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Outline of the work

When introducing a new surface type in a CAD kernel

Parametrization: Local aspects
Topology: Global aspects
Self-intersection: Global aspects

Parametrization: Funnel

Self-intersection: Trim curves and locus of θ = 0

Topology: Local homeomorphism between solid and
envelope.

Further, sweeping sharp solids.



A simple 2-D sweep
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Figure: A simple 2-D sweep

A coin is translated along a parabolic trajectory in 2-D.
At each time instance t, there are two points-of-contact.



A non-decomposable 2-D sweep
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Figure: A ‘non-decomposable’ 2-D sweep

A coin is translated along a higher-curvature parabolic trajectory.
What is the envelope in this case?

The parts connecting the green point to the endpoints of the
red-curve also need to be trimmed to construct the correct
envelope!
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Figure: A ‘non-decomposable’ 2-D sweep

A coin is translated along a higher-curvature parabolic trajectory.
What is the envelope in this case?
The parts connecting the green point to the endpoints of the
red-curve also need to be trimmed to construct the correct
envelope!



Envelope Definition

Brep: A solid M in R3 represented by its boundary

A trajectory in the group of rigid motions:
h : R→ (SO(3),R3), h(t) = (A(t), b(t)) where
A(t) ∈ SO(3), b(t) ∈ R3, t ∈ I

Action of h on M at time t:
M(t) = {A(t) · x + b(t)|x ∈ M}
Trajectory of a point x :
γx : I → R3, γx(t) = A(t) · x + b(t)



Envelope Definition

Swept volume V :=
⋃
t∈I

M(t).

Envelope E := ∂V.
Correspondence R = {(y , x , t) ∈ E ×M × I |y = γx(t)}.
R ⊂ E × ∂M × I .
∂M induces the brep structure on E via R.



Envelope Definition

Outward normal to ∂M at x : N(x).

Velocity of γx(t) : γ′x(t).

Define g : ∂M × I → R as g(x , t) = 〈A(t) · N(x), γ′x(t)〉.
For I = [t0, t1], γx(t) ∈ E only if:
(i) g(x , t) = 0, or
(ii) t = t0 and g(x , t) ≤ 0, or
(iii) t = t1 and g(x , t) ≥ 0.



Envelope Definition

Curve of contact at t0 ∈ I :
C (t0) = {γx(t0)|x ∈ ∂M, g(x , t0) = 0}.
Contact set C =

⋃
t∈I

C (t).



Parametrizations: Faces

Smooth/regular surface S underlying face F of ∂M; u, v :
parameters of S .

Sweep map σ : R2 × I → R3

σ(u, v , t) = A(t) · S(u, v) + b(t)

For sweep interval I = [t0, t1], we define the following subsets
of the parameter space

L = {(u, v , t0) ∈ R2 × {t0} such that f (u, v , t0) ≤ 0}
F = {(u, v , t) ∈ R2 × I such that f (u, v , t) = 0}
R = {(u, v , t1) ∈ R2 × {t1} such that f (u, v , t1) ≥ 0}

C = σ(F)



Parametrizations



Parametrizations

C = σ(F)
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Figure: The funnel and the contact-set.



Simple sweep

For t0 ∈ I , Rt0 := {(y , x , t) ∈ R|t = t0}.
Projections τ : R → I and Y : R → E as
τ(y , x , t) = t and Y (y , x , t) = y .

Sweep (M, h, I ) is simple if for all t ∈ I o , C (t) = Y (Rt)

No trimming needed: E = σ(L ∪ F ∪R).



Self-intersections



Trim set: Not all sweeps are simple

Trim set T := {x ∈ C |∃t ∈ I , x ∈ Mo(t)}.
p-trim set pT := σ−1(T ) ∩ F .

Clearly, T ∩ E = ∅.
Extend the correspondence R to C ×M × I :
R̃ := {(y , x , t) ∈ C ×M × I |y = A(t) · x + b(t)}.
R̃ 6⊂ C × ∂M × I



Trim curves

Trim curve ∂T : boundary of T .

p-trim curve: ∂pT : boundary of pT .

