Sweep Surfaces for CAGD

Jinesh Machchhar

Advisors: Prof. Milind Sohoni and Prof. Bharat Adsul

September 12, 2013

- When introducing a new surface type in a CAD kernel
- Parametrization: Local aspects
- Topology: Global aspects
- Self-intersection: Global aspects
- Parametrization: Funnel

■ Self-intersection: Trim curves and locus of $\theta=0$

- Topology: Local homeomorphism between solid and envelope.
■ Further, sweeping sharp solids.

Figure: A simple 2-D sweep

A coin is translated along a parabolic trajectory in 2-D. At each time instance t, there are two points-of-contact.

A non-decomposable 2-D sweep

Figure: A 'non-decomposable' 2-D sweep
A coin is translated along a higher-curvature parabolic trajectory. What is the envelope in this case?

A non-decomposable 2-D sweep

Figure: A 'non-decomposable' 2-D sweep
A coin is translated along a higher-curvature parabolic trajectory. What is the envelope in this case?
The parts connecting the green point to the endpoints of the red-curve also need to be trimmed to construct the correct envelope!

Envelope Definition

- Brep: A solid M in \mathbb{R}^{3} represented by its boundary
- A trajectory in the group of rigid motions:
$h: \mathbb{R} \rightarrow\left(S O(3), \mathbb{R}^{3}\right), h(t)=(A(t), b(t))$ where $A(t) \in S O(3), b(t) \in \mathbb{R}^{3}, t \in I$
- Action of h on M at time t :

$$
M(t)=\{A(t) \cdot x+b(t) \mid x \in M\}
$$

- Trajectory of a point x :

$$
\gamma_{x}: I \rightarrow \mathbb{R}^{3}, \gamma_{x}(t)=A(t) \cdot x+b(t)
$$

Envelope Definition

■ Swept volume $\mathcal{V}:=\bigcup_{t \in I} M(t)$.
■ Envelope $\mathcal{E}:=\partial \mathcal{V}$.
■ Correspondence $R=\left\{(y, x, t) \in \mathcal{E} \times M \times I \mid y=\gamma_{x}(t)\right\}$.

- $R \subset \mathcal{E} \times \partial M \times I$.
- ∂M induces the brep structure on \mathcal{E} via R.

Envelope Definition

■ Outward normal to ∂M at $x: N(x)$.

- Velocity of $\gamma_{x}(t): \gamma_{x}^{\prime}(t)$.

■ Define $g: \partial M \times I \rightarrow \mathbb{R}$ as $g(x, t)=\left\langle A(t) \cdot N(x), \gamma_{x}^{\prime}(t)\right\rangle$.
■ For $I=\left[t_{0}, t_{1}\right], \gamma_{x}(t) \in \mathcal{E}$ only if:
(i) $g(x, t)=0$, or
(ii) $t=t_{0}$ and $g(x, t) \leq 0$, or
(iii) $t=t_{1}$ and $g(x, t) \geq 0$.

Envelope Definition

■ Curve of contact at $t_{0} \in I$:

$$
C\left(t_{0}\right)=\left\{\gamma_{x}\left(t_{0}\right) \mid x \in \partial M, g\left(x, t_{0}\right)=0\right\} .
$$

- Contact set $C=\bigcup_{t \in I} C(t)$.

- Smooth/regular surface S underlying face F of $\partial M ; u, v$: parameters of S.
- Sweep map $\sigma: \mathbb{R}^{2} \times I \rightarrow \mathbb{R}^{3}$
$\sigma(u, v, t)=A(t) \cdot S(u, v)+b(t)$
- For sweep interval $I=\left[t_{0}, t_{1}\right]$, we define the following subsets of the parameter space

$$
\begin{aligned}
& \mathcal{L}=\left\{\left(u, v, t_{0}\right) \in \mathbb{R}^{2} \times\left\{t_{0}\right\} \text { such that } f\left(u, v, t_{0}\right) \leq 0\right\} \\
& \mathcal{F}=\left\{(u, v, t) \in \mathbb{R}^{2} \times I \text { such that } f(u, v, t)=0\right\} \\
& \mathcal{R}=\left\{\left(u, v, t_{1}\right) \in \mathbb{R}^{2} \times\left\{t_{1}\right\} \text { such that } f\left(u, v, t_{1}\right) \geq 0\right\}
\end{aligned}
$$

- $C=\sigma(\mathcal{F})$

Parametrizations

- $C=\sigma(\mathcal{F})$

Figure: The funnel and the contact-set.

