a nearest neighbor
graph, which will require much less storage, and also can
run much faster for large ground set sizes.

Diversity Models:  Diversity based functions attempt to
obtain a diverse set of keypoints. The goal is to have min-
imum similarity across elements in the chosen subset by
maximizing minimum pairwise distance between elements.
There is a subtle difference between the notion of diver-
sity and the notion of representativeness. While diversity



only looks at the elements in the chosen subset, represen-
tativeness also worries about their similarity with the re-
maining elements in the superset. Denote d;; as a distance
measure between images ¢ and j. Define a set function
f(X) = min, jex d;;. This function, called Dispersion
function is not submodular, but can be still be efficiently
optimized via a greedy algorithm [5]. A common choice of
diversity models used in literature are determinantal point
processes [26], defined as p(X) = Det(Sx) where S is
a similarity kernel matrix, and Sx denotes the rows and
columns instantiated with elements in X. It turns out that
f(X) = logp(X) is submodular, and hence can be effi-
ciently optimized via the Greedy algorithm. However, un-
like the Dispersion functions, this requires computing the
determinant and is O(n®) where n is the size of the ground
set. This function is not computationally feasible for large
scale and hence we do not consider it in our experiments.
It is easy to see that maximizing the Dispersion function
involves obtaining a subset with maximal minimum pair-
wise distance, thereby ensuring a diverse subset of snippets
or key-frames. The Dispersion function is called Disparity-
Min function (we shall use both inter-changeably in this pa-
per).

Optimization Algorithms: For cardinality constrained
maximization (Problem 1), a simple greedy algorithm pro-
vides a near optimal solution. Starting with X% = (), we
sequentially update X' = X* U argmax;cy x f(j]X"),
where f(j|X) = f(X Uj) — f(X) is the gain of adding
element j to set X. We run this till ¢ = k and | X*| = &,
where k is the budget constraint. It is easy to see that the
complexity of the greedy algorithm is O(nkT) where T
is the complexity of evaluating the gain f(j|X). This sim-
ple greedy algorithm can be significantly optimized via a
lazy greedy algorithm [33]. The idea is that instead of re-
computing f(j|X*),Vj ¢', we maintain a priority queue
of sorted gains p(j),Vj € V. Initially p(j) is set to
f(j),Vj € V. The algorithm selects an element j ¢ X¢,
if p(j) > f(j]X?), we add j to X* (thanks to submodular-
ity). If p(5) < f(j]X?), we update p(5) to f(j]X?) and re-
sort the priority queue. The complexity of this algorithm is
roughly O(kngT}), where np, is the average number of re-
sorts in each iteration. Note that np < n, while in practice,
it is a constant thus offering almost a factor n speedup com-
pared to the simple greedy algorithm. One of the parameters
in the lazy greedy algorithms is 7'y, which involves evaluat-
ing f(X Uj) — f(X). One option is to do a naive imple-
mentation of computing f(X U j) and then f(X) and take
the difference. However, due to the greedy nature of algo-
rithms, we can use memoization and maintain a precompute
statistics py(X) at a set X, using which the gain can be eval-
uated much more efficiently. At every iteration, we evaluate
f(7]1X) using py(X), which we call f(j|X,pys). We then
update p(X U 7) after adding element j to X. Table 1 pro-
vides the precompute statistics, as well as the computational
gain for the Facility Location and Dispersion Functions. In
particular, it is easy to see that evaluating f(j|X) naively
is much more expensive than evaluating f(j|X,px). The
following theorem provides the approximation guarantees

for the greedy algorithm for the Facility Location and the
Dispersion Functions:

Theorem 1 [35, 5] The greedy algorithm is guaranteed to
obtain an approximation guarantee of 1 — 1/e for Problem
1 when f is the Facility Location function. Similarly, the
greedy algorithm achieves an approximation factor of 1/2
when f is the Dispersion function. When f is a linear com-
bination of the Facility Location and Dispersion functions,
we obtain an approximation factor of 1 /4.

