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Abstract

Advances in computing and communication technologies
have resulted in a wide variety of networked mobile devices
that access data over the Internet. In this paper, we argue
that servers by themselves may not be able to handle this
diversity in client characteristics and intermediate proxies
should be employed to handle the mismatch between the
server-supplied data and the client capabilities. Since ex-
isting proxies are primarily designed to handle traditional
wired hosts, such proxy architectures will need to be en-
hanced to handle mobile devices. We propose such an en-
hanced proxy architecture that is capable of handling the
heterogeneity in client needs—specifically the variations in
client bandwidth and display capabilities. Our architecture
combines transcoding (which is used to match the fidelity
of the requested object to client capabilities) and caching
(which is used to reduce the latency for accessing popular
objects). Our proxies can intelligently adapt to prevailing
system conditions using learning techniques to intelligently
decide whether to transcode locally or fetch an appropri-
ate version from the server. Our experimental results indi-
cate that such strategies produce significant improvements
in the client response times. Further, we find that even sim-
ple learning techniques can lead to significant performance
improvements.

1. Introduction

The explosive growth of the World Wide Web has been
accompanied by a proliferation of mobile devices with net-
working capabilities. Client devices differ significantly in
their hardware characteristics (display resolutions, process-
ing capacities), software capabilities and network connec-
tivity. For instance, a typical networked PDA has 16MB
memory, a 320x200 color display and 802.11b wireless in-
terface, while a typical web-enabled phone has a black and
white text-only display with a cellular data connection [5].
Further, the bandwidth of a typical cellular data connec-
tion is 9.6-19.2 Kbps (144 Kbps for GRPS), while that of
a 802.11b connection is 11 Mbps.

Due to these differences, different versions of the same
object may be suitable for different client devices. In case
of images, for instance, a low resolution color version may
be suitable for a small-screen color PDA, while a 2 gray
bits/pixel version may be suitable for a black and white
PDA. Similarly, in case of mobile phones with text-only
displays, textual summaries of web pages may be more de-
sirable than their full length counterpart. There are three
possible techniques for handling such diverse client needs.

� Maintain all possible versions of the object at the
server, one for each type of device.

� Store only the high fidelity version of the object and
employ online transcoding to dynamically produce
low fidelity versions [9].

� Employ an intermediate proxy that uses a combination
of transcoding and caching to meet client needs.

Server-based techniques for managing the diversity in
client needs have certain limitations. Maintaining multiple
pre-computed versions of each object can be cumbersome,
especially in scenarios where there is a large heterogene-
ity in the types of client devices. For example, many fi-
nancial institutions maintain multiple versions of their web
sites, one for traditional web clients, another for networked
Palm PDAs, and yet another for mobile phones—each new
device type adds to the overhead of maintaining and updat-
ing different versions. While the use of online transcoding
for producing lower fidelity versions addresses this limi-
tation, transcoding is known to be compute-intensive, and
consequently, does not scale during periods of heavy loads
and frequent updates. A more desirable approach is to of-
fload the responsibility of handling different client types
to a proxy. Such a proxy can fetch a high fidelity ver-
sion of a requested object and use transcoding to produce
a lower fidelity version. Further, it can cache the high-
fidelity version, the transcoded version, or both, to quickly
respond to future requests. Such a combination of transcod-
ing and caching allows flexibility in how future requests
are serviced—the proxy may respond to a request by (i)



sending a cached version (in the event the requested ver-
sion is cached locally), (ii) transcoding a cached version to
the desired fidelity (if a higher fidelity version is cached),
(iii) sending a lower fidelity cached version than the one
requested (during periods of heavy loads), or (iv) by down-
loading the object from the server.

Although the use of transcoding in web proxies has been
investigated [5, 6], techniques for combining transcoding
and caching techniques to reduce the overall resource us-
age at the proxy have not received much attention. Further,
techniques to adapt the transcoding process to network con-
ditions, proxy load and changing client requirements have
not been explored. Our present work attempts to address
these issues by making the proxy both intelligent and adap-
tive and by improving the effectiveness of transcoding by
integrating it with caching mechanisms. We make three
contributions in this paper.