■ For $t_{0} \in I, R_{t_{0}}:=\left\{(y, x, t) \in R \mid t=t_{0}\right\}$.

- Projections $\tau: R \rightarrow I$ and $Y: R \rightarrow \mathcal{E}$ as $\tau(y, x, t)=t$ and $Y(y, x, t)=y$.
- Sweep (M, h, I) is simple if for all $t \in I^{\circ}, C(t)=Y\left(R_{t}\right)$
- No trimming needed: $\mathcal{E}=\sigma(\mathcal{L} \cup \mathcal{F} \cup \mathcal{R})$.

Self-intersections

Trim set: Not all sweeps are simple

■ Trim set $T:=\left\{x \in C \mid \exists t \in I, x \in M^{O}(t)\right\}$.

- p-trim set $p T:=\sigma^{-1}(T) \cap \mathcal{F}$.
- Clearly, $T \cap \mathcal{E}=\emptyset$.
- Extend the correspondence R to $C \times M \times I$: $\tilde{R}:=\{(y, x, t) \in C \times M \times \| y=A(t) \cdot x+b(t)\}$.
- $\tilde{R} \not \subset C \times \partial M \times I$

trim
curve
(a)

(b)

■ Trim curve ∂T : boundary of \bar{T}.
■ p-trim curve: $\partial p T$: boundary of $\overline{p T}$.
■ For $p=(u, v, t) \in \mathcal{F}$, let $\sigma(p)=y . L: \mathcal{F} \rightarrow 2^{\mathbb{R}}$, $L(p):=\tau(y \tilde{R})$
■ Define $\ell: \mathcal{F} \rightarrow \mathbb{R} \cup \infty$,

$$
\begin{aligned}
\ell(p) & =\inf _{t^{\prime} \in L(p) \backslash\{t\}}\left\|t-t^{\prime}\right\| & & \text { if } L(p) \neq\{t\} \\
& =\infty & & \text { if } L(p)=\{t\}
\end{aligned}
$$

■ Define $\mathbf{t}-\mathbf{s e p}=\inf _{p \in \mathcal{F}} \ell(p)$.

■ Elementary trim curve: There exists $\delta>0$ such that for all $p \in C, \ell(p)>\delta$.

- Singular trim curve: $\inf _{p \in C} \ell(p)=0$.

(a) Elementary p-trim curves

(b) Singular p-trim curves

Decomposability

■ Given I, call a partition \mathcal{P} of I into consecutive intervals $I_{1}, I_{2}, \ldots, I_{k_{\mathcal{P}}}$ to be of width δ if $\max \left\{\operatorname{length}\left(I_{1}\right)\right.$, length $\left(I_{2}\right), \ldots$, length $\left.\left(I_{k_{\mathcal{P}}}\right)\right\}=\delta$.

- (M, h, I) is decomposable if there exists $\delta>0$ such that for all partitions \mathcal{P} of I of width δ, each sweep $\left(M, h, l_{i}\right)$ is simple for $i=1, \cdots, k_{\mathcal{P}}$.
- The sweep (M, h, I) is decomposable iff \mathbf{t}-sep >0. Further, if t-sep >0 then all the p-trim curves are elementary.

(a) Decomposable sweep

(b) Non-decomposable sweep

■ For $p \in \mathcal{F},\left\{\sigma_{u}(p), \sigma_{v}(p), \sigma_{t}(p)\right\}$ are I.d.

- Let $\sigma_{t}(p)=n(p) \cdot \sigma_{u}(p)+m(p) \cdot \sigma_{v}(p), n$ and m continuous on \mathcal{F}.