For p = (u, v , t) ∈ F , let σ(p) = y . L : F → 2R,
L(p) := τ(yR̃)

Define ` : F → R ∪∞,

`(p) = inf
t′∈L(p)\{t}

‖t − t ′‖ if L(p) 6= {t}

=∞ if L(p) = {t}

Define t−sep = inf
p∈F

`(p).



Trim curves

Elementary trim curve: There exists δ > 0 such that for all
p ∈ C , `(p) > δ.

Singular trim curve: inf
p∈C

`(p) = 0.



Decomposability

Given I , call a partition P of I into consecutive intervals
I1, I2, . . . , IkP to be of width δ if
max{length(I1), length(I2), . . . , length(IkP )} = δ.

(M, h, I ) is decomposable if there exists δ > 0 such that for
all partitions P of I of width δ, each sweep (M, h, Ii ) is simple
for i = 1, · · · , kP .

The sweep (M, h, I ) is decomposable iff t−sep > 0. Further, if
t−sep > 0 then all the p-trim curves are elementary.

(a) Decomposable sweep (b) Non-decomposable sweep



A geometric invariant on F

For p ∈ F , {σu(p), σv (p), σt(p)} are l.d.

Let σt(p) = n(p).σu(p) + m(p).σv (p), n and m continuous on
F .

Define θ : F → R,

θ(p) = n(p) · fu(p) + m(p) · fv (p)− ft(p)

If for all p ∈ F , θ(p) > 0, then the sweep is decomposable. If
there exists p ∈ F such that θ(p) < 0, then the sweep is
non-decomposable.

θ invariant of the parametrization of ∂M.

Arises out of relation between two 2-frames on TC .

Is a non-singular function.



A geometric invariant on F

θ partitions the F into (i) F+ := {p ∈ F|θ(p) > 0}, (ii)
F− := {p ∈ F|θ(p) < 0} and (iii) F0 := {p ∈ F|θ(p) = 0}.
Define C+ := σ(F+), C− := σ(F−) and C 0 := σ(F0).
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C− ⊂ T .

C 0: The set of points where dim(TC ) < 2.



Trimming non-decomposable sweeps

Figure: Example of a non-decomposable sweep: an elliptical cylinder
being swept along y -axis while undergoing rotation about z-axis. The
curve θ = 0 is shown in red and trim curve is shown in blue. The portion
of the swept edges where θ is negative is shown in green.



Trimming non-decomposable sweeps

If c is a singular p-trim curve and p0 ∈ c is a limit-point of
(pn) ⊂ c such that lim

n→∞
`(pn) = 0, then θ(p0) = 0.

singular trim point: A limit point p of a singular p-trim
curve c such that θ(p) = 0.

Every curve c of ∂pT has a curve F0
c of F0 which makes

contact with it.

F0 is easy to compute since ∇θ is non-zero.



Locating F0 ∩ ∂pT

Let Ω be a parametrization of a curve F0
i of F0. Let

Ω(s0) = p0 ∈ F0
i and z̄ := (n,m,−1) ∈ null(Jσ) at p0, i.e.,

nσu + mσv = σt . Define the function % : F0 → R as follows.

%(s0) =

〈
z̄ × dΩ

ds
|s0 ,∇f |p0

〉
% is a measure of the oriented angle between the tangent at
p0 to F0

i and the kernel (line) of the Jacobian Jσ restricted to
the tangent space TF (p0).

If p0 is a singular trim point, then %(p0) = 0.



Examples of non-decomposable sweeps

Figure: Example of a non-decomposable sweep: a cone being swept along
a parabola. The curve θ = 0 is shown in red and trim curve is shown in
blue. The portion of the swept edges where θ is negative is shown in
green.



