
An Efficient and Resilient Approach
to Filtering and Disseminating Streaming Data

Shetal Shah Shyamshankar Dharmarajan Krithi Ramamritham

TCS Lab for Internet Research,
Dept of Comp Science and Engg,

Indian Institute of Technology Bombay,
Mumbai, India 400076.

Abstract

Many web users monitor dynamic data such as stock
prices, real-time sensor data and traffic data for making
on-line decisions. Instances of such data can be viewed
as data streams. In this paper, we consider techniques
for creating a resilient and efficient content distribution
network for such dynamically changing streaming data.
We address the problem of maintaining the coherency of
dynamic data items in a network of repositories: data
disseminated to one repository is filtered by that repos-
itory and disseminated to repositories dependent on it.
Our method is resilient to link failures and repository
failures. This resiliency implies that data fidelity is not
lost even when the repository from which (or a commu-
nication path through which) a user obtains data experi-
ences failures. Experimental evaluation, using real world
traces of streaming data, demonstrates that (i) the (com-
putational and communication) cost of adding this redun-
dancy is low, and (ii) surprisingly, in many cases, adding
resiliency enhancing features actually improves the fi-
delity provided by the system even in cases when there
are no failures. To further enhance fidelity, we also pro-
pose efficient techniques for filtering data arriving at one
repository and for scheduling the dissemination of fil-
tered data to another repository. Our results show that the
combination of resiliency enhancing and efficiency im-
proving techniques in fact help derive the potential that
push based systems are said to have in delivering 100%
fidelity. Without them, computational and communica-
tion delays inherent in dissemination networks can lead
to a large fidelity loss even in push based dissemination.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the VLDB copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying is by permis-
sion of the Very Large Data Base Endowment. To copy otherwise, or
to republish, requires a fee and/or special permission from the Endow-
ment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

1 Introduction

The internet and the web are increasingly used to
disseminate fast changing data like data collected from
sensors, traffic and weather information, stock prices,
sports scores, and even health monitoring information
(http://www.openclinical.org/aispi neoganesh.html).
The data under consideration is highly dynamic, i.e., the
data changes continuously and at a fast rate, streaming,
i.e., new data can be viewed as being appended to the old
or historical data, and aperiodic, i.e., the time between
the updates and the value of the updates are not known
apriori. Increasingly, users are interested in not only
monitoring streaming data but in also using it for on-line
decision making. The growth of the internet has made
the problem of managing streaming, i.e., dynamic data
both interesting and challenging.

Resource limitations at a source of dynamic data will
limit the number of users that can be served directly by
the source. A natural solution to this is to have a set of
repositories which replicate the source data and serve the
data to geographically closer users. Services like Aka-
mai.net and IBM’s edge server technology are exemplars
of such networks of repositories, which aim to provide
better services by shifting most of the work to the edge of
the network (closer to the end users). But, although such
systems scale quite well, if the data is changing at a fast
rate, the quality of service at a repository farther from
the data source would deteriorate. In general, replica-
tion can reduce the load on the sources, but replication of
time-varying data introduces new challenges. First, data
at the repositories needs to be coherent with the source.
Second, unless updates to the data are carefully dissem-
inated from sources to repositories, the communication
and computation overheads involved in such dissemina-
tion can themselves result in delays as well as scalability
problems, further contributing to loss of data coherency.

In situations where the data is to be used for on-line
decision making, users specify the bound on the tolera-
ble imprecision associated with each requested data item.
This can be viewed as the coherency requirement (cr) as-

sociated with the data. The coherency requirement as-
sociated with a time-varying data item depends on the
nature of the item and user tolerances. For example, a
user involved in exploiting exchange disparities in differ-
ent markets or an online stock trader may impose strin-
gent coherency requirements (e.g., the stock price should
never be out-of-sync by more than one cent from the
actual value) whereas a casual observer of currency ex-
change rate fluctuations or stock prices may be content
with a less stringent coherency requirement. The basic
framework underlying the coherency model is outlined
in Section 2.