2.2. Techniques for active learning

Active learning can be implemented in three flavors
[48]. The first is Batch active learning - there is one round of
data selection and the data points are chosen to be labeled
without any knowledge of the resulting labels that will be
returned. The second is Adaptive active learning - there
are many rounds of data selection, each of which selects
one data point whose label may be used to select the data
point at future rounds. The third flavor is Mini-batch adap-
tive active learning - a hybrid scheme where in each round a
mini-batch of data points are selected to be labeled, and that
may inform the determination of future mini-batches. In
our work, we shall focus on the mini-batch active learning
scheme. As far as the query framework in active learning
is concerned, the simplest and most commonly used query
framework is uncertainty sampling [30] wherein an active
learner queries the instances about which it is least certain
how to label. Getting a label of such an instance from the or-
acle would be the most informative for the model. Another,
more theoretically-motivated query selection framework is
the query-by-committee (QBC) algorithm [51]. In this ap-
proach, a committee of models is maintained which are all
trained on the current labeled set but represent competing
hypothesis. Each committee member is then allowed to
vote on the labeling of query candidates. The most informa-
tive query is considered to be the instance about which they
most disagree. There are other frameworks like Expected
Model Change [50], Expected Error Reduction [45], Vari-
ance Reduction [4] and Density-Weighted methods [49].
In this paper, we shall use uncertainty sampling as the ac-
tive learning algorithm.

There are three common ways to compute uncertainty
for each unlabeled data instance.

u=1—maxp, 2)

7
u=1— (maxp; — max i 3
( % bi j€{C}—arg max; p; pj) ( )
u=—=>p;*log,(pi) “)
where © = uncertainty, p; = probability of class ¢ and

{C} = set of classes
. The goal of uncertainty sampling is to pick a batch of
unlabeled data instances with maximum uncertainty.

3. Applications of our Framework

In this section, we describe the applications of our Data
Subset Selection Framework from Section 2.1. We empiri-
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Table 1. List of the precompute statistics py(X ), gain evaluated using the precomputed statistics p¢(X) and finally C, as the cost of
evaluation the function without memoization and C), as the cost with memoization for Facility Location and Dispersion Functions. It is
easy to see that memoization saves an order of magnitude in computation.
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Figure 1. Blue (Facility Location), Red (Disparity Min) and where-ever applicable, Orange (Random). The top two figures show the results
for application 1 (KNN Classification) on the Face and Gender Datasets. The Bottom left plot shows the results for application 2 (hyper-
parameter tuning) for 5% of the subset for various sets of hyper-parameters (ImageNet) and finally the Bottom right plot shows the results

for application 3 on the Video dataset (Video Surveillance Object).

cally establish the utility of this framework on four different
data selection and active learning applications

3.1. Supervised DSS for Quick Training/Inference

As a first application, we evaluate the efficiency of our
subset selection methods to enable learning from lesser
data, yet incurring minimal loss in performance. Towards
this, we apply Facility-Location and Dispersion model
based subset selection techniques for training a nearest
neighbor classifier (kNN). For a given dataset we run sev-
eral experiments to evaluate the accuracy of kNN, each time
trained on a different sized subset of training data. We take
subsets of sizes from 5% to 100% of full training data, with
a step size of 5%. For each experiment we report the accu-
racy of kNN over the hold-out data. We also compare these
results against kNN trained on randomly selected subsets.
Concretely, denote f as the measure of information as to
how well a subset X of training data performs as a proxy

to the entire dataset. We then model this as an instance of
Problem 1 with f being the Facility-Location and Disper-
sion Functions. Since this is a supervised data subset se-
lection problem, we can also use the label information. We
partition the ground set V" as {Vq,---,V;} and & = |C|.
Given a submodular function f, define the label-aware ver-
sion of f as,

k

fUX) = (XN )

=1
3.2. Supervised DSS for Hyper-Parameter Tuning

Another application of our Data subset selection frame-
work is to select a representative and diverse subset for
quick hyper-parameter training. Note that this is an ap-
plication of supervised data selection, since we know the
labels here. We use the Facility Location and Min Disper-
sion functions to get a subset of the data, and use this subset
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are using transfer learning.

for tuning typer-parameters. Note that the subset is typi-
cally 5 - 10% of the entire data, and hence it is much eas-
ier to tune the hyper-parameters on this subset. Once the
hyper-parameters are tuned, we train the model on the en-
tire data using the tuned hyper-parameters. We expect our
summarization models to perform better compared to sim-
ple random sampling, and thereby be more representative
for hyper-parameter tuning.