■ Define $\theta: \mathcal{F} \rightarrow \mathbb{R}$,

$$
\theta(p)=n(p) \cdot f_{u}(p)+m(p) \cdot f_{v}(p)-f_{t}(p)
$$

- If for all $p \in \mathcal{F}, \theta(p)>0$, then the sweep is decomposable. If there exists $p \in \mathcal{F}$ such that $\theta(p)<0$, then the sweep is non-decomposable.
- θ invariant of the parametrization of ∂M.
- Arises out of relation between two 2-frames on \mathcal{T}_{C}.
- Is a non-singular function.

■ θ partitions the \mathcal{F} into (i) $\mathcal{F}^{+}:=\{p \in \mathcal{F} \mid \theta(p)>0\}$, (ii)

$$
\mathcal{F}^{-}:=\{p \in \mathcal{F} \mid \theta(p)<0\} \text { and (iii) } \mathcal{F}^{0}:=\{p \in \mathcal{F} \mid \theta(p)=0\} .
$$

■ Define $C^{+}:=\sigma\left(\mathcal{F}^{+}\right), C^{-}:=\sigma\left(\mathcal{F}^{-}\right)$and $C^{0}:=\sigma\left(\mathcal{F}^{0}\right)$.

- $C^{-} \subset T$.
- C^{0} : The set of points where $\operatorname{dim}\left(\mathcal{T}_{C}\right)<2$.

Trimming non-decomposable sweeps

Figure: Example of a non-decomposable sweep: an elliptical cylinder being swept along y-axis while undergoing rotation about z-axis. The curve $\theta=0$ is shown in red and trim curve is shown in blue. The portion of the swept edges where θ is negative is shown in green.

Trimming non-decomposable sweeps

- If c is a singular p-trim curve and $p_{0} \in c$ is a limit-point of $\left(p_{n}\right) \subset c$ such that $\lim _{n \rightarrow \infty} \ell\left(p_{n}\right)=0$, then $\theta\left(p_{0}\right)=0$.
- singular trim point: A limit point p of a singular p-trim curve c such that $\theta(p)=0$.
■ Every curve c of $\partial p T$ has a curve \mathcal{F}_{c}^{0} of \mathcal{F}^{0} which makes contact with it.
- \mathcal{F}^{0} is easy to compute since $\nabla \theta$ is non-zero.

(a) Decomposable sweep

(b) Non-decomposable sweep

Locating $\mathcal{F}^{0} \cap \partial p T$

■ Let Ω be a parametrization of a curve \mathcal{F}_{i}^{0} of \mathcal{F}^{0}. Let $\Omega\left(s_{0}\right)=p_{0} \in \mathcal{F}_{i}^{0}$ and $\bar{z}:=(n, m,-1) \in \operatorname{null}\left(J_{\sigma}\right)$ at p_{0}, i.e., $n \sigma_{u}+m \sigma_{v}=\sigma_{t}$. Define the function $\varrho: \mathcal{F}^{0} \rightarrow \mathbb{R}$ as follows.

$$
\varrho\left(s_{0}\right)=\left\langle\bar{z} \times\left.\frac{d \Omega}{d s}\right|_{s_{0}},\left.\nabla f\right|_{p_{0}}\right\rangle
$$

■ ϱ is a measure of the oriented angle between the tangent at p_{0} to \mathcal{F}_{i}^{0} and the kernel (line) of the Jacobian J_{σ} restricted to the tangent space $\mathcal{T}_{\mathcal{F}}\left(p_{0}\right)$.

- If p_{0} is a singular trim point, then $\varrho\left(p_{0}\right)=0$.

Examples of non-decomposable sweeps

Figure: Example of a non-decomposable sweep: a cone being swept along a parabola. The curve $\theta=0$ is shown in red and trim curve is shown in blue. The portion of the swept edges where θ is negative is shown in green.

Examples of non-decomposable sweeps

Figure: Example of a non-decomposable sweep: a cylinder being swept along a cosine curve in $x y$-plane while undergoing rotation about x-axis. The curve $\theta=0$ is shown in red and trim curve is shown in blue. The portion of the swept edges where θ is negative is shown in green.

