Sweep Surfaces for CAGD

Jinesh Machchhar

Advisors: Prof. Milind Sohoni and Prof. Bharat Adsul

September 12, 2013

Outline of the work

- When introducing a new surface type in a CAD kernel
 - Parametrization: Local aspects
 - Topology: Global aspects
 - Self-intersection: Global aspects
- Parametrization: Funnel
- Self-intersection: **Trim curves** and **locus of** $\theta = 0$
- Topology: Local homeomorphism between solid and envelope.
- Further, sweeping **sharp** solids.

A simple 2-D sweep

Figure: A simple 2-D sweep

A coin is translated along a parabolic trajectory in 2-D. At each time instance *t*, there are *two* points-of-contact.

A non-decomposable 2-D sweep

Figure: A 'non-decomposable' 2-D sweep

A coin is translated along a higher-curvature parabolic trajectory. What is the envelope in this case?

A non-decomposable 2-D sweep

Figure: A 'non-decomposable' 2-D sweep

A coin is translated along a higher-curvature parabolic trajectory. What is the envelope in this case?

The parts connecting the green point to the endpoints of the red-curve also need to be trimmed to construct the correct envelope!

- Brep: A solid M in \mathbb{R}^3 represented by its boundary
- A trajectory in the group of rigid motions: $h : \mathbb{R} \to (SO(3), \mathbb{R}^3), h(t) = (A(t), b(t))$ where $A(t) \in SO(3), b(t) \in \mathbb{R}^3, t \in I$
- Action of h on M at time t: $M(t) = \{A(t) \cdot x + b(t) | x \in M\}$
- Trajectory of a point x: $\gamma_x : I \to \mathbb{R}^3$, $\gamma_x(t) = A(t) \cdot x + b(t)$

- Swept volume $\mathcal{V} := \bigcup_{t \in I} M(t)$.
- Envelope $\mathcal{E} := \partial \mathcal{V}$.
- Correspondence $R = \{(y, x, t) \in \mathcal{E} \times M \times I | y = \gamma_x(t)\}.$
- $\blacksquare \ R \subset \mathcal{E} \times \partial M \times I.$
- ∂M induces the brep structure on \mathcal{E} via R.

- Outward normal to ∂M at x: N(x).
- Velocity of $\gamma_x(t) : \gamma'_x(t)$.
- Define $g: \partial M \times I \to \mathbb{R}$ as $g(x,t) = \langle A(t) \cdot N(x), \gamma'_x(t) \rangle$.

• For
$$I = [t_0, t_1]$$
, $\gamma_x(t) \in \mathcal{E}$ only if:
(i) $g(x, t) = 0$, or
(ii) $t = t_0$ and $g(x, t) \le 0$, or
(iii) $t = t_1$ and $g(x, t) \ge 0$.

 Curve of contact at t₀ ∈ *l*: C(t₀) = {γ_x(t₀)|x ∈ ∂M, g(x, t₀) = 0}.
 Contact set C = ∪ C(t).

t∈I

Parametrizations: Faces

• (

- Smooth/regular surface *S* underlying face *F* of *∂M*; *u*, *v*: parameters of *S*.
- Sweep map $\sigma : \mathbb{R}^2 \times I \to \mathbb{R}^3$ $\sigma(u, v, t) = A(t) \cdot S(u, v) + b(t)$
- For sweep interval $I = [t_0, t_1]$, we define the following subsets of the parameter space

$$\mathcal{L} = \{(u, v, t_0) \in \mathbb{R}^2 \times \{t_0\} \text{ such that } f(u, v, t_0) \leq 0\}$$

 $\mathcal{F} = \{(u, v, t) \in \mathbb{R}^2 \times I \text{ such that } f(u, v, t) = 0\}$
 $\mathcal{R} = \{(u, v, t_1) \in \mathbb{R}^2 \times \{t_1\} \text{ such that } f(u, v, t_1) \geq 0\}$
 $\mathcal{C} = \sigma(\mathcal{F})$

Parametrizations

• $C = \sigma(\mathcal{F})$

Figure: The funnel and the contact-set.