The focus of our work is to design and build a
dynamic data distribution system which is coherency-
preserving, i.e., the delivered data must preserve asso-
ciated coherency requirements, resilient to failures, and
efficient, i.e., the system should be able to provide high
fidelity even with a large number of users and data. We
consider a system in which the necessary changes are
pushed to the users i.e., users are automatically informed
about changes of interest, rather than each user indepen-
dently polling the source(s) for changes of interest. The
efficacy of the system’s response to users’ requests can
then be evaluated with respect to the offered (a) Fidelity
which is indicative of the degree to which the user’s co-
herency needs are satisfied, and (b) Number of Messages,
measured in terms of the number of messages that are ex-
changed over the network to provide this fidelity. Unless
designed carefully, contrary to folklore, even push-based
systems experience considerable loss in fidelity due to
message delays and processing costs.

The contribution of this paper lies in efficient solu-
tions to the three major problems that need to be solved
to effectively address this challenge.
1) Construction of an effective dissemination network
of repositories. This network of repositories is a logical
overlay network constructed taking into account the data
and coherency needs of users attached to each repository,
the expected delays at each repository as well as delays
along the communication paths connecting the reposito-
ries. We call this network a dynamic data dissemination
graph, (

�����
).

In [26] we presented �����
	 , an algorithm to build a�����
. However, further experimentation showed ������	

to be unable to cope when a large number of data items
were being disseminated, with or without failures in the
network. This motivated us to investigate techniques to
build dissemination networks that are scalable and re-
silient. The new algorithm �����	 , presented in Section
3, for the construction of dissemination graph has these
features. In �����	 , repositories with more stringent co-
herency requirements are placed closer to the source in
the network as they are likely to get more updates than
with looser coherency requirements. By placing them
closer to the source, we can reduce the number of mes-
sages in the system and this in turn is likely to improve
the fidelity of the system.

Since a repository will typically need multiple data
items, each at different coherency requirements, in�����	 , we build a dynamic data dissemination tree,

�����
,

for each data item. Hence, for some data items (for which
it has stringent coherency requirements), the repository
will be closer to the respective sources. When multi-
ple data items are considered, each physical repository
can be seen as cooperating with other repositories in the
physical network, forming a peer-to-peer relationship.
Our performance study, using real world traces of real-
time (stock) streams, shows that �����	 delivers better fi-
delity than �
���
	 : fidelity losses were often found to be
almost an order of magnitude lower than that of �
����	 .

2) Provision for the dissemination of dynamic data
in spite of failures in the overlay network. Our ap-
proach, presented in Section 4, to handle repository fail-
ures as well as the communication link failures is based
on adding back-up parents to a dependent, but of sig-
nificance is the design feature that a back-up parent is
asked to deliver data with coherency that is less stringent
than that associated with the parent. This reduces the
overheads of providing resiliency, yet allows the depen-
dent to determine if a parent has failed. If such a failure
is detected, measures are provided to find an alternative
parent. Performance studies show that our measures to
add resiliency to the dissemination tree result in an in-
teresting and useful side effect: In many cases, contrary
to expectations, when no failures are present, fidelity in
fact improves over the no-resiliency case. In Section 4
we explain the reason for this surprising result.

3) Efficient filtering and scheduling techniques for
repositories. In a typical

�����
, a source or a repository

receives updates for data items and selectively dissemi-
nates them to its downstream repositories or to users di-
rectly connected to it. Given the list of requests associ-
ated with a repository, for every update to a data item, the
repository essentially identifies the requests that match
this update. To achieve high fidelity we must reduce the
delay (a) in performing this matching and (b) in pushing
the changes to the interested dependents.

