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Abstract

Human-Object Interaction detection from a video clip
can be considered as a special case of video-based Visual-
Relationship Detection wherein the subject must be a hu-
man. Specifically, it involves detecting the humans and
objects in the clip as well as the interactions between
them. Conventionally, the problem has been formulated as a
space-time graph inference problem over the video clip fea-
tures. In this work, we explore alternate spatial approaches
for detecting Human-Object Interactions. We consider a
hierarchical setup that decouples spatial and temporal as-
pects of the problem and analyse the impacts of a variety
of design choices for the spatial networks. Particularly,
to capture spatial relationships in the scene, we analyze
the effectiveness of the traditionally used Graph Convolu-
tional Networks against Convolutional Networks and Cap-
sule Networks. Unlike current approaches, we avoid using
ground truth data like depth maps or 3D human pose dur-
ing inference, thus increasing generalization across non-
RGBD datasets as well. We demonstrate a comprehensive
analysis of the exploration, both quantitatively and quali-
tatively, while achieving state-of-the-art results in human-
object interaction detection (88.9% and 92.6%) and antic-
ipation tasks of CAD-120 and competitive results on im-
age based HOI detection in V-COCO dataset, setting a new
benchmark for visual features based approaches.

1. Introduction

Visually understanding a scene as depicted in an image
or video is one of the fundamental problems of Computer
Vision. It builds on top of existing sub-problems like ob-
ject detection, activity recognition, saliency estimation, etc.
Humans are, arguably, one of the most important entities to
understand. As such, understanding human activities and
the way humans interact with the surrounding environment
becomes a crucial and interesting problem to solve. In this
work, we investigate this problem of identifying Human-
Object Interactions from videos. Given a video stream, the

goal is to identify the objects interacting with the humans
while also estimating the kind of interaction, eg., holding
the cup, placing the bowl, moving the furniture, etc. The
availability of such information can be crucial in higher or-
der tasks, such as human-motion prediction, scene genera-
tion, etc. Furthermore, such information has the potential
to facilitate downstream applications such as unmanned su-
permarkets, surgery documentation, robotics, etc.

In this work, we investigate the possible solutions to
the HOI-from-video problems, with special focus on spa-
tial model design - the relative ordering of the subjects and
objects in the scene and its effects on interaction detec-
tion. There have been a significant number of works that
model the spatial relationships in the form of Graphs. The
subjects, object and relationships, typically act as nodes
while the edges correspond to the potentials indicating the
strengths of associations. The graphs may be processed us-
ing message-passing alorithms [21] or Graph Convolutional
Networks [47, 38] (GCNs). As an alternative, CNNs have
also been used for spatial models in prior works [52] with
the model being fed the object/human regions as inputs.

Recently, Capsule Networks [11, 43, 42], with multiple
variations, have been proposed as models capable of inher-
ently being able to reason about the spatial information in
the scene. Furthermore, past works have demonstrated their
ability to learn the part-to-whole relationships in the scene
without having to memorize the same from thousands of
data points. We hypothesize that this ability makes Cap-
sule Networks a potentially suitable spatial network to cap-
ture the relationships between the objects and humans in the
video effectively.

There has been a significant amount of research on HOI
with images [56, 38, 26, 52, 18], thanks to the availability
of V-COCO [13] and HICO [2] datasets. However, learning
human-object interactions within videos is challenging and
relatively less explored owing to multiple reasons. Firstly, it
requires the model to account for the changing orientations
of objects in the scene with respect to the humans. This
makes it difficult to extend the image-based approaches that
use the RoI features of the union of human and object to
the video setting. Secondly, the unavailability of large scale



Figure 1. Illustration of human-object interaction detection in video (CAD-120) setting

video datasets (except CAD-120 [20]) makes it difficult to
train an HOI model that is generic, and performs well for
in-the-wild videos. Finally, the interaction definitions tend
to become confusing when defined for a video, e.g., placing
vs. moving vs. reaching, opening a jar vs. closing a jar,
etc. In spite of these challenges, videos allow for exploiting
temporal visual cues that are, otherwise, absent in images.