3.3. Data Subset Selection on Massive Datasets for
Labeling

As another application, we consider the problem of la-
beling massive datasets, specifically when the data comes
from videos. As an example, consider the applications dis-
cussed in [8], where they observe that model customization
can substantially improve performance for image classifi-
cation and object detection tasks. Moreover, often the data
here comes from videos where naturally there is a lot of re-
dundancy. Unlike the supervised data subset selection dis-
cussed above, the data here is unlabeled, so we need to ap-
ply unsupervised data subset selection here. We introduce
a surveillance dataset comprising of around 20 videos from
various scenarios (indoor, coartyards, outdoor scenario like
roads, traffic etc.) with frames sampled at 1 FPS.

3.4. Diversified Active Learning

Finally, we study the efficiency of our subset selection
methods in the context of mini-batch adaptive active learn-
ing to demonstrate savings on labeling effort. We propose a
Submodular Active Learning algorithm. The idea is to use
uncertainty sampling as a filtering step to remove less infor-
mative training instances. After filtering, we obtain a subset
F'. Denote 3 as the size of the filtered set F'. We then select
a subset X by solving Problem 1.

max{ f(X) suchthat | X| < B, X C F} (6)

where B is the number of instances selected by the batch
active learning algorithm at every iteration. In our exper-
iments, we use f as Facility-Location and Disparity-Min
functions. For a rigorous analysis and a fair evaluation, we
implement this both in the context of transfer learning - as
well as fine tuning. For transfer learning, we extract the
features from a pre-trained CNN relevant to the computer
vision task at hand and train a Logistic Regression classifier
using those features.

The basic diversified active learning algorithm is as men-
tioned in the Algorithm 1



Algorithm 1 Goal-2: Submodular Active Learning

1: Start with a small initial seed labeled data, say L

2: for eachround 1 to 7' do

3:  Fine tune a pre-trained CNN (Goal-2a) or train a
Logistic Regression classifier (Goal-2b) with the la-
beled set L

4:  Report the accuracy of this model over the hold-out
data.

5. Using this model, compute uncertainties of remain-
ing unlabeled data points U, and select a subset
F, F C U of the most uncertain data points.

6: Solve Problem 2 with Facility-Location and
Disparity-Min Functions

7:  Label the selected subset and add to labeled set L

8: end for

The parameters B and 5 of FASS: B represents the per-
centge of images that are to be labeled at the end of each
round and added to the training set. [ specifies what per-
centage of data (sorted in decreasing order of their hypoth-
esized uncertainties by the current model) forms the ground
set (for subset selection) in every round.

While selecting % most uncertain samples at each
round, any other data point having the exact same uncer-
tainty as the last element of this set is also added to the
uncertainty ground set.

4. Experiments and Datasets

In Table 2 we present the details of different datasets
used by us in above experiments along with the train-
validate split for each. Out of the 8 datasets used, 5 datasets
are publicly available datasets and 3 of the datasets are our
custom datasets (FaceData, GenderData and Video Surveil-
lance Object).

For application 1, we evaluate kNN with k=5, and in
application 2, we perform hyper-parameter tuning on Im-
ageNet with a subset of 5% of the data. With application
3, we use our custom video dataset consisting of 76300 Im-
ages for Object detection with the following classes: Per-
son, Car, Bus, motorbike, Bicycle and Three-wheeler. Our
dataset comprises of videos from roads (outdoor), coart-
yard (outdoor), office (indoor). Finally, For application 4
experiments, the number of rounds was experimentally ob-
tained for each experiment as the percentage of data that is
required for the model to reach saturation. The values of B
and 3 were empirically arrived at and are mentioned in Ta-
ble 3 along with the details about the particular Computer
Vision task and dataset used for each set of experiments.