Our approach presented in Section 5, makes use of the
observation that it is not always necessary to disseminate
the exact values of the most recent updates, as long as
the values presented preserve the coherency of the data.
Disseminating a pseudo-value might be beneficial espe-
cially when the data value oscillates around the pseudo-
value. Furthermore, simple yet effective matching tech-
niques are incorporated within a repository to make data
dissemination through a repository highly efficient. Per-
formance results show that such informed filtering and
dissemination of updates leads to better fidelity. Often an
order of magnitude reduction is observed in the fidelity
losses that are inevitable due to dissemination delays.

In summary, this paper presents an efficient method
for constructing an overlay network for dynamic data
dissemination. In addition, it presents resiliency and ef-
ficiency enhancement techniques that allow the handling

of failures and permit the dissemination to scale to a large
number of users and data items. We discuss related work
in Section 6 and then conclude the paper.

2 The Basic Framework: Data Coherency
and Overlay Network

Source

Cooperating

Users

Repositories

Repository

Source
S (t) x

P (t)x

User
U (t)x

(a) The Cooperative (b) The Problem
Repository Architecture of Coherence

Figure 1: The Basic Framework

As shown in Figure 1(a), we build a network of
sources and repositories with users connecting to the
repositories, and repositories deriving their data needs
from users’ data and coherency requirements. Suppose
a coherency requirement (�) is associated with a data
item, to denote the maximum permissible deviation of
the user’s view from the value of data

�
at the source.

Generally, � can be specified in units of time (e.g., the
item should never be out-of-sync by more than 5 min-
utes) or value (e.g., weather information where the tem-
perature value should never be out-of-sync by more than
two degrees). In this paper, we only consider coherence
requirements specified in terms of the value of the object;
maintaining coherence requirements in units of time is
a simpler problem that requires less sophisticated tech-
niques (e.g., push every 5 minutes). Each data item in
the repository from which a user obtains data must be re-
freshed in such a way that the user-specified coherency
requirements are maintained. Formally, let ����� � � and! �"� � � denote the value of a data item # at the source and
the user, respectively, at time

�
(see Figure 1(b)). Then,

to maintain coherency , we should have$! �"� � �&% �'��� � � $)(�
. The issue of which repository a user should connect to
is a separate problem and is not addressed in this paper.
We assume that the repositories transmit the data updates
to the users with negligible delays and hence we focus on
maintaining coherence at the repositories, i.e.,$ * � � � �&% � � � � � $)(�
Empirically, fidelity + observed by a user can be defined
to be the total length of time for which the above inequal-
ity holds, normalized by the total length of the observa-
tions. A good coherency mechanism must provide high

fidelity at low cost. Note that although Figure 1(b) shows
a single data repository, the coherency requirements are
no different if there are multiple data repositories acting
as intermediaries between the source and the end-user.

For each data item we build a logical overlay network
or dynamic data dissemination tree, (

�)���
), as described

below. Consider a data item # . We assume that # is
served by only one source. It is possible to extend the
algorithm to deal with multiple sources, but for simplic-
ity we do not consider this case here. Let repositories,.-�/�0�0�0�/1,32

be interested in # . The source directly serves
some of these repositories. These repositories in turn
serve a subset of the remaining repositories such that the
resulting network is in the form a tree rooted at the source
and consisting of repositories

,4-5/�0�0�0�/1,32
. The children

of a node in the tree are also called the dependents of
the node. Thus, a repository serves not only its users
but also its dependent repositories. Since the repository
disseminates updates to its users and dependents, the co-
herency requirement of a repository should be the most
stringent requirement that it has to serve. When a data-
change occurs at the source, it checks which of its di-
rect and indirect dependents are interested in the change
and pushes the change to them. (This check is enabled
by a Centralized (source-based) component algorithm of������	 [26], and is also used by �����	 .) When a repos-
itory gets a data update, it in turn pushes the change to
its dependents. Each repository acts as a filter where it
sends only the updates of interest further down. Thus, the
view of # at any repository is a projection of the changes
taking place to # at the source.