Most existing methods are designed to work in either
the image setting [56, 26, 52], or the video setting [21, 16]
but not both. Recently, Qi et. al. [38] proposed a graph-
parsing based method that caters to both the settings. While
the method indeed achieves state-of-the art results in video
setting, it does so by using carefully designed and pre-
computed hand-crafted features such as SIFT [36] trans-
forms, object centroids, 3D poses, object depths, etc., which
were originally proposed in [20]. It is worth noting that
these features were derived from the ground-truth data pro-
vided in the CAD-120 dataset. Thus, it is expected that us-
ing ground-truth based features for estimating HOI would
not allow the method to perform equally well on in-the-wild
videos because such features may either not be available
(3D pose) or may be noisy and inconsistent across frames
(object bounding boxes, centroids, etc.).

With these caveats in mind, we work on a hybrid ap-
proach that argues about the spatio-temporal relationships
between the humans and the objects at multiple levels of hi-
erarchy. The method is designed to infer from videos and
does not rely on hand-crafted features. We use pure visual
features derived from a re-trainable off-the-shelf network to
represent the inputs to the network and demonstrate strong
performance on the CAD-120 dataset. Specifically, we use
a two-level architecture which, i) performs spatial embed-
ding extraction from the video and learns temporal reason-
ing functions at the frame level, followed by ii) a segment
level temporal network which learns inter-segment tempo-
ral cues from previous segments, for regressing the human
subactivities and object affordances. This choice of using
de-coupled networks for spatial and temporal modeling al-
lows us to experiment with two spatial models: Capsule
Networks and Graph Convolutional Networks. Both the
networks have the potential to argue about complex spatial
relationships, when provided with suitable inputs. The tem-

poral functions rely on sequence models such as RNNs and
LSTMs which are designed to learn the temporal relation-
ships between human-object pairs across the video.

Despite not using the ground truth based pre-computed
features and in spite of the small amount of data avail-
able for training from videos, our visual input based model
achieves state-of-the-art performance on subactivity, affor-
dance detection tasks, setting a strong baseline for the future
of such methods. When used with the segment level pre-
computed features, the segment-level temporal model of
our proposal performs at par with the state-of-the-art meth-
ods. Finally, despite being designed for video-based tasks,
our method also demonstrates competitive performance on
the V-COCO dataset that corresponds to the image setting.
In the supplementary material, we qualitatively illustrate
the improved performance of our trained models, vis-a-vis
state-of-the-art spatio-temporal model [38] on several ‘in-
the-wild’ videos and images. As anticipated, use of ground-
truth based features does not help [38] generalize to settings
that are significantly different from the training data.

In summary, we make three contributions in this paper:
First, we propose a generalizable, multi-level method for
identifying Human-Object Interactions from videos. Sec-
ond, We analyze multiple architectures for modeling the
spatial relationships between the objects and the humans in
the scene. Third, we show how our method naturally lends
itself to static, image-based settings.

2. Related Work

A key element of scene understanding is human per-
ception and human cognition. Human perception involves
inferring the physical attributes about the humans such
as in the case of detection [7, 60, 54, 41], pose recogni-
tion [33, 6, 30, 12, 51, 5], shape identification [17, 34],
clothing recognition [35, 25], etc.. On the other hand,
human cognition seeks to reason about the finer details
relating to human behaviour [40, 31], human activ-
ity [8, 58, 29, 32, 59], human-object visual relationship
detection [45, 39, 48, 28, 50, 44], and human-object inter-
actions [49, 38, 52, 45, 39, 48, 28, 50, 44]. Human-Object
Interaction detection has been a well researched problem.



In this section, we discuss the existing literature from two
broad viewpoints: static (images) and dynamic (videos).