� Intelligent transcoding proxies: Our proxy architecture
is capable of learning and making appropriate policy
decisions based on prevailing network and load con-
ditions. We have implemented learning policies for
adaptive proxies, which choose between server down-
loads and local transcodings based on the recent his-
tory of the particular client-server pair. Unlike prior
approaches that choose between the two extremes of
transcoding and no transcoding [6], our proxies can
support a continuum of choices and use current sys-
tem conditions to make an appropriate choice on a per
request basis.

� Adaptive Model: Our adaptive model ensures that pol-
icy decisions are governed by the current prevailing
conditions; further, the model chooses the least expen-
sive option available to serve appropriate data to the
client. We use simple techniques like linear regres-
sion and maintaining logs to estimate system condi-
tions such as available bandwidth, proxy load, etc.

� Transcoding-conscious Cache Replacement: We com-
bine caching and transcoding techniques by develop-
ing a cache replacement policy that takes into consid-
eration transcoding utility of any cached object. This
aspect of work is similar to that of [4]; the two ap-
proaches are contrasted in Section 5.

In what follows, we first describe, in Section 3, our
system architecture for Proxies that Transcode and Cache
(abbreviated as PTCs). We present our techniques for com-
bining transcoding and caching in an intelligent fashion
in Section 4 and examine the cache replacement problem
in Section 5. Our focus in this paper is on transcoding
and caching of web images. We experiment with image
transcoding and caching with PTCs in Section 6. Section 7

concludes the paper with a discussion of future work.

2. System Architecture
The basic architecture of our Transcoding and Caching

Proxy is shown in Fig-1. The main components of this ar-
chitecture are:

1. Client: The client device can be a desktop, a laptop, a
PDA or a mobile phone. Clients are assumed to piggy-
back their capabilities (in terms of the data fidelity they
can handle) with each request; this specification can be
included in the HTTP headers of the request [2]. Al-
ternatively, the client capabilities can be specified in a
client profile that is made available to the proxy. In ad-
dition to the client-specified characteristics, the proxy
may additionally use the current system conditions to
determine the fidelity appropriate for the client.

2. Proxy: Our proxy consists of a transcoding engine, a
cache, and a resource manager. The resource manager
is responsible for making decisions when multiple op-
tions are available to serve the data. These decisions
are made based on our proposed policies, which have
been detailed in the next section. The proxy takes a re-
quest from a client device, recognizes the capabilities
of the client and accordingly fulfills the request. To do
so, it might have to get the data from the source server
and transcode it into the required version on-the-fly or
serve the content from its local cache, possibly after
transcoding it.

3. Server: The web server, source of the data, is en-
hanced in order to understand the requirements of the
client and proxy and act accordingly. In the event mul-
tiple versions of the object are available (e.g., a text-
only web page and a graphics-rich page), the source
sends the proxy a version that has at least the required
fidelity.
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Figure 1. System Architecture: Transcoding
and Caching Proxy

Our system works as follows.



� The client device sends a HTTP request to the proxy
in the normal fashion except that it has some head-
ers added to the request which contain the informa-
tion about the content, the client is comfortable with.
For example, it can have a header “Quality” indicating
the quality of the object best suited to the client. For
an image, this may represent the JPEG quality level,
whereas for text this may represent the level of sum-
marization that the client device desires, with higher
quality meaning lesser summarization and more con-
tent.

� The proxy receives the request and identifies the client
requirements. The proxy can use one of several strate-
gies to service this request.

– It may have the exact required version of the data
in its local cache, in which case, it can just send
that version to the client.

– It may have some higher fidelity version of the
data, which can be transcoded locally to the re-
quired fidelity.

– If the server has the required version, then it may
simply get that and send it to the client.

– In case the server does not have the required ver-
sion, then it may get a higher quality version and
transcode is locally and send it back to the client.

The exact strategy used by the proxy to effect this
choice is detailed in the next section.