Simple sweep

- For $t_0 \in I$, $R_{t_0} := \{(y, x, t) \in R | t = t_0\}$.
- Projections $\tau : R \to I$ and $Y : R \to \mathcal{E}$ as $\tau(y, x, t) = t$ and Y(y, x, t) = y.
- Sweep (M, h, I) is simple if for all $t \in I^o$, $C(t) = Y(R_t)$
- No trimming needed: $\mathcal{E} = \sigma(\mathcal{L} \cup \mathcal{F} \cup \mathcal{R}).$

Self-intersections

Trim set: Not all sweeps are simple

- Trim set $T := \{x \in C | \exists t \in I, x \in M^o(t)\}.$
- p-trim set $pT := \sigma^{-1}(T) \cap \mathcal{F}$.
- Clearly, $T \cap \mathcal{E} = \emptyset$.
- Extend the correspondence *R* to $C \times M \times I$: $\tilde{R} := \{(y, x, t) \in C \times M \times I | y = A(t) \cdot x + b(t)\}.$
- $\blacksquare \ \tilde{R} \not\subset C \times \partial M \times I$

Trim curves

- **Trim curve** ∂T : boundary of \overline{T} .
- **p-trim curve**: ∂pT : boundary of \overline{pT} .
- For $p = (u, v, t) \in \mathcal{F}$, let $\sigma(p) = y$. $L : \mathcal{F} \to 2^{\mathbb{R}}$, $L(p) := \tau(y\tilde{\mathcal{R}})$
- Define $\ell : \mathcal{F} \to \mathbb{R} \cup \infty$,

$$\ell(p) = \inf_{\substack{t' \in L(p) \setminus \{t\}}} \|t - t'\| \qquad \text{if } L(p) \neq \{t\}$$
$$= \infty \qquad \text{if } L(p) = \{t\}$$

• Define \mathbf{t} -sep = $\inf_{p \in \mathcal{F}} \ell(p)$.

- **Elementary trim curve**: There exists $\delta > 0$ such that for all $p \in C$, $\ell(p) > \delta$.
- **Singular trim curve**: $\inf_{p \in C} \ell(p) = 0.$

Decomposability

- Given *I*, call a partition *P* of *I* into consecutive intervals *I*₁, *I*₂,..., *I_{kp}* to be of width δ if max{*length*(*I*₁), *length*(*I*₂),..., *length*(*I_{kp}*)} = δ.
- (M, h, I) is decomposable if there exists δ > 0 such that for all partitions P of I of width δ, each sweep (M, h, l_i) is simple for i = 1, · · · , k_P.
- The sweep (M, h, I) is decomposable iff t-sep > 0. Further, if t-sep > 0 then all the p-trim curves are elementary.

A geometric invariant on ${\cal F}$

- For $p \in \mathcal{F}$, $\{\sigma_u(p), \sigma_v(p), \sigma_t(p)\}$ are l.d.
- Let $\sigma_t(p) = n(p).\sigma_u(p) + m(p).\sigma_v(p)$, *n* and *m* continuous on \mathcal{F} .
- Define $\theta : \mathcal{F} \to \mathbb{R}$,

$$\theta(p) = n(p) \cdot f_u(p) + m(p) \cdot f_v(p) - f_t(p)$$

- If for all p ∈ F, θ(p) > 0, then the sweep is decomposable. If there exists p ∈ F such that θ(p) < 0, then the sweep is non-decomposable.
- θ invariant of the parametrization of ∂M .
- Arises out of relation between two 2-frames on \mathcal{T}_{C} .
- Is a non-singular function.

A geometric invariant on $\mathcal F$

- θ partitions the \mathcal{F} into (i) $\mathcal{F}^+ := \{p \in \mathcal{F} | \theta(p) > 0\}$, (ii) $\mathcal{F}^- := \{p \in \mathcal{F} | \theta(p) < 0\}$ and (iii) $\mathcal{F}^0 := \{p \in \mathcal{F} | \theta(p) = 0\}$.
- Define $C^+ := \sigma(\mathcal{F}^+)$, $C^- := \sigma(\mathcal{F}^-)$ and $C^0 := \sigma(\mathcal{F}^0)$.