3 Building a 6'7�8 .
In this section, we show how to build a

�����
for a data item# , given the coherency requirements of each repository

interested in # . The basic algorithm is described here
and the next section shows how to make the

�)�9�
resilient

to failures.
Suppose we are given the physical layout of the com-

munication network in the form of a graph, where the
graph consists of a set of sources, repositories and the
underlying network. In the sequel, when we refer to a���9�

we mean, a
�����

for # . The root of the
�����

is the
source which serves # . A repository

*
serving repos-

itory : with data # , is called the parent of : for data
item # and : is called the dependent of

*
for # . The

length of the path from a repository in the
�����

to the root,
i.e., the source, is the level of the repository in the

� � �
. In

other words, it is the number of logical links between the
source and the repository. The source is considered to be
at level ; . The dependents of the source are at level < .

We do not want to overload a repository and hence
we place a limit on the number of unique = dependent,
data item > pairs that it can serve. A repository should
ideally serve at least as many unique pairs as the number
of data items served to it. If a repository is currently
serving less than this fixed number, then we say that the

repository has the resources to serve a new dependent.
Thus, �����	 has a built-in limit on the resources that a
repository offers towards cooperation.

A repository
,

interested in data item # requests the
source for insertion. When the source gets the request
it checks if it has enough resources to service

,
. If it

has the resources or if the
�����

consists of only one node,
i.e., the source,

,
is made a dependent of the source in

the
� � �

. If the source does not have the resources, as
described next, it determines the most suitable subtree
rooted at its dependents for the insertion of

,
.

Each repository
*

in a
���9�

maintains the least strin-
gent coherence requirement for that data item at each
level in the subtree rooted at

*
. Every time a new node

is inserted in the
�����

, we update the data-structures at
all its ancestors if its coherence requirement is the least
stringent in its level. This information is used by

*
to

determine the most suitable subtree rooted at its depen-
dents for the insertion of

,
. The subtree is chosen such

that the level of
,

in the
���9�

is the smallest possible and
that communication delays between

,
and its parent are

small. This is recursively applied to select subtrees in the
subtree, till we reach a node : such that

1. : has data that is stringent enough to meet
,

’s re-
quirements and : has the resources to serve

,
. In

this case,
,

is made the dependent of : .

2. Coherency requirement of : is less stringent than,
. In this case

,
pushes : down in the subtree. It

replaces : . The parent of : now serves
,

and
,

in
turn serves : .

,
also serves as many dependents of: as it can.

The motivation behind this replacement technique is to
get a

�����
where repositories with more stringent coheren-

cies serve repositories with loose coherencies.
In the rest of the paper, we refer to the above

algorithm as � ata- tem-at-a- � ime- 	 lgorithm (�����).�����	 requires very little book-keeping and, experimen-
tal results, show that it indeed produces

�����
s that deliver

data with high fidelity, and in fact is almost an order of
magnitude better than �
����	 introduced in [26].

We now present the experimental methodology and
then the results for the performance evaluation of the

�"�
construction algorithms.

Traces – Collection procedure and characteristics:
The performance characteristics of our solution are in-
vestigated using real world stock price streams as exem-
plars of dynamic data - the presented results are based on
stock price traces (i.e., history of stock prices) obtained
by continuously polling http://finance.yahoo.com. We
collected 1000 traces making sure that the corresponding
stocks did see some trading during that day. The details
of some of the traces are listed in the table below to sug-
gest the characteristics of the traces used. (Max and Min
refer to the maximum and minimum prices observed in

the 10000 values polled during the indicated Time Inter-
val on the given ��? � � in Jan/Feb 2002.) As we can see,
we were able to obtain a new data value approximately
once per second. Since stock prices change at a slower
rate than once per second, the traces can be considered
to be ”real-time” traces.