HOI from images: A significant amount of
work [58, 15, 57, 8] in this area pre-dates the deep
learning advent. However, deep learning based meth-
ods [46, 1, 61, 3, 14, 53, 10, 37], bolstered by the
availability of large amounts of in-the-wild training
data [13, 2] have lead to significantly improved per-
formance in HOI detection. Among such methods, Li
et. al. [26] proposed to learn the knowledge about the
interactiveness between the humans and object categories
from HOI datasets and use this knowledge as a prior while
performing HOI detection. Several methods have attempted
to leverage the human pose information in their pipelines.
Wan et. al. [52] propose a pose-aware network architecture
that employs a multi-level feature strategy. Likewise, Xu
et. al. [55] use the human pose features in conjunction
with the gaze estimates to discover human intentions,
which are then used for HOI detection. Since the HOI
problem is well-suited for graph-based representations,
Graph Convolutional Networks have been regularly used to
model the interactions. In this line of work, Xu et. al. [56]
propose to deal with long-tail HOI categories by modeling
underlying regularities among verbs and objects. They
do so by constructing a knowledge graph and enforcing
similarity of graph embeddings derived from a GCN with
visual feature embeddings derived from a CNN using a
triplet-loss. Qi et. al. [38] propose GPNN, a method
that uses an iterative message passing framework on a
parse graph comprising of verbs and objects as nodes.
Our work is inspired by graph based methods in that we
represent humans and objects as graph nodes and learn
their interactions based on the image-based node features.

HOI from Video: The HOI labels predicted in this task
are typically indicative of an activity spanning over a period
of time. Therefore, utilizing temporal cues in a video
setting is naturally expected to provide important insights
on the interactions and thereby benefit the HOI detection.
Albeit less, there have also been significant contributions
towards research on HOI detection in videos, mostly on the
CAD-120 dataset. Koppula et. al. [20] proposed the dataset
and introduced an MRF base formulation for handling
spatio-temporal requirements. The authors hand-crafted a
set of features for humans (pose, displacement of joints,
etc.) and objects (3D centroids, transforms of SIFT matches
between adjacent frames, etc). Instead of being used at
the frame-level, these features, put together, represented
a video segment as a whole. Since then, most existing
methods (deep learning and traditional methods alike) work
on the same segment level features. Qi et. al. [38] extend
their GPNN method for videos and construct a parse graph
for every video segment using the segment level features to

initialize the node and edge features in their parse graph.
Likewise, Jain et. al. [16] design a spatio-temporal graph
for performing structured predictions on a video consisting
of multiple segments. Kopulla et. al. [21] present ATCRF -
a CRF based approach that models anticipatory trajectories
of objects and humans.

While there have been remarkable improvements over
the years, we submit that there are two major areas for
improvement. Firstly, avoiding the usage of such hand-
crafted features, since the above approaches limit the scope
for in-the-wild HOI detections. More often than not, the
3D poses or 3D centroids of objects (used as features) are
either not available or are too erroneously estimated to
be simply plugged into a model trained on hand-crafted
features. Secondly, all the existing methods model temporal
relations only between multiple segments of a video. This
may be, partly, because the hand-crafted features discussed
above are defined for a segment as a whole. We believe that
there is scope for exploring temporal cues even at a more
fine-grained level, viz., frame-level. Using image-based
features facilitates the same.

We, therefore, propose an approach to model HOI rele-
vant spatial-structures from every frame of a segment and
further design a temporal aggregation regime using these
frame level structures. Again, such aggregation strategies
have proved to be extremely effective for problems such as
image labelling [23], entity-linking [24, 22] and text clas-
sification [4]. Deep-learning based computer vision mod-
els have enough representation power to be able to extract
meaningful visual features from images or videos. Thus,
our primary intent is to construct a model which can effec-
tively learn hierarchical HOI embeddings at a fine-grained
frame level as well as at a coarser segment level, using only
visual attributes, and set a new baseline for human-object
interaction detection in videos.