• $C^- \subset T$.

• C^0 : The set of points where $dim(\mathcal{T}_C) < 2$.

Trimming non-decomposable sweeps

Figure: Example of a non-decomposable sweep: an elliptical cylinder being swept along *y*-axis while undergoing rotation about *z*-axis. The curve $\theta = 0$ is shown in red and trim curve is shown in blue. The portion of the swept edges where θ is negative is shown in green.

Trimming non-decomposable sweeps

- If c is a singular p-trim curve and $p_0 \in c$ is a limit-point of $(p_n) \subset c$ such that $\lim_{n \to \infty} \ell(p_n) = 0$, then $\theta(p_0) = 0$.
- **singular trim point**: A limit point p of a singular p-trim curve c such that $\theta(p) = 0$.
- Every curve c of ∂pT has a curve 𝒯⁰_c of 𝒯⁰ which makes contact with it.
- \mathcal{F}^0 is easy to compute since $\nabla \theta$ is non-zero.

Locating $\mathcal{F}^0 \cap \partial pT$

• Let Ω be a parametrization of a curve \mathcal{F}_i^0 of \mathcal{F}^0 . Let $\Omega(s_0) = p_0 \in \mathcal{F}_i^0$ and $\overline{z} := (n, m, -1) \in null(J_{\sigma})$ at p_0 , i.e., $n\sigma_u + m\sigma_v = \sigma_t$. Define the function $\varrho : \mathcal{F}^0 \to \mathbb{R}$ as follows.

$$\varrho(s_0) = \left\langle \bar{z} \times \frac{d\Omega}{ds} |_{s_0}, \nabla f |_{p_0} \right\rangle$$

- ρ is a measure of the oriented angle between the tangent at p_0 to \mathcal{F}_i^0 and the kernel (line) of the Jacobian J_σ restricted to the tangent space $\mathcal{T}_{\mathcal{F}}(p_0)$.
- If p_0 is a singular trim point, then $\varrho(p_0) = 0$.

Examples of non-decomposable sweeps

Figure: Example of a non-decomposable sweep: a cone being swept along a parabola. The curve $\theta = 0$ is shown in red and trim curve is shown in blue. The portion of the swept edges where θ is negative is shown in green.

Examples of non-decomposable sweeps

Figure: Example of a non-decomposable sweep: a cylinder being swept along a cosine curve in *xy*-plane while undergoing rotation about *x*-axis. The curve $\theta = 0$ is shown in red and trim curve is shown in blue. The portion of the swept edges where θ is negative is shown in green.

Examples of non-decomposable sweeps

Figure: Example of a non-decomposable sweep: a blended intersection of a sphere and an ellipsoid being swept along a circular arc in *xy*-plane while undergoing rotation about *z*-axis. The curve $\theta = 0$ is shown in red and trim curve is shown in blue. The portion of the swept edges where θ is negative is shown in green.

Nested trim curves

Figure: A singular p-trim curve nested inside an elementary p-trim curve

Topology

Computing topological information

- Assume w.l.o.g. (M, h, I) is simple.
- Let F be a face of ∂M and C^F be its contact set.
- The correspondence R induces the natural map $\pi : C^F \to F$ $\pi(y) = x$ such that $(y, x, t) \in R$.
- π is a well defined map.
- For $p \in \mathcal{F}^F$, let $\sigma(p) = y$. π is a local homeomorphism at y if $f_t(p) \neq 0$.

Proof. π' is a local homeomorphism.

Figure: The above diagram commutes.

Orientability of the envelope

(b) Contact set

When is π orientation preserving/reversing?

- For $p \in \mathcal{F}$ let $\sigma(p) = y$ and suppose $f_t(p) \neq 0$.
- π is orientation preserving/reversing at y if $-\frac{\theta(p)}{f_t(p)}$ is positive/negative respectively.
- $-\frac{\theta}{f_t}$ is a geometric invariant.

Figure: In the above example, $\pi(y) = x$. The map π is orientation preserving at y.

When is π orientation preserving/reversing?