Company Date Time Interval Min Max
Microsoft Feb 12 22:46-01:46 hours 60.09 60.85
SUNW Feb 1 21:30-01:22 hours 10.60 10.99
DELL Jan 30 00:43-04:12 hours 27.16 28.26
QCOM Feb 12 22:46-01:46 hours 40.38 41.23
INTC Jan 30 00:43-04:12 hours 33.66 34.239
Oracle Feb 1 21:30-01:22 hours 16.51 17.10

Characteristics of some of the Traces used for the experiment

Repositories – Data, Coherency and Cooperation
characteristics: Each repository requests a subset of
data items, with a particular data item chosen with 50%
probability. A coherency requirement � is associated
with each of the chosen data items. We use different
mixes of data coherency. Specifically, the � ’s associated
with data in a repository are a mix of stringent tolerances
(varying from $0.01 to 0.05) and less stringent tolerances
(varying from $0.5 to 0.99). � % of the data items have
stringent coherency requirements at each repository (the
remaining �@<�;A; % � �

%, of data items have less stringent
coherency requirements).

Physical Network – topology and delays: The phys-
ical network consists of nodes (routers and reposito-
ries) and links. The router topology was generated us-
ing BRITE (http://www.cs.bu.edu/brite). Once the router
topology was generated we randomly placed the repos-
itories and the sources in the same plane as that of the
routers and connected each to the closest router. For each
repository, data items of interest were first generated and
then coherencies were chosen from the desired range.

Our experiments use node-node communication de-
lays derived from a heavy tailed Pareto [24] distribution:#CB -�EDFHG # -

where I is given by J�J�LK - , M# being the

mean and # -
is the minimum delay a link can have. For

our experiments, M# was 15 ms (milli secs) and # -
was 2

ms. As a result, the average nominal node-node delay in
our networks was around 20-30 ms. This is lower than
the delays reported based on measurements done on the
internet [10]. We also present the results obtained at high
link delays.

Unless otherwise specified, computational delay in-
curred at a repository to disseminate an update to a de-
pendent is taken to be 12.5 ms. This includes the time
to perform any checks to examine whether an update
needs to be propagated to a dependent and the time to
prepare an update for transmission to a dependent (de-
tails of these are given in Section 5). In the presence of
complex query processing at repositories, for example,
if a repository aggregates information before transmit-
ting updates to its dependents, this processing time can

be considerable and hence the above default value for
the computational delay. We also measured the effect of
other values of computational delays on fidelity.

Metrics: The key metric for our experiments is the
loss in fidelity of the data. Recall that fidelity is the de-
gree to which a user’s coherency requirements are met
and is measured as the total length of time for which the
inequality

$ * � � �N% �N� � � $�(� holds (normalized by the
total length of the observations). The fidelity of a reposi-
tory is the mean fidelity over all data items stored at that
repository, while the overall fidelity of the system is the
mean fidelity of all repositories. The loss in fidelity is
simply �@<�;A;�O %

fidelity
�
. Clearly, the lower this value,

the better the overall performance of a dissemination al-
gorithm.

Another secondary metric that we use is Number of
Messages in the system. This is the total number of data
updates pushed. This gives us an indication of the load
on the network and hence the possible effect on fidelity.

Performance Evaluation: In [26], we have already
shown how filtering of updates at the repositories based
on coherency requirements improves fidelity and that co-
operation up to a certain point is beneficial.

For the base performance measurement, we used a
network topology consisting of 600 routers, 100 repos-
itories and 4 servers. The number of data items that a
server was servicing was varied from 25 to 250, i.e., the
total number of data items served by all the servers was
varied from <�;A; to <�;A;P; (corresponding, say, to the most
traded 1000 stocks in a market). Also, � the parameter
that adjusts the data coherency mix, was varied from 20
to 80. �
���
	 served as a benchmark against which to
compare �����	 . The results presented are averaged over
at least 5 different set of traces.