3. Our Approach

In this section, we present our approach for HOI detec-
tion on video. The HOI information in the videos is dealt
with at two levels of granularity. The first, and the coarser,
granularity corresponds to viewing the video as a sequence
of segments, with each segment representing an atomic in-
teraction. For example, a video may include a sequence
of segments such as: reaching for a jar, opening the jar,
and placing the jar back. The second, and finer, granularity
corresponds to dissecting each segment into its constituent
frames. Lastly, the visual features at the frame level provide
crucial spatial cues about the possible interactions. Our ar-
chitecture leverages these constructs and is outlined in Fig-
ure 2.



Figure 2. Overall pipeline of our network. Given an input video segment with T frames and bounding box coordinates of the humans
and objects in every frame, we (a) first extract the visual features from ResNet-50. (b) These features are then processed in a per-frame
fashion by a Spatial Subnet. (c) The graph structure is disentangled and temporal cues between frames in a segment are learnt from spatial
features. (d) The frame-wise features are summarised into segment embeddings using attention mechanism and refined using inter-segment
relations, to regress the human subactivities and object affordances. Best viewed in colour and/or digitally with zoom.

3.1. The Proposed Learning Framework

Given an input video I = {I1, I2, . . . , IT } consisting
of T frames such that the video includes a single human
and N objects, our task is to regress human subactivities
(placing, opening, etc.), H = {H0, H1, . . . ,HM} for the
human and object affordances (placable, openable etc.),
O = {O0,0, O0,1, . . . , ON,M} for each of the N objects
and M segments in the video. To this end, we propose a
pipeline consisting of three stages: (i) the spatial subnet, (ii)
the frame-level temporal subnet, and (iii) the segment-level
temporal subnet.

The spatial subnet feeds on an input frame It and learns
a set of embeddings φt ∈ RDemb for each human and
θn,t ∈ RDemb for each object. These per-frame, spatial
embeddings are then fed to the frame-level temporal subnet
that churns out the corresponding spatio-temporal embed-
dings, Φt ∈ RDemb and Θn,t ∈ RDemb , while also provid-
ing initial estimates ofHm andOn,m, wherem corresponds
to the segment index, and n corresponds to the object index.
The frame-level spatio-temporal embeddings are then con-
solidated for each segment using an attention mechanism

to produce AΦ
m and AΘ

n,m, and passed on to segment-level
temporal subnet that produces the final outputs for the sub-
activity and affordance estimates.

Traditionally, previous works have derived spatial fea-
tures not from the raw images, but from the ground-truth
data like depth of the objects, pose of the human and ob-
jects, etc. It is easy to see that such a construction prohibits
its use on any video for which depth information is unavail-
able. In this work, we do not use the depth-based features
and only rely on RGB inputs. Next, we now elaborate on
each step of the pipeline.

3.2. Spatial Subnet

As just discussed, the sole job of the spatial subnet is to
learn features relevant to the spatial ordering of the objects
and the human. Formally, the Spatial Subnet, S transforms
the features corresponding to the tth frame as φt = S(xv,t)
if v is a human node and θt = S(xv,t) if v corresponds to an
object node. At the end of the Spatial Subnet, the network
produces an intermediate feature set in RT×(N+1)×Demb

space. To this end, we investigate three variants of the spa-
tial subnet based on their ability to effectively model the
spatial relationships.



Figure 3. Architecture of Capsule Spatial Subnet. The object and
human features, derived from primary and secondary capsules,
are concatenated with the features of the global hull Igh (yellow
bbox). The subnet outputs spatial embeddings which are then pro-
cessed by the temporal subnet.