� The server receives a request from a proxy. That
request may or may not contain a special “Quality”
header. The presence of such a header indicates that
a particular version of the data is being requested. If
the server has that version, it will send it to the proxy.
In case it does not have that version and the proxy de-
sires, it will send the next higher version. Note that it
may so happen that a proxy might have a higher ver-
sion in the cache, in which case, it might request the
server to just send the exact version, if present.

3. Transcode or Download?

Assuming that the proxy maintains a local cache, each
client request results in one of four possibilities:

1. Full Hit: The cache contains the exact version re-
quested by the client.

2. Partial Hit: This may occur, when the cache has a
higher fidelity version. The higher version can be
transcoded locally to the desired version For example,
proxy has a quality 75 JPEG image when the request
was for the quality 50 JPEG of the same image.

3. Secondary Hit: This happens when the proxy has a
version with a lower fidelity than the one requested,
proxy has the option of either downloading the appro-
priate version from the server, or serve the lower ver-
sion, if that is acceptable to the client.

4. Miss: A miss occurs when there is no version of the
data available in the cache.

Clearly, full hits and misses are easy to handle—the re-
quested object is served using locally cached data in the
event of a full hit or downloaded from the server in the
event of a miss (if the server returns a higher fidelity ver-
sion, a transcoding step is necessary before responding to
the client). In the rest of this section, we outline our strate-
gies to handle partial and secondary hits.

3.1. Partial Hit

As mentioned earlier, a partial hit is said to occur when
the cache contains a higher fidelity version than requested
by the client. Such a version can be easily transcoded to
the desired version. This situation presents the following
possibilities to the proxy:

� Transcode the higher version to the required version
and send it to the client. (Option T)

� Check if the server has the required version and if it
has, send that to the client after downloading from the
server. (Option D)

If the server does not have the required version, we choose
Option T. In case the server also has the required version,
our proxy chooses one of the options trying to minimize
the response time of the client. The decision is made after
considering the following factors:

� Complexity of transcoding: This may in turn depend
on the version of the object to be converted from (be-
fore) and the version to be converted into (after), the
object type and size of that object [6].

� Proxy Load: For a dedicated proxy, the number of
clients being served is a good estimate of the load.

� Network Delays between the source and proxy.

To decide between Option T and Option D, we propose
the following:

1. Maintain the following statistics for each application
of the transcoding process:

� Size of the data before and after transcoding ( ���
and ��� respectively).



� The number of clients connected to the proxy ( � ).
This represents the current load on the dedicated
proxy.� The time taken to transcode from Version-A to
Version-B (

�
	��
).

2. Also maintain the following information about any
data that is downloaded by the proxy.

� Size of data ( �� ).� Source of data (i.e., the server, where it is down-
loaded from) ( � ).� Time taken to download that data (

�  ). This will
be the round trip delay between the proxy and the
server.

For a typical transcoding method and image type, as
a first approximation, we assume that,

��	��
, the time for

transcoding is a function of its object size ( ��� ) and the num-
ber of clients connected to the proxy ( � ).

�
	�������	���� ���������
where

� 	��
is some function. Now, if we can approximate

the function
� 	��

, we can approximately calculate the time
that transcoding a version A to version B would take un-
der particular load conditions on the proxy. This is where
the statistics come into play. We store all the above men-
tioned information and when we have enough data, we eval-
uate

�
	��
beforehand by approximating

��	��
. An important

point to notice is that the prediction models may be differ-
ent for different kinds of objects (for example, JPEG-JPEG
transcoding generally varies linearly with ��� , while it is not
so for JPEG-GIF transcoding [6]).

On similar lines, we try to predict,
�  , the time to down-

load a particular object from its source (Option D). There
has been considerable amount of work done in this area
[7, 10]. As an approximation, we assume the download-
delay to be a function of the size of the object to be down-
loaded and the proxy load (represented by the number of
clients being served by the proxy).�  ��� ��� �!"�����

Then we attempt to approximate
� �

. A point to be noted
here is that we do not have to interact with the server to get
the size of the data to be downloaded ( �  ). Since we have a
higher version of that data, �  can be estimated by using the
transcoding data, � � (size before transcoding) and � � (size
after transcoding) values in particular, for that transcoding
and other data format information [6].