Examples of non-decomposable sweeps

Figure: Example of a non-decomposable sweep: a cylinder being swept
along a cosine curve in xy -plane while undergoing rotation about x-axis.
The curve θ = 0 is shown in red and trim curve is shown in blue. The
portion of the swept edges where θ is negative is shown in green.



Examples of non-decomposable sweeps

Figure: Example of a non-decomposable sweep: a blended intersection of
a sphere and an ellipsoid being swept along a circular arc in xy -plane
while undergoing rotation about z-axis. The curve θ = 0 is shown in red
and trim curve is shown in blue. The portion of the swept edges where θ
is negative is shown in green.



Nested trim curves

Figure: A singular p-trim curve nested inside an elementary p-trim curve



Topology



Computing topological information

Assume w.l.o.g. (M, h, I ) is simple.

Let F be a face of ∂M and CF be its contact set.

The correspondence R induces the natural map π : CF → F
π(y) = x such that (y , x , t) ∈ R.

π is a well defined map.

For p ∈ FF , let σ(p) = y . π is a local homeomorphism at y if
ft(p) 6= 0.
Proof. π′ is a local homeomorphism.

Figure: The above diagram commutes.



Orientability of the envelope



When is π orientation preserving/reversing?

For p ∈ F let σ(p) = y and suppose ft(p) 6= 0.

π is orientation preserving/reversing at y if − θ(p)
ft(p)

is

positive/negative respectively.
− θ

ft
is a geometric invariant.

Figure: In the above example, π(y) = x . The map π is orientation
preserving at y .
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Geometric meaning of − θ
ft

Define the following subsets of a nbhd. M⊂ F (t0) of a point
y ∈ C (t0)

f + = {q ∈M|f (σ−1(q)) > 0}
f 0 = {q ∈M|f (σ−1(q)) = 0} = C (t0) ∩M
f − = {q ∈M|f (σ−1(q)) < 0}

Figure: Positive and negative hemispheres at a point y ∈ ∂M(t0).



Geometric meaning of − θ
ft

Contributing curve at t0 for t is defined as the set
{γx(t0)|x ∈ ∂M, g(x , t) = 0} and denoted by t0C (t).
t0C (t0) = C (t0)



Geometric meaning of − θ
ft

Figure: The map π is orientation preserving (a) The curves t0C (t) are
plotted on ∂M(t0) at time instances t1 < t2 < t3. The vector Jσ · α is
plotted at few points. (b) The curves C (t) are plotted on C at time
instances t1 < t2 < t3.



Geometric meaning of − θ
ft

Figure: The map π is orientation reversing (a) The curves t0C (t) are
plotted on ∂M(t0) at time instances t1 < t2 < t3. The vector Jσ · α is
plotted at few points. (b) The curves C (t) are plotted on C at time
instances t1 < t2 < t3.



Geometric meaning of − θ
ft

Figure: The map π is orientation preserving in a neighborhood of the
point C v1 and reversing in a neighborhood of the point C v2. (a) The
curves t0C (t) are plotted on ∂M(t0) at time instances
t1 < t2 < t3 < t4 < t5. The vector Jσ ·α is plotted at few points. (b) The
curves C (t) are plotted on C at time instances t1 < t2 < t3 < t4 < t5.



Orienting edges of E

Figure: Orienting C e . In this case − θF

f Ft
is negative at the point y .



Orienting edges of E

Figure: Edges in parameter space (s, t), generated by an edge e ∈ ∂M.



Computing adjacencies

If faces CF and CF ′
are adjacent in C then the faces F and

F ′ are adjacent in ∂M.

If edges C e and C e′ are adjacent in C then e and e ′ are
adjacent in ∂M.

If an edge C e bounds a face CF in C then the edge e bounds
the face F in ∂M.

If a vertex C z bounds an edge C e in C then the vertex z
bounds the edge e in ∂M.

The unit outward normal varies continuously across adjacent
geometric entities in C .



Simple sweep examples

Figure: A simple bottle being swept along a screw motion with
compounded rotation. Correspondence between faces of ∂M and those of
the envelope is shown by color coding.