Capsule Network: Capsule Networks [11, 43] have
been proposed as an alternative to conventional CNNs for
inherently reasoning about the spatial organization and ro-
tation invariance of the scenes without having to memorize
the same across a large dataset. This, arguably, fits in the
requirements of an ideal spatial subnet. To this end, we pro-
pose a variant which uses capsule networks for spatial sub-
net. The schema of the Capsule Spatial Subnet is described
in Fig. 3. For each object O (and human) in frame t, the
capsule net is subjected to two inputs: the object (or human)
bounding box RoI features Io,t, and features of the global
hull Igh,t. The global hull is the super-bounding-box that
includes the human and all the objects. This design choice
is motivated by the requirement that network must be pro-
vided with enough image context. We do the same for the
human node. The input features are extracted by passing the
corresponding image crops through a ResNet network upto
the third last layer.

The network consists of a primary capsule layer fol-
lowed by a secondary capsule layer. The first layer creates
capsules out of the visual features individually, before the
global hull features are appended. At this point, the global
hull features and features from human/object hulls are ap-
pended in the following way. The human node capsules
input for the final layer are concatenation of human RoI fea-
tures and global hull RoI features. The object node capsules
are concatenation of object RoI features, human RoI fea-
tures and features from human-object hull. We use a 1×1
conv layer to preprocess the ResNet features of dimension
1024×14×14 into embeddings of dimension 256×14×14.
These embeddings are individually converted into primary
capsules. Routing is done on these capsules to produce sec-
ondary capsules. The final layer of capsules are flattened
and passed through a linear layer to get the output of di-
mension 1024. We perform capsule routing using the Vari-
ational Bayes Routing algorithm [42].

ConvNets: A direct substitute of the proposed Capsule
Network architecture in Fig.3 is by drop-in replacement of
the capsule layers in the netwok by convolutional layers.
Specifically, we subject the incoming image features corre-

Figure 4. Architecture of GCN Spatial Subnet. Each block aug-
ments the adjacency matrix by a learnable correction, B, and a
data-dependent course-correction, C. A residual connection is
added to facilitate faster training of the model

sponding to objects, humans and the global hull to multi-
ple convolutional layers which are then fused together, fol-
lowed by more convolutional layers. The embedding size,
Demb, remains the same.

Graph Convolutional Network: The spatial subnet
can also be modeled by a Graph Convolutional Network
(GCN) which lends itself naturally to the task at hand.
We define the graph G = (V, E), where the nodes V =
{1, 2, . . . , N + 1} correspond to N objects and one human
and E = (p, q) ∈ V × V .

We extract the node features xv,t ∈ RDin corresponding
to the vth node (human/object) of the tth frame by feeding
the corresponding image crop Iv,t to an off-the-shelf feature
extractor F . Formally, xv,t = F (Iv,t). The edge weights
are initialized to be 1 for human-object edges and 0 for
the rest. The adjacency matrix is dynamically learnt while
training the Spatial Subnet. Unlike Capsule Networks, a
major challenge in GCN based formulation is to account
for variability in the number of nodes across segments in
a video. For example, a video may include the following
segments: picking a bowl (1 object), moving the bowl (1
object), putting the bowl in the microwave (2 objects). Typ-
ically, this number varies from two nodes to six nodes.

To alleviate this issue, the network is designed to learn
course-corrections to the adjacency matrix. As depicted in
Figure 4, every graph-convolution layer is followed by an
update of the adjacency matrix which involves addition of
the following two refinement components to the base ad-
jacency matrix A. The first is a learnable additive matrix,
B, that is learnt during the training process. The second is a
data-driven additive matrix, C, that is estimated uniquely for
every input. Note, that this formulation has overlaps with a
parallel proposal in [47]. However, unlike [47], we do not
operate in time dimension at the GCN level.