This estimate would give us the time that would be taken
by the proxy to download the requested version of the ob-
ject under present conditions (Option D). However, a simple
comparison between

�#	��
and

�  might not be appropriate.

It is usually preferable to serve clients with local data pri-
marily because network behavior might be erratic and hence
difficult to capture using a simple prediction model. So we
impose a condition that if

� 	��
is greater than $ times

� 
then it is better to download from the server, where $ is a
tunable parameter. Thus, the heuristic is of the form:

If
� 	���% $'& � 

then transcode locally
else download the required version from the source.

The parameter $ can be tuned to achieve dif-
ferent transcoding/download ratios depending upon the
prevailing conditions other then estimated times to
transcode/download. For example, in case the proxy is
heavily loaded, $ can be decreased to cause more server
downloads. Similarly in case of light proxy load condi-
tions, the value of $ can be increased, causing more local
transcodings.

There might be times when we don’t have enough data to
estimate T and D. In such cases we set the default to be the
local transcoding of the higher version present in the cache.

Clearly, we need ways to approximate functions
� 	��

and
� �

. For this, we propose a number of estimation tech-
niques, ranging from simple and basic techniques to com-
plex algorithms, which give better approximations but re-
sult in processing overheads which cannot be ignored. A
few sample techniques are:

1. IP based: A simple scheme which maintains a record
of IP addresses for servers, and chooses between lo-
cal transcoding and downloading from the server de-
pending on the source address. It learns to make a
decision, depending upon a single factor of server ad-
dress. On a very basic level, this can divide the servers
into local servers and remote servers, and can learn to
choose local transcoding for remote servers and down-
loading from the servers if they are local. But clearly
this would be prone to changes in network behavior for
a single client-server pair.

2. Min-Min Comparison: Another possibility is for a
scheme which assumes a best case scenario for both
Option T and Option D, that is, it assumes that the next
request for a similar sized file would take the mini-
mum of the times taken by both the options in the last(

transcodings or server downloads. This scheme is
fairly simple and does not use the statistics of the load
on the proxy, bandwidth available, etc. However, since
we are using only the very recent times as the basis
of approximations, the decision is based on the pre-
vailing conditions and takes into account the available
bandwidth, load on proxy and server, etc.

3. Multiple Linear Regression: A little more complex
policy is that of using Multiple linear regression. It is a



common learning technique for linear models. We as-
sume

��	��
and

� �
to be linear functions and learn this

function using regression. For this, we use the statis-
tics for load on the CPU (represented by the number
of client connections), the time taken for transcodings
and server downloads, and the size of the file to predict
the time to transcode locally, and the time to download
the required version from the server and make an ap-
propriate decision.

The techniques which we have used are fairly simple
ones, and employ the past performance to predict times to
transcode and download. Another option is to use a more
complicated policy for Option T as mentioned in [6]. The
more accurate policy has to be based on a variety of other
factors, like the content of the image (that is whether the
image is a natural image or an artificially rendered image),
image dimensions, compression algorithm and transcoding
parameters (depth of quantization and/or scaling) [6]. Such
a policy would more accurately predict

��	��
, but would be

computationally demanding as well.

3.2. Secondary Hit

Secondary hit is said to occur when the cache at the
proxy has a lower fidelity version than requested. In this
case there are the following possibilities:

� If the user can compromise on QoS or it is known that
this version has all the data that might be of interest
to the user, we can respond with the lower fidelity ver-
sion.

� If the server has the required version, the proxy gets
that version from the server and sends it to the user.

� If the server does not have the required version, the
proxy gets a higher version and transcodes it to the re-
quired version.

In case of a secondary hit the decision has to be made
keeping in mind the tradeoff between time to get a higher
version from the server, and compromise on quality by the
client. This should be done on the basis of predefined course
of action for the server-client pair, with inputs like available
bandwidth, and predicted time to download from the server.
Such a scenario can be dealt with by integrating a person-
alization engine with the proxy, so that we have the exact
details of user interests and his or her agreement to compro-
mise on QoS.