Examples of non-decomposable sweeps

Figure: Example of a non-decomposable sweep: a blended intersection of a sphere and an ellipsoid being swept along a circular arc in $x y$-plane while undergoing rotation about z-axis. The curve $\theta=0$ is shown in red and trim curve is shown in blue. The portion of the swept edges where θ is negative is shown in green.

Funnel
Figure: A singular p-trim curve nested inside an elementary p-trim curve

Topology

Computing topological information

- Assume w.l.o.g. (M, h, I) is simple.
- Let F be a face of ∂M and C^{F} be its contact set.
- The correspondence R induces the natural map $\pi: C^{F} \rightarrow F$ $\pi(y)=x$ such that $(y, x, t) \in R$.
- π is a well defined map.
- For $p \in \mathcal{F}^{F}$, let $\sigma(p)=y . \pi$ is a local homeomorphism at y if $f_{t}(p) \neq 0$.
Proof. π^{\prime} is a local homeomorphism.

Figure: The above diagram commutes.

(b) Contact set

When is π orientation preserving/reversing?

- For $p \in \mathcal{F}$ let $\sigma(p)=y$ and suppose $f_{t}(p) \neq 0$.
- π is orientation preserving/reversing at y if $-\frac{\theta(p)}{f_{t}(p)}$ is positive/negative respectively.
- $-\frac{\theta}{f_{t}}$ is a geometric invariant.

(a)

Figure: In the above example, $\pi(y)=x$. The map π is orientation preserving at y.

When is π orientation preserving/reversing?

■ For $p \in \mathcal{F}$ let $\sigma(p)=y$ and suppose $f_{t}(p) \neq 0$.

- π is orientation preserving/reversing at y if $-\frac{\theta(p)}{f_{t}(p)}$ is positive/negative respectively.
- $-\frac{\theta}{f_{t}}$ is a geometric invariant.

Figure: In the above example, $\pi(y)=x$. The map π is orientation reversing at y.

- Define the following subsets of a nbhd. $\mathcal{M} \subset F\left(t_{0}\right)$ of a point $y \in C\left(t_{0}\right)$

$$
\begin{aligned}
f^{+} & =\left\{q \in \mathcal{M} \mid f\left(\sigma^{-1}(q)\right)>0\right\} \\
f^{0} & =\left\{q \in \mathcal{M} \mid f\left(\sigma^{-1}(q)\right)=0\right\}=C\left(t_{0}\right) \cap \mathcal{M} \\
f^{-} & =\left\{q \in \mathcal{M} \mid f\left(\sigma^{-1}(q)\right)<0\right\}
\end{aligned}
$$

Figure: Positive and negative hemispheres at a point $y \in \partial M\left(t_{0}\right)$.

Geometric meaning of $-\frac{\theta}{f}$

■ Contributing curve at t_{0} for t is defined as the set $\left\{\gamma_{x}\left(t_{0}\right) \mid x \in \partial M, g(x, t)=0\right\}$ and denoted by ${ }^{t_{0}} C(t)$.

- ${ }^{t_{0}} C\left(t_{0}\right)=C\left(t_{0}\right)$

Figure: The map π is orientation preserving (a) The curves ${ }^{t_{0}} C(t)$ are plotted on $\partial M\left(t_{0}\right)$ at time instances $t_{1}<t_{2}<t_{3}$. The vector $J_{\sigma} \cdot \alpha$ is plotted at few points. (b) The curves $C(t)$ are plotted on C at time instances $t_{1}<t_{2}<t_{3}$.

Figure: The map π is orientation reversing (a) The curves ${ }^{t_{0}} C(t)$ are plotted on $\partial M\left(t_{0}\right)$ at time instances $t_{1}<t_{2}<t_{3}$. The vector $J_{\sigma} \cdot \alpha$ is plotted at few points. (b) The curves $C(t)$ are plotted on C at time instances $t_{1}<t_{2}<t_{3}$.