Simple sweep examples



Simple sweep examples



Overall computational framework

Algorithm 1 Solid sweep

for all F in ∂M do
for all e in ∂F do

for all z in ∂e do
Compute vertices C z generated by z

end for
Compute edges C e generated by e
Orient edges C e

end for
Compute CF (t0) and CF (t1)
Compute loops bounding faces CF generated by F
Compute faces CF generated by F
Orient faces CF

end for
for all Fi ,Fj adjacent in ∂M do

Compute adjacencies between faces in CFi and CFj

end for



How topology of C (t) varies

t : F → R, (u, v , t) 7→ t is a Morse function.

Critical points of this function.

Figure: Number of connected components of C (t) is 1, 2 and 1 for
t ∈ (0, t1), (t1, t2) and (t2, 1) respectively.



How topology of C (t) varies
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Figure: Number of connected components of C (t) varies from 1 to 2 to 1
with time.



Sweeping sharp solids



Sweeping sharp solids

Figure: A G1-discontinuous solid.



Cone of normals and Cone bundle

For a point x ∈
n⋂

i=1

Fi , define the cone of normals at x as

Nx =

{
n∑

i=1

αi · Ni (x)

}
, where, Ni (x) is the unit outward

normal to face Fi at point x and αi ∈ R, αi ≥ 0 for

i = 1, . . . , n and
n∑

i=1

αi = 1.

For a subset X of ∂M, the cone bundle is defined as the
disjoint union of the cones of normals at each point in X and
denoted by NX, i.e.,

NX =
⊔
x∈X
Nx =

⋃
x∈X
{(x ,N(x))|N(x) ∈ Nx}.



Cone of normals and Cone bundle

Figure: A solid and its cone bundle.



Necessary condition

For (x ,N(x)) ∈ N∂M and t ∈ I , define the function
g : N∂M × I → R as

g(x ,N(x), t) = 〈A(t) · N(x), vx(t)〉

For (y , x , t) ∈ R and I = [t0, t1], either
(i) t = t0 and there exists N(x) ∈ Nx such that
g(x ,N(x), t) ≤ 0 or
(ii) t = t1 and there exists N(x) ∈ Nx such that
g(x ,N(x), t) ≥ 0 or
(iii) There exists N(x) ∈ Nx such that g(x ,N(x), t) = 0.

Projection πM : N∂M → ∂M as πM(x ,N(x)) = x .



Necessary condition

Normals of contact at t0
C(t0) := {(γx(t0),A(t0) · N(x)) ∈ N∂M(t0)|g(x ,N(x), t0) =
0}.
Curve of contact at t0 C (t0) := πM(C(t0)).



Parametrization

For x in edge E = F1 ∩ F2, parametrize Nx with α ∈ [0, 1] as
Nx(α) = α · N1(x) + (1− α) · N2(x)

Let I ′ be the domain of curve e underlying edge E .

Define function f on the parameter space I ′ × I1 × I to R as
f (s, α, t) = g(e(s),Ne(s)(α), t).

Funnel F = {(s, α, t) ∈ I ′ × I1 × I such that f (s, α, t) = 0}
Sweep map σe : I ′ × I1 × I → R6 is defined as
σe(s, α, t) = (γe(s)(t),A(t) · Ne(s)(α))

Projection πst : I ′ × I1 × I → I ′ × I , πst(s, α, t) = (s, t).

Projected sweep map σ̂e : I ′ × I → R3,
σ̂e(s, t) = A(t) · e(s) + b(t).



Parametrization

Figure: The above diagram commutes.



Parametrization

πst(F) serves as a parametrization space for contact set C

Figure: The funnel F and πst(F).

∂C = σ̂e(πst(F ∩ ∂(I ′ × I1 × I ))).



Sweeping sharp solids

A vertex will trace edges and an edge will trace faces

Figure: A pyramid swept along a curvilinear trajectory



Sweeping sharp solids

Figure: The 1-cage of the envelope obtained by sweeping a cube.



Thank You