3.3. Frame-level Temporal Subnet

Once the per-frame spatial features for the graph are ex-
tracted, (in the case of video data such as CAD-120) we pro-
cess the graph features in time dimension, thus providing a
feature-panorama of the entire segment. As discussed ear-



lier, temporal reasoning occurs in two granularities - frame
level and segment level. It is at this stage that we dis-
integrate the graph structure of the network and construct
individual feature sets for each node, aggregated over time.
These frame-level embeddings are subjected to a bidirec-
tional Recurrent Neural Network (RNN) which produces
two outputs for every frame:

For human nodes, given the input embeddings φt ∈
RT×N×Demb , the frame-level bidirectional-RNN outputs
the estimates of human subactivity, Hm,t, and updates the
recurrent embedding, Φt ∈ RDemb for frame t in segment
m. Note, that while the learnt embeddings are further fed
into the segment-level subnet, we also use them to clas-
sify subactivities and affordances for each frame to facilitate
stronger supervision. For object nodes, we concatenate
human node features along with the object node features
and feed it to the frame-level RNN which outputs the esti-
mates of object affordances On,m,t and updates the corre-
sponding recurrent embeddings, Θn,t ∈ RDemb

The aggregated activity and affordance classification
scores at frame level are computed by taking a summation
of the sequential frame-wise scores output by the RNN. For-
mally, the frame-level subactivity prediction can be written
as: Hm = softmax(

∑
tHm,t)

Loss Functions: Both the classifiers are subjected to
standard Cross-Entropy losses Lh and Lo corresponding
to human subactivities and object affordances, respectively.
The overall loss is a weighted sum of the two losses and can
be written as:

L = Lh + λLo

3.4. Segment-level Temporal Subnet

The previous subnet learns intra-segment temporal rela-
tions, but does not utilize the temporal information from
the previous segments of the video, thus lacking wider con-
text. The segment-level subnet learns inter-segment tempo-
ral cues by leveraging the context from previous segments
of the video. We use another RNN to model these relations.

Attention Mechanism: The input to the segment-level
RNN is a sequence of embeddings, AΦ

m, corresponding to
each segment for human nodes. We extract AΦ

m by sub-
jecting the frame-level embeddings, Φm,t to an attention
network that produces a single embedding for a segment.
Formally, AΦ

m =
∑

t at ∗ Φm,t, where at are the attention
weights produced by a Multi-Layered Perceptron (MLP).
Similar construction follows for the derivation of AΘ

m.
The summarized sequence of segment embeddings is fi-

nally processed by an RNN, to leverage temporal depen-
dencies from the previous segments for predicting human
subactivity and object affordances for the current segment.

We use the same loss functions for classifiers at both
frame-level and segment-level.

Table 1. A comparison of our approach with the existing methods.
Note that unlike ours, all the methods that we compare with have
been trained using hand-crafted features

F1 Score in %
Method Sub-activity Affordance
ATCRF [21] 80.4 81.5
S-RNN [16] 83.2 88.7
S-RNN (multi-task) [16] 82.4 91.1
GPNN [38] 88.9 88.8
Ours with Capsule Net 88.8 84.2
Ours with GCN 88.9 92.6

3.5. Implementation Details

We now discuss implementation details from two van-
tage points: model and training.

Model: Since the number of frames in a video segment
may vary significantly, we uniformly sample a fixed num-
ber of frames, T, from the segment (for our experiments
on CAD-120 dataset, we use T=20). We extract the RoI
crops from each frame and reshape them to a fixed size of
224 × 224 × 3 (input dimension for ResNet). For our ex-
periments, we use a pre-trained ResNet-50 backbone, which
produces 2048 dimensional embeddings (for the GCN), and
14 × 14 × 1024 dimensional embeddings (for the Capsu-
leNet) for each node. In order to incorporate the informa-
tion on positioning of humans and objects, we append nor-
malized bounding box coordinates of human/objects to their
respective visual node features. In the frame-level temporal
subnet, we use a two-layered bidirectional RNN and three-
layered unidirectional RNN network in the segment-level
temporal subnet.