4. Cache Replacement Policies

Any cached object can be accessed for two reasons:

� The proxy gets a request, specifically for that object.
We call this, a Direct Reference.

� The proxy gets a request for a lower version of an ob-
ject and it has to transcode this object to the desired
version. We call this, Transcoding Reference.

Each object stored at a proxy will hence have two kinds of
utilities:

� Reference Utility: This is the utility of the object be-
cause of the time it saves when a client requests this
object (that is, a Full Hit occurs), since this object is
directly sent to the client from the local cache. This is
similar to the normal scenario of a cache hit.

� Transcoding Utility: This is the utility of the object,
because of the time it saves when a client requests a
lower version of this object (that is, a Partial Hit oc-
curs). The object can now be transcoded to the desired
version and sent to the client.

Notice that it might be profitable to keep an object in
the cache which is not referenced directly even once (very
low reference utility) but is extremely useful since lots of re-
quests are being served by transcoding it to other requested
versions (very high transcoding utility)!

To accommodate such a scenario, we assign a profit met-
ric to each cached object. This profit metric is an aug-
mented version of the metric used in WATCHMAN [8].
Each cached object, )+* , has a profit value, ,-* , given by:

, * �/.1032405 076
8:9<; 0 9 � 0 95 0

=
: All possible versions into which )+* can be transcoded.> * : Average rate of direct reference of the object.? *A@ : Average rate of reference of the object, when it is

referenced for transcoding to version
=
.B * : Cost saved by the presence of this object, when it is

referenced directly.C *A@ : Cost saved by the presence of this object, when it is
referenced for transcoding to a version

=
.� * : Size of the object.

In the above expression,
> * . B * corresponds to the refer-

ence utility of the object. It determines the cost savings due
to caching )+* for direct reference requests. In case two ob-
jects have the same cost savings, it is beneficial to evict the
one with the larger size as it frees more space in the cache.
Hence the inverse relationship with ��* .

The second subexpression corresponds to the total
transcoding utility of the object. The expression, ? *D@ C *D@
corresponds to the transcoding utility of the cached object
for its transcoding to version

=
. Since an object can be

transcoded to a number of versions, we need to sum this
over all possible

=
’s. Again the � * factor appears because of

the preference to evict larger objects.



4.1. Calculation of parameters

In this section, we discuss techniques to determine
> * ,? *A@ , B * and

C *A@ . First let us see how we determine
> * and? *A@ . > * is estimated based on a moving average of the lastE

inter-arrival times of requests to )+* . Notice that these
references are direct references. It is defined to be:> * � FG4HIGKJ
where

�
is the current time and

� F is the time of the last
E GKL

reference. The inclusion of current time
�

in the expression
ensures that the objects which were referenced long back
have lesser profit values. This guarantees aging of cached
objects. In case less than

E
references are available,

>
is es-

timated using the available references. Similarly, ? *D@ is es-
timated based on the moving average of last

E
inter-arrival

times of accesses to ) * for transcoding to Version
=
.

? *D@ � FG4HIGKJ
Now we need to determine B * and

C *D@ . Let us assume that
there are � versions of an object in the cache, MONQP ... N�RTS
with N P being the lowest version and N R being the highest
version.

Notice the fact that N P can be generated in two ways:

� Download from its source (Time taken for this option
is given by

� 5#U )
� Transcode from N @ , = �WVYX � �3Z �1[\[][]�#��� where N @ is in

cache. (Time for this option is given by
�_^ 9a` ^ U )

We take the minimum over
=

for the second option, since
it is computationally cheaper to transcode an object from an
immediate next higher version, which will have smaller size
than other available versions. Now, the proxy will generateN P by the method which takes minimum time. Therefore,

B P ��VYX � �b� 5#U � � ^ 9 ` ^ U � ,
= ��VYX � �3Z �c[][\[]�#��� such that N�@ is
in cache.

Now N P will have zero transcoding utility since it cannot
be transcoded into any other version. Therefore,C P @ �edgf =

Let us consider a version Nh* where
Xji M Z �1[\[][\���lknm<S . On

similar lines,

B * ��VYX � �b� 5 0 � ��^ 9�` ^ 0 � , = ��VoX � �KX 6 m<�c[][][\����� such that N @
is in cache.