Figure: The map π is orientation preserving in a neighborhood of the point $C^{v 1}$ and reversing in a neighborhood of the point $C^{v 2}$. (a) The curves ${ }^{t_{0}} C(t)$ are plotted on $\partial M\left(t_{0}\right)$ at time instances $t_{1}<t_{2}<t_{3}<t_{4}<t_{5}$. The vector $J_{\sigma} \cdot \alpha$ is plotted at few points. (b) The curves $C(t)$ are plotted on C at time instances $t_{1}<t_{2}<t_{3}<t_{4}<t_{5}$.

Orienting edges of \mathcal{E}

Figure: Orienting C^{e}. In this case $-\frac{\theta^{F}}{f_{t}^{F}}$ is negative at the point y.

Figure: Edges in parameter space (s, t), generated by an edge $e \in \partial M$.

- If faces C^{F} and $C^{F^{\prime}}$ are adjacent in C then the faces F and F^{\prime} are adjacent in ∂M.
- If edges C^{e} and $C^{e^{\prime}}$ are adjacent in C then e and e^{\prime} are adjacent in ∂M.
- If an edge C^{e} bounds a face C^{F} in C then the edge e bounds the face F in ∂M.
- If a vertex C^{z} bounds an edge C^{e} in C then the vertex z bounds the edge e in ∂M.
- The unit outward normal varies continuously across adjacent geometric entities in C.

Simple sweep examples

Figure: A simple bottle being swept along a screw motion with compounded rotation. Correspondence between faces of ∂M and those of the envelope is shown by color coding.

Simple sweep examples

Simple sweep examples

Overall computational framework

Algorithm 1 Solid sweep
for all F in ∂M do
for all e in ∂F do for all z in ∂e do

Compute vertices C^{z} generated by z end for Compute edges C^{e} generated by e Orient edges C^{e}
end for
Compute $C^{F}\left(t_{0}\right)$ and $C^{F}\left(t_{1}\right)$
Compute loops bounding faces C^{F} generated by F
Compute faces C^{F} generated by F
Orient faces C^{F}
end for
for all F_{i}, F_{j} adjacent in ∂M do
Compute adjacencies between faces in $C^{F_{i}}$ and $C^{F_{j}}$
end for

How topology of $C(t)$ varies

- $t: \mathcal{F} \rightarrow \mathbb{R},(u, v, t) \mapsto t$ is a Morse function.
- Critical points of this function.

Figure: Number of connected components of $C(t)$ is 1,2 and 1 for $t \in\left(0, t_{1}\right),\left(t_{1}, t_{2}\right)$ and $\left(t_{2}, 1\right)$ respectively.

How topology of $C(t)$ varies

Figure: Number of connected components of $C(t)$ varies from 1 to 2 to 1 with time.

Sweeping sharp solids

Figure: A G1-discontinuous solid.

- For a point $x \in \bigcap_{i=1}^{n} F_{i}$, define the cone of normals at x as $\mathcal{N}_{x}=\left\{\sum_{i=1}^{n} \alpha_{i} \cdot N_{i}(x)\right\}$, where, $N_{i}(x)$ is the unit outward normal to face F_{i} at point x and $\alpha_{i} \in \mathbb{R}, \alpha_{i} \geq 0$ for $i=1, \ldots, n$ and $\sum_{i=1}^{n} \alpha_{i}=1$.
- For a subset X of ∂M, the cone bundle is defined as the disjoint union of the cones of normals at each point in X and denoted by $\mathbf{N}_{\mathbf{X}}$, i.e.,

$$
\mathbf{N}_{\mathbf{X}}=\bigsqcup_{x \in X} \mathcal{N}_{x}=\bigcup_{x \in X}\left\{(x, N(x)) \mid N(x) \in \mathcal{N}_{x}\right\}
$$

(a) $\partial \mathrm{M}$

(b) $\mathbf{N}_{\partial \mathrm{M}}$

Figure: A solid and its cone bundle.