Training: We use the PyTorch deep learning framework
for implementation. During training, we set λ = 2 for the
overall loss. We use the Adam [19] optimizer with initial
learning rate of 2× 10−5, learning rate decay factor of 0.8,
and decay step size of 10 epochs. We train the network
for a total of 300 epochs on Nvidia RTX 2080Ti GPU. We
performed a hyper-parameter sweep to empirically obtain
these configurations. Capsule Pooling [9] is performed for
the CapsuleNet to be able to train it on a single GPU. The
entire model is trained in two steps. Firstly, the model up to
frame-level temporal subnet is trained by aggregating clas-
sification scores from the T frames of the segment. Finally,
the entire model is trained in an end-to-end fashion, after
initializing the parameters from the pre-trained frame-level
model.

4. Experiments

We evaluate our model for the task of Human-Object In-
teraction detection on two datasets, viz., i) CAD-120 [20]
,and ii) V-COCO [13].

CAD-120 The CAD-120 dataset is a video dataset with



120 RGB-D videos of 4 subjects performing 10 daily indoor
activities (e.g., making cereal, microwaving food). Each
activity is a sequence of video segments involving finer-
level activities. In each video segment, the human is an-
notated with an activity label from a set of 10 sub-activity
classes (e.g., reaching, pouring) and each object is anno-
tated with an affordance label from a set of 12 affordance
classes (e.g., pourable, movable). The frame-length of each
segment ranges from 22 to a little over 150 frames.

The metrics used for evaluating on the human-object in-
teraction tasks of CAD-120 dataset are: i) sub-activity F1-
score, and ii) object affordance F1-score computed for hu-
man sub-activity and object affordance classification.

V-COCO Crafted as a subset of the MS-COCO [27]
dataset, V-COCO is an image dataset that provides annota-
tions of Action labels for edges between human and object.
There are 26 action classes.

4.1. Evaluation on the CAD-120 dataset:

Figure 5. Confusion matrices for human-object interaction detec-
tion setting – (i), (ii) – and anticipation setting – (iii), (iv) – on
CAD120 dataset. It is worth noting that most of the confusion oc-
curs in visually similar categories, e.g. closing vs. reaching and
opening vs. moving

We evaluate the performance of our model at both frame-
level and segment-level, using both variants of spatial sub-
net. We tabulate the results of our approach in Table 1.
As the numbers suggest, we achieve state-of-the-art per-
formance with sub-activity detection F1 score of 88.9 and
affordance detection F1 score of 92.6 with GCN and 88.8
and 84.2 for subactivity and affordance detection tasks with
Capsule spatial net. This suggests that out of the two vari-

ants of spatial subnet, GCN module performs better than
Capsules. We believe the reason to be the ability of graphs
to better model the cases of multiple object scenarios in the
scene. This comes from the fact that while the GCN, by
construction, deals with multiple nodes (and objects), the
same is not true for a vanilla Capsule network. The only
context that the capsule receives is the global hull of the
objects and human, which is not distinctive enough for the
cases when there are more than one objects. This hypothe-
ses is mildly corroborated by our results in V-COCO dataset
wherein the Capsule networks perform better than GCN,
possibly because every human deals with a single object
most of the times.

Confusion Matrix: The confusion matrices for both de-
tection and anticipation tasks using the GCN spatial net are
displayed at Figure 5. Every row of a confusion matrix indi-
cates the prediction distribution of various node samples of
that ground truth class. From the confusion matrix for affor-
dance detection, it is evident that most of the false predic-
tions of object nodes are due to misinterpretation of object
as stationary.

4.2. Evaluation on V-COCO dataset

Although our method is designed to leverage temporal
cues within a video setting, we test our method on V-COCO
dataset by setting T = 1. We observe the role mAP score
of 47.26 while using Capsule spatial subnetwork for spatial
learning, and role mAP of 38.28 using Spatial GCN, which,
although not close to the state-of-the-art method [52] (52.0),
achieves reasonable performance without bells and whis-
tles. Moreover, we achieve a better performance using cap-
sule networks for spatial learning than using a spatial graph
convolution network. This might be attributed to the differ-
ent formulations of HOI for CAD120 and V-COCO. HOI
detection in V-COCO is done separately for each human-
object pair, which implies that there are only two nodes,
one for object and the other for human. This setting bene-
fits the learning process of capsule networks, and is not well
suited for graph convolutions, as there are very few nodes
in the graph modeling. Finally, the ConvNet variant of the
Capsule architecture achieves a role mAP of 44.8 compared
to 47.26 of Capsule Nets.