0 200 400 600 800 1000

#Data items

0

2

4

6

8

10

L
os

s
of

 F
id

el
ity

 (
%

)

LeLA, T=20
DiTA, T=20
LeLA, T=80
DiTA, T=80

Figure 2: Performance of �����	 versus �
���
	 for Dif-
ferent Number of Data Items

We can clearly see from Figure 2 that �����	 does
much better than �
���
	 . (The small apparent reduction
in fidelity loss values as we go from 300 to 500 can be at-
tributed to the small differences in the

�����
’s constructed

by ������	 for different number of data items). Specifi-
cally, for T=80%, whereas �����	 has between 0.5 and

1.25% loss of fidelity, �
���
	 has between 2.5 and 9.5%
loss. For T=20%, the loss for �����	 is an order of
magnitude lower than that of �
����	 . We noticed that
in �����	 a repository on an average served lesser num-
ber of unique = dependent, data item pairs > than �
���
	 .
This amounts to less work done at a node in �����	 and
this is a primary contributor to �����	 ’s superior perfor-
mance.

Each node in �����	 does less work than its counter-
part in �����
	 . As a result, the height of the dissemi-
nation tree in �����	 can be expected to be more than
that in ������	 . Thus, only when computation delays at
a node per update are very low, or link delays are large,
can �
���
	 expect to have an edge. To test this hypothe-
sis, the link delays were varied from <�Q 0SR ms to <A<�; ms.
The computation delays were varied from ; 0 R ms to <�Q 0SR
ms. We found that the behaviour of �
���
	 was better
(by just 0.5%) than that of �����	 only for very high link
delays (110ms) and for negligible computational delays
(; 0SR ms). For all other delays, �����	 does substantially
better than �����
	 (difference in fidelity is 1-3%). At high
link delays, �
���
	 had a maximum height of T whereas�����	 had a height of U on an average and a maximum
height of <�; . Fortunately, these high link delays are
not very common on the internet [10] and hence in prac-
tice �����	 is preferable. Another interesting observation
was that at high link delays, the fidelity offered by �����	
did not change much with change in computational de-
lays. This is another indication of the dominance of link
delays on the performance of �����	 .

4 Enhancing the Resiliency of the Reposi-
tory Network

Two classical approaches for fault tolerance are to have
either active backups or passive backups. The latter takes
less time to deal with a failure but increases the normal
load on the system. In our case, the increased load can
in turn lead to loss of fidelity. Clearly, it will be better to
achieve a sound compromise: fidelity loss incurred upon
failure should be low, but the fault-tolerance mechanism
should not degrade normal operation. We achieve this
compromise by using active backup-parents, but so that
the resulting overheads do not lead to loss of fidelity dur-
ing normal operations, the backup-parent serves data to
a dependent : with with a coherency ��VW>X� .

Once we fix � V we can calculate the expected number
of updates lost by : in case of a failure assuming that
data changes as a random walk on a line. (If all changes
are less than � V then we will not know when parent

*
fails. A possible embellishment to address this is to make*

send periodic ”I’m alive” messages.) Once
*

fails, :
requests Y to serve it the data at � . When

*
recovers

from the failure, : requests Y to serve the data item at�9V .
Note that this simple approach continues to provide

data, albeit with a lower coherency, to a dependent even
when a parent fails. Note that even if all parents serving

a repository fail, this will not disrupt the data dissemina-
tion. But if a back-up parent also fails, then the reposi-
tory will not get the data item(s) till one of them resumes
service. In short, a back-up parent is not backed up. We
now elaborate upon the choice Y and � V .