In Table3, the “Model” column refers to the pre-trained
CNN used to extract features and/or for finetuning. For
example, “GoogleNet/ImageNet” refers to the GoogleNet
model pre-trained on ImageNet data. In the “Parameters”
column, B and g refer to the parameters in FASS and are
mentioned in percentages. We use Caffe deep learning
framework [23] for all our Image classification experiments
and DarkNet [42] for Object Detection.

5. Results

We present the resules for application 1 in the top two
plots in Figure 1. As hypothesized, using only a portion
of training data (about 40% in our case) we get similar ac-
curacy as with using 100% of the data. Moreover, Facility
Location performs much better than random sampling and
Disparity Min, proving that Facility Location function is a
good proxy for nearest neighbor classifier. Moreover, we
see this phenomenon on both Gender Recognition and Face
Recognition tasks. Also note that this aligns with the theo-
retical results shown in [65].

For application 2, we consider the ImageNet [46].
We choose a subset of 5% of the dataset through su-
pervised data subset selection obtained via random
sampling, Disparity Min and Facility Location. = We
use SGD with Momentum as the learning algorithm
and tune the learning rate and momentum parame-
ters. In particular, we select five sets of parameters
for the learning rate « and momentum p as: (a,p) =
(0.01,0.9), (0.02,0.8), (0.015, 0.85), (0.005,0.95),  and
(0.001,0.99). Figure 1 bottom left shows the results of
the 5% subsets obtained via Disparity-Min and Facility
Location relative to Random. We notice that the Facility
Location function generally has a positive gain compared
to random, and except for one of the hyper-parameters
disparity-min also beats random. We next select the
hyper-parameters for random, disparity min and Facility
Location which obtain the best accuracy on the validation
set (which was Set 1, Set 5 and Set 4 respectively). Using
this hyper-parameters, we train imagenet using the com-
plete dataset. We observe that the hyper-parameters chosen
by FL obtain the best result (around 10.5% improvement in
Top-5 accuracy compared to the hyper-parameters chosen
by the random subset). The hyper-parameters chosen by
Disparity-Min achieve around 52.5% top-5 accuracy, while
the ones with Facility Location achieve close to 59.5%. In
comparison the random hyper-parameters achieve a top-5
accuracy of 42%. All these results are using the GoogleNet
architechture.

In the case of application 3, we perform unsupervised
data subset selection. The task here is to obtain a subset
of images from a larger dataset where the frames are taken
from videos for labeling. We consider the problem of Ob-
ject Detection using YOLOv2 [42]. We achieve subsets of
various sizes using unsupervised video summarization and
compare the results to random. The results are shown in
Bottom right in Figure 1. We see that Disparity Min has
the best results followed closely by Facility Location. Both
these methods achieve almost a 5% improvement compared
to random subset in mAP. This is expected since Dispar-
ity Min tends to pick a diverse set of images for training,
thereby ensuring a good mix between the classes for train-
ing, as compared to random which is not aware of the re-
dundancy in the images. The fact that Disparity-Min mod-
els diversity also suggests that diversity is more important
here compared to representation.