Now, let us consider its transcoding utility. It can be used
to transcode into

X kpm versions. Therefore, whenever it is
accessed for transcoding to Version

=
, it saves the amount of

time saved thereby is given by the minimum of the time to
download Version

=
from its source or to transcode it from

a version higher than
X
. Hence,

C *A@ � min(
� 5 9 k � ^ 0 ` ^ 9 , � ^!q ` ^ 9 k � ^ 0 ` ^ 9 ),r ��VoX � �KX 6 m<�c[][][\����� such that Nhs is in cache.

For the highest version NhR , it is easy to see,

B R �t� 5vuC R @ �t� 5 9 k ��^ u ` ^ 9
4.2. Maintenance of parameters

With each cache object, we maintain statistics for its lastE
direct and

E
transcoding references for each type of

transcoding from this version to another version. Whenever
the object is accessed, we update these statistics, depending
on whether it was a direct or a transcoding reference. In
order to avoid overheads of updating

>
and ? for changing

values of
�
, profit values are evaluated on-the-fly whenever

the object has to be considered for eviction from the cache.
The other parameters requiring regular updates are B * andC *A@ . B * and

C *A@ depend on the presence of other versions
of the objects in the cache as well. Hence, we will have
to update these values whenever a new version of the same
object is either brought in or evicted out of the cache. These
periodic updates help since these values also depend on the
present load conditions on the proxy and it will make sure
that they stay true to the current conditions.

4.3. Algorithm

Since the objects with lesser references have less reli-
able estimates of

> * and ? *A@ , the cache replacement algo-
rithm gives them a higher priority for eviction. As [8] sug-
gests, we consider all objects with just one reference (Direct
and Transcoding) and evict the ones with least profit scores.
Then we consider the objects with two references and so on.
The parameters used are (i) � : Size of object to be cached,
(ii) w : Set of objects to be replaced, and (iii) $yx{z : Maxi-
mum number of references to any object.

Algorithm 1 Replace( � )
for all

X�� m to Max do| * � list of retrieved set of objects with exactly
X

ref-
erences arranged in increasing profit order

end for| �
list of all retrieved set of objects arranged in order| P�} |�~ }��c�1��} |�� ���w � minimal prefix of

|
such that

8:� 9��<� � @�� �
return w

4.4. Performance

We implemented the above mentioned Cache Replace-
ment Strategy and compared it with LRU. The data objects
accessed consisted of 300 JPEG images of 3 different ver-
sions. The total size of the images is 100 Mb. The access



trace was created using Zipf’s law [3] with � �ed [ � . There
were a total of 1000 requests by 5 concurrent clients. Fig-2
contains the plot of hit ratio with different cache sizes. The
hit ratio is defined to be ���Q�!�A�"� * G 5�� ��� ��� G *�� �<� * G 5���h� G � ���Q�
�#��� 5 G 5 . As the
plot indicates, our algorithm (PTC) works very well as com-
pared to standard LRU. This is because of the replacement
policy being based simply on the reference and transcod-
ing utilities of the object instead of being based on the last
access to the object.
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Figure 2. Cache Replacement

We would like to point out that a technique similar to the
above, for transcoding-conscious cache replacement, was
recently proposed in [4]. The work uses the notion of
a weighted transcoding graph and adopts a general profit
function based on the aggregate effect of each object. For
each cached object, a corresponding weighted transcoding
graph is maintained. For example, consider a graph in Fig-
3. The nodes indicate various versions for a cached ob-
ject and the edges represent the transcoding relationships
between the various versions. For example, an edge be-
tween node 1 and node 2 indicates that version 1 can be
transcoded into version 2 with transcoding cost represented
by the weight of the edge (10). A generalized profit func-
tion is formulated in a manner similar to the one devised in
our work.

Despite the similarities, there are three main differences
between the two:

� They assume constant transcoding complexity for a
specific before and after transcoding pair. In general,
system conditions such as the current proxy load can
significantly impact this value; our work takes such
variations into account.