4.1 Choice of � V Using a Probabilistic Model

For the sake of simplicity we set � V , the coherency
maintained by the backup-parent as a multiple of � , i.e.,� V[Z]\�^ � . Choice of \ is important as it will decide
how many updates will be missed by the dependent on
average in case

*
fails. If \ is small, more particularly,

if \�Z < , then both the parent and the back-up parent will
send all the updates to the dependent and we will incur
high computational and communication overheads. If \
is set at a high value we might miss a large number of
changes. So, \ depends on the acceptable overheads im-
posed on the backup parent and the acceptable number
of missed updates. To calculate the number of missed
updates, we have two options: (1) observe from sample
runs, or (2) develop an analytical model. We choose the
latter since it gives us a value that will hold independent
of the dynamics of the data.

To simplify the treatment, we assume that the data val-
ues change up or down with uniform probability, i.e., the
probability of an increase in data value is same as that of
a decrease. No assumptions are made about the unit of
change or the time taken for a change. Using a Markov
Chain model (the detailed analysis is given in [27]) we
calculated _a`b@c�c��5c Z Q \"d % Q .

(Q \)d % Q) indicates the number of updates a depen-
dent will miss, on an average, before it detects that there
is a failure and hence is not getting updates from its par-
ent. Depending on the number of updates a dependent
may be willing to miss, we can set the value of \ . For\eZ Q , _f`b@c�c��5c Zhg % Q Z U . For dynamic data
that does not exhibit uniform change the expected num-
ber of misses may vary from that calculated above. Fur-
ther, even (Q \ d % Q) is likely to be pessimistic. We calcu-
lated the number of updates that a repository got from the
real parent for two consecutive updates from the backup-
parent. This was averaged over 100 repositories and 100
different traces and we found that the actual misses were
at most Q \)d % Q . As \ increases, the number of ac-
tual misses are quite less in comparison to the expected
number of misses. (For \iZ T / _f?�� �kj ?�lnmo@c�c���c Z<5p / _f��#Aqr��� � � � ms@c�c��5c Zut ; .)

Given the small number of missed updates for \�Z Q ,
we chose this value of \ in our experimentation.

4.2 Choice of back-up parents

Let : be a repository that wants a back-up parent for data
item # . Let

*
be the parent of : in the

�����
for # .

Consider the siblings of
*

. If
*

does not have any
siblings then consider the siblings of the first nearest an-
cestor of

*
with a sibling. One of the siblings is ran-

domly chosen to be the back-up parent of : . Let this

repository be Y . In case the coherency at which : wants# from Y is less then the coherency at which Y wants # ,
the parent of Y is asked to serve # to Y with the required
tighter coherency. Note that the coherency increase will
be at one level only: since the parent of Y is also an an-
cestor of : , it will be receiving updates of # at least at
the coherency requirement of : .

An advantage of choosing a sibling, as opposed to
any other repository in the tree, is that the change in co-
herency requirement is not percolated all the way to the
source. However, choosing a sibling might not be advan-
tageous all the time. If an ancestor of

*
and Y is heavily

loaded than the delay due to the load will be reflected in
the updates of both the Y and

*
. This might result in

additional loss in fidelity. Note that in case the
�)�9�

is a
skinny tree of repositories, then the source might finally
become the back-up parent of : for # .

4.3 Effect of Repository failures on Loss of Fidelity

The kind of failures we are looking at are memory less
infrequent failures. So we use an exponential probabil-
ity distribution

*wv �yxh> � � Z � K{z�| to generate both the
time to failure and the time to recover. Since the fail-
ures are infrequent we use a very small value of } Z } -
to generate the time to failure. We model transient fail-
ures (i.e. fast recovery) using a large value of } Z } d ,
(} d >e<), to calculate the time taken for recovery. As a
corollary, failures that require restart of the repositories
(i.e. slow recovery) is modeled using a very small value
of } d , (} d =H<).

Between link failures and repository failures, the one
that affects fidelity more is repository failure since a
repository failure affects all its dependents whereas a link
failure directly will typically affect only the dependents
connected to that link. A link failure can be modeled as
a partial failure of a repository - wherein for only some
of its dependents the repository has failed but for others
it has not. We have, however, not modeled such cases.