4.3. Qualitative Evaluation

We provide some qualitative evaluation of our method
using GCN spatial net on CAD-120 dataset in Figure 1. Fig-
ure 6 demonstrates some positive and negative cases of de-
tection of edge action labels of human-object pairs for test
images on V-COCO. The reader is referred to supplemen-
tary material for in-the-wild results on videos.



Table 2. Ablation experiments of the impact of design choices on subactivity and object affordance detection. Seg-RNN refers to segment-
level RNN and vanilla GCN refers to GCN without adjacency matrix refinement.

Experiment Human Subactivity Object Affordance
Ours w/o spatial model 61.5 78.6
Ours w/o seg-RNN with MLP for frame-level temporal learning 84.1 85.0
Ours w/o seg-RNN w/o appending human node features to object nodes 85.2 84.6
Ours w/o seg-RNN 85.9 88.6
Seg-RNN on hand-crafted features 85.3 91.6
Ours with Capsules 88.8 84.2
Ours with GCN 88.9 92.6

Figure 6. Detections of human-object action labels in test images
of VCOCO. We report our failure cases on the last two images
(bottom right). The rest are correct predictions.

4.4. Ablation Study

We now discuss the contributions of various components
to the performance and their relevance to HOI detection.

Role of Spatial Models in Spatial Subnet: To verify
the effectiveness of spatial graph convolution module, we
designed an experiment where the image features from the
backbone are directly passed to the frame-level model. We
observed a significant degradation in performance in the ab-
sence of spatial model.

Role of human node features in affordance predic-
tion: In the temporal subnet, we concatenate human node
features along with object node features for the frame and
segment level RNNs. We observed significant improvement
in performance on object affordance detection (88.6% vs
84.6%) due to human node features. This improvement can
be attributed to the high correlation between the human sub-
activity and affordances of active objects (objects which are
not stationary).

Role of RNN in frame-level temporal subnet: As
a baseline for classification at frame-level subnet, we ex-
perimented with alternative temporal aggregation models.
Specifically, we built an MLP network to obtain classifica-
tion scores from spatial features concatenated across tem-
poral dimension for each node separately. However, due to
higher parameter count in MLP network, the model is prone
to over-fitting, and thereby has a lower performance, as is

evident from Table 2.

Role of segment-level temporal learning: Even
though subactivity and affordance labels are predicted
for every single segment, there are significant inter-
dependencies between the activity in a segment and activi-
ties in previous segments. Using a temporal sequence pro-
cessing network like an RNN after the frame-level aggre-
gation step leverages these inter-segment dependencies and
achieves a significant improvement in performance as com-
pared to prediction at frame-level temporal subnet.

Evaluating the feature learning process: To measure
the effectiveness of the hierarchical learning mechanism,
we design an experiment where we feed the hand-crafted,
segment-level features to segment-level RNN, instead of the
visual embeddings learnt by the attention mechanism. The
learnt visual features achieve a better performance than the
hand crafted features, particularly for the more difficult case
of human subactivity detection (85.3% vs 88.9%), thereby
justifying the effectiveness of the proposed method in cap-
turing the spatio-temporal relations from RGB video data.

5. Conclusion

In this paper, we investigated the spatial modeling
approaches for identifying Human-Object Interaction in
videos. We followed a two-step pipeline that decouples spa-
tial modeling from temporal reasoning. We explore the us-
age of capsule networks, convnets and graph convolutions
for spatial relation learning. Our approach is easily extend-
able to other videos for the task of HOI, where depth in-
formation and 3D pose information is not available. Our
approach sets a new benchmark for Human-Object Interac-
tion detection in videos with visual information.
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