Necessary condition

- For $(x, N(x)) \in \mathbf{N}_{\partial \mathbf{M}}$ and $t \in I$, define the function $g: \mathbf{N}_{\partial \mathbf{M}} \times I \rightarrow \mathbb{R}$ as

$$
g(x, N(x), t)=\left\langle A(t) \cdot N(x), v_{x}(t)\right\rangle
$$

- For $(y, x, t) \in R$ and $I=\left[t_{0}, t_{1}\right]$, either
(i) $t=t_{0}$ and there exists $N(x) \in \mathcal{N}_{x}$ such that $g(x, N(x), t) \leq 0$ or
(ii) $t=t_{1}$ and there exists $N(x) \in \mathcal{N}_{x}$ such that $g(x, N(x), t) \geq 0$ or
(iii) There exists $N(x) \in \mathcal{N}_{x}$ such that $g(x, N(x), t)=0$.
- Projection $\pi_{M}: \mathbf{N}_{\partial \mathbf{M}} \rightarrow \partial M$ as $\pi_{M}(x, N(x))=x$.

Necessary condition

■ Normals of contact at t_{0}
$\mathbf{C}\left(t_{0}\right):=\left\{\left(\gamma_{x}\left(t_{0}\right), A\left(t_{0}\right) \cdot N(x)\right) \in \mathbf{N}_{\partial \mathbf{M}}\left(t_{0}\right) \mid g\left(x, N(x), t_{0}\right)=\right.$ $0\}$.
■ Curve of contact at $t_{0} C\left(t_{0}\right):=\pi_{M}\left(\mathbf{C}\left(t_{0}\right)\right)$.

(a) $\partial \mathrm{M}\left(t_{0}\right)$

(b) $\mathbf{N}_{\partial \mathrm{M}}\left(t_{0}\right)$

■ For x in edge $E=F_{1} \cap F_{2}$, parametrize \mathcal{N}_{x} with $\alpha \in[0,1]$ as $\mathcal{N}_{x}(\alpha)=\alpha \cdot N_{1}(x)+(1-\alpha) \cdot N_{2}(x)$

- Let I^{\prime} be the domain of curve e underlying edge E.
- Define function f on the parameter space $I^{\prime} \times I_{1} \times I$ to \mathbb{R} as $f(s, \alpha, t)=g\left(e(s), \mathcal{N}_{e(s)}(\alpha), t\right)$.
■ Funnel $\mathcal{F}=\left\{(s, \alpha, t) \in I^{\prime} \times I_{1} \times I\right.$ such that $\left.f(s, \alpha, t)=0\right\}$
- Sweep map $\sigma^{e}: I^{\prime} \times I_{1} \times I \rightarrow \mathbb{R}^{6}$ is defined as

$$
\sigma^{e}(s, \alpha, t)=\left(\gamma_{e(s)}(t), A(t) \cdot \mathcal{N}_{e(s)}(\alpha)\right)
$$

■ Projection $\pi_{s t}: I^{\prime} \times I_{1} \times I \rightarrow I^{\prime} \times I, \pi_{s t}(s, \alpha, t)=(s, t)$.
■ Projected sweep map $\hat{\sigma}^{e}: I^{\prime} \times I \rightarrow \mathbb{R}^{3}$, $\hat{\sigma}^{e}(s, t)=A(t) \cdot e(s)+b(t)$.

Figure: The above diagram commutes.

- $\pi_{s t}(\mathcal{F})$ serves as a parametrization space for contact set C

α.
(a) \mathcal{F}
(b) $\pi_{s t}(\mathcal{F})$

Figure: The funnel \mathcal{F} and $\pi_{s t}(\mathcal{F})$.

- $\partial C=\hat{\sigma}^{e}\left(\pi_{s t}\left(\mathcal{F} \cap \partial\left(I^{\prime} \times I_{1} \times I\right)\right)\right)$.

Sweeping sharp solids

A vertex will trace edges and an edge will trace faces

Figure: A pyramid swept along a curvilinear trajectory

Figure: The 1-cage of the envelope obtained by sweeping a cube.

Thank You

® ㄷ्यवाद