� They assume a constant server download rate from the
server. In general, network conditions on the server-
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Figure 3. Weighted Transcoding Graph

proxy path may vary depending on the network traffic,
an aspect that is considered in our work.

� Finally, we use learning approaches to endow intelli-
gence to our proxies and learn from past history—an
important difference that can potentially yield perfor-
mance improvements.

5. Experimental Evaluation of PTCs

5.1. Setup

Our system consists of a proxy, an enhanced web server
and a number of client devices. The web server is a modi-
fied version of Apache-1.3.19. The experiments used a col-
lection of a three thousand JPG images, which were col-
lected from local users at IIT Bombay. The server has 3
versions of each file of quality factors 100, 50 and 20. The
proxy is a modified Java-based transcoding proxy called
Rabbit [1]. The transcoding mechanism used is the “con-
vert” utility in Linux. The client devices are simulated by
Perl scripts which connect to the proxy and simulate HTTP
requests containing special “Quality” headers. All the three
components are on regular desktop machines with Pentium
III, 800 MHz processors and 128 MB of RAM. Two dif-
ferent sources, local and remote, are used in order to do
a controlled performance evaluation of our proposed poli-
cies. The local source is a machine connected to the proxy
via IIT Bombay LAN. The remote source is located at the
University of Massachusetts, Amherst. We implemented 4
different policies and compared their total response times.

5.2. Partial Hit Policy

Recall that a partial hit occurs when the cache contains a
higher version of the data requested and the source has the
exact requested version of that data. In such a scenario, the
proxy has to choose between downloading the data from its
source server, or transcoding the higher version locally.

To show the performance improvement when we intro-
duce intelligence in proxies, we compare two intelligent



polices for PTCs, PTC:Min-Min and PTC:Regression, and
compare their performance with a third policy, Download-
all, which always chooses server download, and a fourth,
Transcode-all, which always chooses local transcoding.

Regression policy approximates the time to transcode
and time to download from the server on the basis of num-
ber of connections, and the size of files. It is implemented
with a learning time of 16 connections, i.e., it starts to take
decisions for partial hits after 16 partial hits have taken
place. During the first 16 connections, it always chooses
local transcoding.

Min-Min policy is implemented with N = 5, i.e., it
approximates the time for local transcoding or for server
download from the last 5 connections of that data size
range, for that particular client-server pair. The data items
are divided in groups of 10 KB in our implementation.
Because the files are grouped in size ranges, to make an
approximation, at least 5 partial hits must have happened in
that particular size range.

5.2.1. Traces. Requests for 3000 files were made by 5
concurrent clients. The trace was created using Zipf’s law
[3] with � �td [ � . Each request for a 100 quality factor
image is followed by requests for a lower version of the
same image. There were around 1200 partial hits for this
request stream. The set of experiments were run with both
local and remote sources.

5.2.2. Performance. Fig-4 shows the plot of total response
time for the stream of requests for eight different runs for a
local source, with $ ���

. Such a situation simulates the
scenario when the source-proxy communication is fast.

Not surprisingly, since the server is local, in almost all
the runs the download-all option has the minimum response
time. It is very closely followed by the PTC policies.
Transcode-all has the maximum response time. That the
PTC policies are performing well is encouraging given their
processing overheads and the effect of the initial learning
period.

The performance of the PTC policies lies in its ability to
recognize the fast server-proxy link and hence doing min-
imum amount of local transcoding. This is clearly evident
from Fig-5, which plots the number of times, PTC policies
chose to transcode a higher version locally. For Regression
policy, there are close to 16 local transcodings in all runs,
which is the number of transcodings in the learning phase.
The Min-Min policy has a larger number of transcodings
due to longer learning phase, and hence the total response
time is also more.

