A Computational Framework for the Boundary Representation of Solid Sweeps

Bharat Adsul

Co-authors: Jinesh Machchhar and Milind Sohoni

Solid Sweep

Given a solid M in brep format and a one parameter family of rigid motions h, compute the volume V swept by M as a brep.

Figure: A solid swept along a trefoil knot.

Application in product handling

Figure: Conveyor screw.

The boundary representation

- Geometric data: Parametric definitions of faces, edges and vertices.
- **Topological data:** Orientation of faces and edges. Ajdacency relations amongst geometric entities.

Outline of the talk

- When introducing a new surface type in a CAD kernel
 - Parametrization: Local aspects
 - Topology: Global aspects
 - Self-intersection: Global aspects
- Parametrization: Funnel
- Self-intersection: **Trim curves**.
- Topology: Local homeomorphism between solid and envelope.
- We focus on parametrization and topology in this talk.

The envelope condition

■ Trajectory

 $h: I \to (SO(3), \mathbb{R}^3), \ h(t) = (A(t), b(t)).$

- Trajectory of a point x under h $\gamma_x : I \to \mathbb{R}^3$, $\gamma_x(t) = A(t) \cdot x + b(t)$.
- Define $g: \partial M \times I \to \mathbb{R}$ as $g(x, t) = \langle A(t) \cdot N(x), \gamma'_x(t) \rangle$.
- Curve of contact at t

 $C(t) = \{\gamma_x(t) \in \partial M(t) | g(x,t) = 0\}.$

- For *I* = [*t*₀, *t*₁], the necessary condition for *γ_x(t)* to belong to envelope *E*:
 - If $t = t_0$ then $g(x, t) \le 0$: Left-cap
 - If $t = t_1$ then $g(x, t) \ge 0$: **Right-cap**
 - If $t \in (t_0, t_1)$ then g(x, t) = 0: Contact set

A point $\gamma_x(t)$ belongs to the contact-set only if the velocity $\gamma'_x(t)$ is tangent to ∂M at $\gamma_x(t)$.

In general, the contact set needs to be trimmed to obtain the envelope.

Assume sweep (M, h) to be *simple*, i.e., no trimming of contact set required to obtain \mathcal{E} .

Algorithm 1 Solid sweep

```
for all faces F in \partial M do
    for all co-edges e in \partial F do
       for all vertices z in \partial e do
           Compute vertices C^z generated by z
       end for
        Compute co-edges C^e generated by e
        Orient co-edges C^e
    end for
   Compute C^{F}(t_0) and C^{F}(t_1)
    Compute loops bounding faces C^F generated by F
    Compute faces C^F generated by F
   Orient faces C^F
end for
for all F_i, F_i adjacent in \partial M do
   Compute adjacencies between faces in C^{F_i} and C^{F_j}
end for
```

Parametrization

Parametrization of envelope

- Parametric surface $S : \mathbb{R}^2 \to \mathbb{R}^3$, $S(D) = F \subseteq \partial M$.
- Define $f: D \times I \to \mathbb{R}$ as f(u, v, t) = g(S(u, v), t)
- Funnel: $\mathcal{F}^F = \{(u, v, t) \in D \times I | f(u, v, t) = 0\}.$
- **■** Parametrization map: $\sigma^F : \mathcal{F}^F \to \mathcal{C}^F$,
 - $\sigma(u, v, t) = A(t) \cdot S(u, v) + b(t).$

Figure: In this example, the funnel has two components, shaded in yellow.

The natural correspondence between ${\cal E}$ and ∂M

Correspondence $\pi : \mathcal{E} \to \partial M$, $\pi(y) = x$ such that $\gamma_x(t) = y$ for some $t \in I$.

Figure: The points y and $\pi(y)$ are shown in same color.

Adjacency relations

Issues related to brep: Adjacency relations

A face F of ∂M may give rise to multiple faces on \mathcal{E} .

Figure: The face $F \subset \partial M$ generates two faces, viz., C_1^F and C_2^F on envelope. Curves of contact at two time instants are shown imprinted on \mathcal{E} and ∂M .

Issues relate to brep: Adjacency relations

Theorem: The map $\pi : \mathcal{E} \to \partial M$ is a local homeomorphism almost everywhere on \mathcal{E} . If C_i^F and $C_j^{F'}$ are adjacent in \mathcal{E} , then Fand F' are adjacent in ∂M . If a co-edge C_i^e bounds a face C_j^F in C then the co-edge e bounds the face F in ∂M .

While the global brep structures of \mathcal{E} and ∂M are different, locally they are similar.

Computing loops bounding faces C^{F}

Figure: (a) A face F of ∂M bound by four co-edges. (b) A corresponding face C_1^F . (c) Prism with domains d_i for co-edges e_i .

Orientation

Issues related to brep: Orientation

The map $\pi : \mathcal{E} \to \partial M$ is orientation preserving if $-f_t > 0$ and reversing if $-f_t < 0$.

Figure: Here $\pi(y_i) = x_i$. The map π is orientation preserving at y_2 and reversing at y_1 . The curve $f_t = 0$ is shown in red.

Orienting co-edges

For a co-edge *e* bounding a face *F* of ∂M , let $y \in C_i^e \subset C^F$ and $\pi^F(y) = x \in e$. Let $p \in \mathcal{F}^e \subset \mathcal{F}^F$ such that $\sigma^F(p) = y$ and \overline{z} be the orientation of *e*. If $-f_t^F(p) > 0$ then $J_{\pi^F}^{-1} \cdot \overline{z}$ is the orientation of C_i^e and if $-f_t^F(p) < 0$ then $-J_{\pi^F}^{-1} \cdot \overline{z}$ is the orientation of C_i^e .

Figure: In this examples, $-f_t^F$ is negative at the point y.

Examples

Trimming in non-simple sweeps

Figure: A cone being swept along a parabola. The trim curve, shown in blue, meets the zero locus of an invariant function θ , shown in red.

Sweeps with sharp features

Figure: A sharp edge will generate a set of faces and a sharp vertex will generate a set of edges on the envelope.

- Abdel-Malek K, Yeh HJ. Geometric representation of the swept volume using Jacobian rank-deficiency conditions. Computer-Aided Design 1997;29(6):457-468.
- ACIS 3D Modeler, SPATIAL,
 www.spatial.com/products/3d_acis_modeling
- Adsul B, Machchhar J, Sohoni M. Local and Global Analysis of Parametric Solid Sweeps. Cornell University Library arXiv. http://arxiv.org/abs/1305.7351
- Blackmore D, Leu MC, Wang L. Sweep-envelope differential equation algorithm and its application to NC machining verification. Computer-Aided Design 1997;29(9):629-637.
- Huseyin Erdim, Horea T. Ilies. Classifying points for sweeping solids. Computer-Aided Design 2008;40(9);987-998
- Peternell M, Pottmann H, Steiner T, Zhao H. Swept volumes. Computer-Aided Design and Applications 2005;2;599-608

Thank You