- For $p \in \mathcal{F}$ let $\sigma(p) = y$ and suppose $f_t(p) \neq 0$.
- π is orientation preserving/reversing at y if $-\frac{\theta(p)}{f_t(p)}$ is positive/negative respectively.
- $-\frac{\theta}{f_t}$ is a geometric invariant.

Figure: In the above example, $\pi(y) = x$. The map π is orientation reversing at y.

Geometric meaning of $-\frac{\theta}{f_*}$

Define the following subsets of a nbhd. M ⊂ F(t₀) of a point y ∈ C(t₀)

$$egin{aligned} f^+ &= \{q \in \mathcal{M} | f(\sigma^{-1}(q)) > 0\} \ f^0 &= \{q \in \mathcal{M} | f(\sigma^{-1}(q)) = 0\} = \mathcal{C}(t_0) \cap \mathcal{M} \ f^- &= \{q \in \mathcal{M} | f(\sigma^{-1}(q)) < 0\} \end{aligned}$$

Figure: Positive and negative hemispheres at a point $y \in \partial M(t_0)$.

• Contributing curve at t_0 for t is defined as the set $\{\gamma_x(t_0)|x \in \partial M, g(x, t) = 0\}$ and denoted by ${}^{t_0}C(t)$. • ${}^{t_0}C(t_0) = C(t_0)$

Geometric meaning of $-\frac{1}{2}$

Figure: The map π is orientation preserving (a) The curves ${}^{t_0}C(t)$ are plotted on $\partial M(t_0)$ at time instances $t_1 < t_2 < t_3$. The vector $J_{\sigma} \cdot \alpha$ is plotted at few points. (b) The curves C(t) are plotted on C at time instances $t_1 < t_2 < t_3$.

Geometric meaning of -

Figure: The map π is orientation reversing (a) The curves ${}^{t_0}C(t)$ are plotted on $\partial M(t_0)$ at time instances $t_1 < t_2 < t_3$. The vector $J_{\sigma} \cdot \alpha$ is plotted at few points. (b) The curves C(t) are plotted on C at time instances $t_1 < t_2 < t_3$.

Geometric meaning of -

Figure: The map π is orientation preserving in a neighborhood of the point C^{v1} and reversing in a neighborhood of the point C^{v2} . (a) The curves ${}^{t_0}C(t)$ are plotted on $\partial M(t_0)$ at time instances $t_1 < t_2 < t_3 < t_4 < t_5$. The vector $J_{\sigma} \cdot \alpha$ is plotted at few points. (b) The curves C(t) are plotted on C at time instances $t_1 < t_2 < t_3 < t_4 < t_5$.

Orienting edges of \mathcal{E}

Figure: Orienting C^e . In this case $-\frac{\theta^F}{f_r^F}$ is negative at the point y.

Orienting edges of \mathcal{E}

Figure: Edges in parameter space (s, t), generated by an edge $e \in \partial M$.

Computing adjacencies

- If faces C^F and $C^{F'}$ are adjacent in C then the faces F and F' are adjacent in ∂M .
- If edges C^e and C^{e'} are adjacent in C then e and e' are adjacent in ∂M.
- If an edge C^e bounds a face C^F in C then the edge e bounds the face F in ∂M .
- If a vertex C^z bounds an edge C^e in C then the vertex z bounds the edge e in ∂M .
- The unit outward normal varies continuously across adjacent geometric entities in C.

Simple sweep examples

Figure: A simple bottle being swept along a screw motion with compounded rotation. Correspondence between faces of ∂M and those of the envelope is shown by color coding.

Simple sweep examples

Simple sweep examples

Algorithm 1 Solid sweep for all F in ∂M do for all e in ∂F do for all z in ∂e do Compute vertices C^{z} generated by z end for Compute edges C^e generated by e Orient edges C^e end for Compute $C^{F}(t_0)$ and $C^{F}(t_1)$ Compute loops bounding faces C^F generated by F Compute faces C^F generated by FOrient faces C^F end for for all F_i, F_i adjacent in ∂M do Compute adjacencies between faces in C^{F_i} and C^{F_j} end for

How topology of C(t) varies

• $t: \mathcal{F} \to \mathbb{R}, (u, v, t) \mapsto t$ is a Morse function.