A similar set of experiments were run with a remote
source. Fig-6 plots the total response times for the four ap-
proaches for this case (with $ ���

).
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Figure 4. Total Response Times (Local
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Figure 5. No of transcodings (Local Source;
M=4) Note: In download-all case the no. of
local transcodings is 0

As the plot indicates, the PTC policies turns out to be
the near best in almost all cases. This again is because of its
ability to choose the better of the two available options upon
the occurrence of a partial hit. Fig-7 plots the number of
times local transcoding was preferred over server download.
Clearly, with a remote server, local transcoding is chosen in
more than half the cases, since it is better to transcode the
object locally than getting it from a remote source.

5.2.3. Analysis of Performance.

To better understand the performance of the policy, we nar-
rowed down the performance for full hits, partial hits and
misses. We plotted the performance of two policies (Re-
gression and Min-Min) for the cases of a local and a remote
server. Fig-8 plots the response times for the local server.
The only non-intuitive part is a greater response time for a
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Figure 6. Total Response Times (Remote
Source; M=4)
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Figure 7. No of transcodings (Remote Source;
M=4) Note: In download-all case the no. of
local transcodings is 0

partial hit than a miss for a similar sized data object. This is
explained by the fact that in case of a local server, the policy
mostly chooses to download the object from the server for
a partial hit. Hence the time would at least be equal to the
time of a miss. The difference is attributed to the processing
overheads for the policy, which include the learning phase.

Fig-9 contains a similar plot for a remote server. Clearly
the partial hit policy is reducing the total response time.
Since in most of the real-life scenarios, the web server is
remote, the use of such a policy is justified and beneficial.

As seen in the last two plots, there is very little to choose
from the two policies even though one of the policies (Re-
gression) is more accurate than the other (Min-Min). This
indicates that the processing overheads are significant and
are influencing the total response times. This is further clear
from Fig-10.

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

x 10
5

0

500

1000

1500

2000

2500

Size (bytes)

R
es

po
ns

e 
T

im
e 

(m
s)

Hit
PH PTC:Min−Min
PH PTC:Regression
Miss

Figure 8. Breakup of performance (Local
Server) Note: There are no partial hits for
higher data sizes

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

x 10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Size (bytes)

R
es

po
ns

e 
T

im
e 

(m
s)

Hit
PH PTC:Min−Min
PH PTC:Regression
Miss

Figure 9. Breakup of performance (Remote
Server)

The regression policy is taking around 20% of the total
response time, whereas a simpler Min-Min policy is taking
just 5%. Hence, we claim that a more accurate and complex
policy would not necessarily better the performance and
even a simple policy can be good enough.

5.2.4. Performance for Different Request Ratios. To
compare the performance of our adaptive policies we
calculate the total response time for different request sets,
with the percentage of local requests varying from 0 to
100%.

As we see in Fig-11, the PTC policies, both Min-Min
and Regression perform far better than the policies which
always choose local transcoding over server download or
vice versa, for almost all request ratios. Only when 95% or
more of the requests are local, is there not much to choose
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between the policies. Since this situation is highly unlikely,
simple, yet intelligent, policies are highly desirable.

6. Conclusions and Future Work
In this work, we have developed intelligent proxies to ef-

ficiently handle diverse client devices accessing the WWW.
The proxies have been integrated with a caching engine
and the resulting caching issues have been identified and
strategies proposed to handle these issues. As our results
indicate, our adaptive policies make the most appropriate
choice. Also, the proxy adapts itself to the current network
traffic and proxy load conditions. We have shown that basic
and simple policies can lead to considerable performance
improvements. We have also developed a cache replace-
ment algorithm which has been shown to work much better
than vanilla LRU.

This work can be extended to include more proxy-level

contribution to the Partial Hit policies, for example, the
proxy can act on its own depending upon the prevailing
conditions, and choose an appropriate version for the
client. We need to develop and implement a personaliza-
tion engine, which keeps profiles for clients, and helps
make better decisions for secondary and partial hits. For
example, in case a client with a small-screen handheld
wants to see only a selected portion of the data, we can
use this personalized information to send just the clippings
the user is interested in. Also, another extension would be
broadening the scope of data objects by including various
kinds of data like videos, voice, text etc. There is also
a need for more extensive testing of various prediction
mechanisms, especially with objects that require different
types of transcoding.
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