A Computational Framework for the Boundary Representation of Solid Sweeps

Bharat Adsul

Co-authors: Jinesh Machchhar and Milind Sohoni

Solid Sweep

Given a solid M in brep format and a one parameter family of rigid motions h, compute the volume \mathcal{V} swept by M as a brep.

Figure: A solid swept along a trefoil knot.

Figure: Conveyor screw.

■ Geometric data: Parametric definitions of faces, edges and vertices.

■ Topological data: Orientation of faces and edges. Ajdacency relations amongst geometric entities.

- When introducing a new surface type in a CAD kernel
- Parametrization: Local aspects
- Topology: Global aspects
- Self-intersection: Global aspects
- Parametrization: Funnel
- Self-intersection: Trim curves.
- Topology: Local homeomorphism between solid and envelope.
- We focus on parametrization and topology in this talk.
- Trajectory
$h: I \rightarrow\left(S O(3), \mathbb{R}^{3}\right), h(t)=(A(t), b(t))$.
- Trajectory of a point x under h
$\gamma_{x}: I \rightarrow \mathbb{R}^{3}, \gamma_{x}(t)=A(t) \cdot x+b(t)$.
■ Define $g: \partial M \times I \rightarrow \mathbb{R}$ as $g(x, t)=\left\langle A(t) \cdot N(x), \gamma_{x}^{\prime}(t)\right\rangle$.
■ Curve of contact at t

$$
C(t)=\left\{\gamma_{x}(t) \in \partial M(t) \mid g(x, t)=0\right\}
$$

- For $I=\left[t_{0}, t_{1}\right]$, the necessary condition for $\gamma_{x}(t)$ to belong to envelope \mathcal{E} :
- If $t=t_{0}$ then $g(x, t) \leq 0$: Left-cap
- If $t=t_{1}$ then $g(x, t) \geq 0$: Right-cap
- If $t \in\left(t_{0}, t_{1}\right)$ then $g(x, t)=0$: Contact set

The envelope condition

A point $\gamma_{x}(t)$ belongs to the contact-set only if the velocity $\gamma_{x}^{\prime}(t)$ is tangent to ∂M at $\gamma_{x}(t)$.

Simple sweeps

In general, the contact set needs to be trimmed to obtain the envelope.

Assume sweep (M, h) to be simple, i.e., no trimming of contact set required to obtain \mathcal{E}.

Algorithm 1 Solid sweep

for all faces F in ∂M do
for all co-edges e in ∂F do for all vertices z in ∂e do

Compute vertices C^{z} generated by z
end for
Compute co-edges C^{e} generated by e Orient co-edges C^{e}
end for
Compute $C^{F}\left(t_{0}\right)$ and $C^{F}\left(t_{1}\right)$
Compute loops bounding faces C^{F} generated by F
Compute faces C^{F} generated by F
Orient faces C^{F}
end for
for all F_{i}, F_{j} adjacent in ∂M do
Compute adjacencies between faces in $C^{F_{i}}$ and $C^{F_{j}}$
end for

Parametrization

Parametrization of envelope

■ Parametric surface $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, S(D)=F \subseteq \partial M$.

- Define $f: D \times I \rightarrow \mathbb{R}$ as $f(u, v, t)=g(S(u, v), t)$

■ Funnel: $\mathcal{F}^{F}=\{(u, v, t) \in D \times I \mid f(u, v, t)=0\}$.
■ Parametrization map: $\sigma^{F}: \mathcal{F}^{F} \rightarrow C^{F}$,

$$
\sigma(u, v, t)=A(t) \cdot S(u, v)+b(t)
$$

Figure: In this example, the funnel has two components, shaded in yellow.

The natural correspondence between \mathcal{E} and ∂M

Correspondence $\pi: \mathcal{E} \rightarrow \partial M, \pi(y)=x$ such that $\gamma_{x}(t)=y$ for some $t \in I$.

Figure: The points y and $\pi(y)$ are shown in same color.

Adjacency relations

Issues related to brep: Adjacency relations

A face F of ∂M may give rise to multiple faces on \mathcal{E}.

solid

Figure: The face $F \subset \partial M$ generates two faces, viz., C_{1}^{F} and C_{2}^{F} on envelope. Curves of contact at two time instants are shown imprinted on \mathcal{E} and ∂M.

Issues relate to brep: Adjacency relations

Theorem: The map $\pi: \mathcal{E} \rightarrow \partial M$ is a local homeomorphism almost everywhere on \mathcal{E}. If C_{i}^{F} and $C_{j}^{F^{\prime}}$ are adjacent in \mathcal{E}, then F and F^{\prime} are adjacent in ∂M. If a co-edge C_{i}^{e} bounds a face C_{j}^{F} in C then the co-edge e bounds the face F in ∂M.

While the global brep structures of \mathcal{E} and ∂M are different, locally they are similar.

Figure: (a) A face F of ∂M bound by four co-edges. (b) A corresponding face C_{1}^{F}. (c) Prism with domains d_{i} for co-edges e_{i}.

Orientation

Issues related to brep: Orientation

The map $\pi: \mathcal{E} \rightarrow \partial M$ is orientation preserving if $-f_{t}>0$ and reversing if $-f_{t}<0$.

Figure: Here $\pi\left(y_{i}\right)=x_{i}$. The map π is orientation preserving at y_{2} and reversing at y_{1}. The curve $f_{t}=0$ is shown in red.

Orienting co-edges

For a co-edge e bounding a face F of ∂M, let $y \in C_{i}^{e} \subset C^{F}$ and $\pi^{F}(y)=x \in e$. Let $p \in \mathcal{F}^{e} \subset \mathcal{F}^{F}$ such that $\sigma^{F}(p)=y$ and \bar{z} be the orientation of e. If $-f_{t}^{F}(p)>0$ then $J_{\pi^{F}}^{-1} \cdot \bar{z}$ is the orientation of C_{i}^{e} and if $-f_{t}^{F}(p)<0$ then $-J_{\pi^{F}}^{-1} \cdot \bar{z}$ is the orientation of C_{i}^{e}.

(a) F

(b) C_{j}^{F}

Figure: In this examples, $-f_{t}^{F}$ is negative at the point y.

Examples

Trimming in non-simple sweeps

Figure: A cone being swept along a parabola. The trim curve, shown in blue, meets the zero locus of an invariant function θ, shown in red.

Sweeps with sharp features

Figure: A sharp edge will generate a set of faces and a sharp vertex will generate a set of edges on the envelope.

■ Abdel-Malek K, Yeh HJ. Geometric representation of the swept volume using Jacobian rank-deficiency conditions. Computer-Aided Design 1997;29(6):457-468.

- ACIS 3D Modeler, SPATIAL, www.spatial.com/products/3d_acis_modeling
■ Adsul B, Machchhar J, Sohoni M. Local and Global Analysis of Parametric Solid Sweeps. Cornell University Library arXiv. http://arxiv.org/abs/1305.7351
■ Blackmore D, Leu MC, Wang L. Sweep-envelope differential equation algorithm and its application to NC machining verification. Computer-Aided Design 1997;29(9):629-637.
■ Huseyin Erdim, Horea T. Ilies. Classifying points for sweeping solids. Computer-Aided Design 2008;40(9);987-998
- Peternell M, Pottmann H, Steiner T, Zhao H. Swept volumes. Computer-Aided Design and Applications 2005;2;599-608

Thank You