Finally, we compare the different models for applica-
tion 4. First, we notice that almost always, the subset se-
lection techniques and uncertainty sampling always outper-



Name NumClasses NumTrain NumTrainPerClass NumHoldOut NumHoldOutPerClass
Adience [10, 11] 2 1614 790(F), 824(M) 307 395(F), 412(M)
Caltech-101 [27, 14] 101 7900 40-56 1246 8-15
MIT-67 [40, 41] 67 10438 68-490 5159 32-244
CatsVsDogs [13, 12] 2 16668 8334 8332 4166
ImageNet [46] 1000 1.2M 1000 50000 50
Video Surveillance Object 8 76300 5000 - 12000 10,211 500 - 3000
GenderData 2 2200 1087(F), 1113(M) 548 249(F), 299(M)
FaceData 255 2345 7-8 552 2-4
Table 2. Details of datasets used in our experiments
Task Dataset Model Parameters
Gender Recognition Adience  VGGFace/CelebFaces [39] B = 0.9%,8 = 10%
Object Recognition ~ Cats vs Dogs ~ GoogleNet/ImageNet [58] B =1%,5 =10%
Gender Recognition FaceData  VGGFace/CelebFaces [39] B = 0.5%, 8 = 10%
Scene Recognition MIT-67  GoogleNet/Places205 [18] B =2%,8=10%
Object Recognition Caltech-101 ~ VGGFace/CelebFaces [39] B =1%,5 =10%
Object Recognition ImageNet  GoogleNet/ImageNet [58] B=1%,8=10%

Table 3. Experimental setup for application 4

form random sampling. Moreover, different subset selec-
tion techniques work well for different problem contexts,
with the intuition behind these results described below.

We present the results for application 4 in Figure 2. Re-
call that Disparity-Min selects most diverse elements, while
Facility Location picks the representative items. Figure 2
(top row) demonstrates the results on Adience and Cats
vs Dogs datasets. We notice that Diversity works better
than representation in both these cases, particularly when
the size of the dataset is small. This is because both these
problems are two class classification, and there is a lot of
similarity in the dataset (for example, there is more than
one image for the same person, or similar looking cats or
dogs). Therefore it is not surprising that Diversity works
really well in these settings. Next we compare the results
on Object recognition, face recognition and scene recogni-
tion datasets (Middle and Bottom rows of Figure 2): Im-
ageNet, Caltech-101, MIT 67 and Face dataset. In these
datasets, we have several classes and there is not a lot of
redunduncy. Disparity Min tends to pick the outlier images
which often does not make sense here. In this case, we see
that the representation model (Facility Location) works the
best. In each case, we see that subset selection algorithms
on top of Uncertainty Sampling outperform vanilla Uncer-
tainty Sampling and Random Selection. Moreover, the ef-
fect of diversity and representation reduce as the number of
unlabeled instances reduce in which case Uncertainty sam-
pling already works well. In practice, that would be the
point where the accuracy saturates as well.

6. Conclusions and Lessons Learnt

This paper demonstrates the utility of subset selection
in training models for a variety of standard Computer Vi-
sion tasks. Subset selection functions like Facility-Location
and Disparity-Min naturally capture the notion of represen-
tativeness and diversity which thus help to eliminate re-

dundancies in data. We show the practical utility of this
data subset selection in four applications. The goal of the
first application is to use data subset selection for reduc-
ing training and inference time. We demonstrate this for
KNN classification and show that Facility Location (repre-
sentation models) perform the best with considerable im-
provement over a random sampling. Next, we look at an
application of hyper-parameter tuning for Image classifi-
cation. We demonstrate this on ImageNet and show that
the subset achieved by Facility Location is represents the
entire dataset in a better way compared to a random sub-
set. We also show that the best hyper-parameters on tunings
performed over the representative subset achieves a better
accuracy compared to the random subset. We also see, as
expected, that the models trained on the Facility Location
subset consistently outperform the models trained on ran-
dom subsets. We then study an application of video data
summarization for object detection. We see here that the
diversity measure makes more sense since there is naturally
a lot of redundancy in video datasets. We see consistently
that the models trained on diverse subset beats the random
subset by almost 5% in mAP. Finally, we demonstrate the
benefit of data summarization with uncertainty sampling.
We see that Disparity works best when there is the need for
diverse selection (when the dataset tends to have a higher
amount of redundancy) while the Facility Location model
works best otherwise. In either case, we see that both these
models consistently outperform uncertainty sampling alone,
which itself performs generally better than random.
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