Critical points of this function.

Figure: Number of connected components of C(t) is 1,2 and 1 for $t \in (0, t_1), (t_1, t_2)$ and $(t_2, 1)$ respectively.

How topology of C(t) varies

Figure: Number of connected components of C(t) varies from 1 to 2 to 1 with time.

Sweeping *sharp* solids

Sweeping sharp solids

Figure: A G1-discontinuous solid.

Cone of normals and Cone bundle

• For a point
$$x \in \bigcap_{i=1}^{n} F_i$$
, define the **cone of normals** at x as
 $\mathcal{N}_x = \left\{ \sum_{i=1}^{n} \alpha_i \cdot N_i(x) \right\}$, where, $N_i(x)$ is the unit outward
normal to face F_i at point x and $\alpha_i \in \mathbb{R}, \alpha_i \ge 0$ for
 $i = 1, \dots, n$ and $\sum_{i=1}^{n} \alpha_i = 1$.

■ For a subset X of ∂M, the cone bundle is defined as the disjoint union of the cones of normals at each point in X and denoted by N_X, i.e.,

$$\mathbf{N}_{\mathbf{X}} = \bigsqcup_{x \in X} \mathcal{N}_x = \bigcup_{x \in X} \{ (x, N(x)) | N(x) \in \mathcal{N}_x \}.$$

Cone of normals and Cone bundle

Figure: A solid and its cone bundle.

Necessary condition

■ For $(x, N(x)) \in \mathbb{N}_{\partial M}$ and $t \in I$, define the function $g : \mathbb{N}_{\partial M} \times I \to \mathbb{R}$ as

$$g(x, N(x), t) = \langle A(t) \cdot N(x), v_x(t) \rangle$$

Necessary condition

- Normals of contact at t_0 $C(t_0) := \{(\gamma_x(t_0), A(t_0) \cdot N(x)) \in N_{\partial M}(t_0) | g(x, N(x), t_0) = 0\}.$
- Curve of contact at $t_0 C(t_0) := \pi_M(\mathbf{C}(t_0))$.

Parametrization

- For x in edge $E = F_1 \cap F_2$, parametrize \mathcal{N}_x with $\alpha \in [0, 1]$ as $\mathcal{N}_x(\alpha) = \alpha \cdot \mathcal{N}_1(x) + (1 \alpha) \cdot \mathcal{N}_2(x)$
- Let I' be the domain of curve e underlying edge E.
- Define function f on the parameter space $I' \times I_1 \times I$ to \mathbb{R} as $f(s, \alpha, t) = g(e(s), \mathcal{N}_{e(s)}(\alpha), t)$.
- Funnel $\mathcal{F} = \{(s, \alpha, t) \in I' \times I_1 \times I \text{ such that } f(s, \alpha, t) = 0\}$
- Sweep map $\sigma^e : I' \times I_1 \times I \to \mathbb{R}^6$ is defined as $\sigma^e(s, \alpha, t) = (\gamma_{e(s)}(t), A(t) \cdot \mathcal{N}_{e(s)}(\alpha))$
- Projection $\pi_{st}: I' \times I_1 \times I \to I' \times I$, $\pi_{st}(s, \alpha, t) = (s, t)$.
- **Projected sweep map** $\hat{\sigma}^e$: $I' \times I \to \mathbb{R}^3$, $\hat{\sigma}^e(s,t) = A(t) \cdot e(s) + b(t)$.

Figure: The above diagram commutes.

• $\pi_{st}(\mathcal{F})$ serves as a parametrization space for contact set C

Figure: The funnel \mathcal{F} and $\pi_{st}(\mathcal{F})$.

• $\partial C = \hat{\sigma}^{e}(\pi_{st}(\mathcal{F} \cap \partial(I' \times I_1 \times I))).$

Sweeping sharp solids

A vertex will trace edges and an edge will trace faces

Figure: A pyramid swept along a curvilinear trajectory

Sweeping sharp solids

Figure: The 1-cage of the envelope obtained by sweeping a cube.

Thank You

धन्यवाद