We would like to mention here that though our failure
model is incomplete (i.e. link failures are not explicitly
modeled) our solutions are complete, they will work in
the presence of both repository failures and link failures.

4.4 Performance Evaluation

Figure 3(a) shows the effect of adding resiliency. Back-
up parents were calculated as mentioned in Section 4.2.
The value of \ was set to Q . We see that, where fidelity
loss increases due to resiliency, the increase is small, less
than 0.5%. On the other hand, in some cases, e.g., for
small number of data items we observe that the resulting
fidelity actually improves because of resiliency!

We wanted to understand the behavior in Figure 3(a)
better. To this end we examined the number of updates
disseminated by DiTA with and without resiliency. We
saw an increase in the updates disseminated (about 60%)
in the network due to resiliency (in the absence of fail-
ures). In spite of this we see that the fidelity offered by

0 200 400 600 800 1000

#Data items

0.0

0.5

1.0

1.5

2.0

L
os

s
of

 F
id

el
it

y
(%

)

(a) In the Absence of Failures

0.0010 0.0100 0.1000 1.0000

Lambda2

0

2

4

6

8

L
os

s
of

 F
id

el
it

y
(%

)

(b) Varying ~)� (Recovery
Times), for 100 Data items

0 200 400 600 800 1000

#Data items

0.0

0.5

1.0

1.5

2.0

L
os

s
of

 F
id

el
it

y
(%

)

T=20
T=20, resiliency
T=80
T=80, resiliency
T=80, scheduling
T=80, resiliency, scheduling

(c) Under Quick Recovery, ~ �E���
Figure 3: Effect of Resiliency on Fidelity

the system actually improves! For 100 data items we ob-
served that 23% of the updates sent by back-up parents
were actually further disseminated by the dependents.
Some of the updates sent by the back-up parent reached
the dependents before the updates the parent sent (the
back-up parent was less loaded than the parent) and in
some cases the values sent by the back-up parent were
different from that of the parent (since they see differ-
ent views due to different coherency requirements). This
leads to both the increase in the number of updates dis-
seminated and also in the decrease in the loss in fidelity.
However, when the back-up parents are loaded, the up-
dates sent by them will typically reach later than that sent
by the parents. (Back-up dependents are processed after
the real dependents at any repository). Here the work
done by the back-up parent is of no use to the dependent.
This increases the loss in fidelity. The dependent tries to
control the loss by discarding updates with time-stamps
earlier than what it currently has for the same data item.

Finally we examine the performance under failures.
For value of } d Z ; 0 ;A;�< , d� of the failures were less than
500 sec, most of these were less than 200 ms. The re-
maining

-� of the failures were such that most of the val-
ues were greater than 700 ms, the maximum being 1400
ms. We choose the value of } -

as 0.0001 to get a non-
trivial number of failures in the system. During the ex-
periment, About 80-90% of the repositories experienced
at least one failure, and the maximum number of fail-
ures in the system at any given time for } d Z ; 0 ;P;"< was
around 12. For } d Z ; 0 ;"< , the maximum number of fail-
ures was

R
and for } d Z ; 0 < , the maximum failures was

2. These are admittedly indicative of pessimistic fail-
ure situations but we wanted to stress test our algorithms
to show that they deliver good fidelity even under under
high failure rates. Figure 3(b) shows that, as expected,
adding resiliency improves fidelity in failure situations.
The graphs that include the behavior of “scheduling” will
be explained later in Section 5.

Figure 3(c) shows the effect of quick recovery in the
network. The value of } -

was 0.0001 and that of } d
was 2. The average recovery time was less than a sec-
ond. For high coherence requirements, resiliency im-

proves fidelity even for transient failures. However, with
resiliency we notice that with a very large number of data
items, for e.g., 1000, fidelity drops even though it is less
than 1%. This is because, at this point, the cost of re-
siliency exceeds the benefits obtained by it, i.e., the up-
dates sent by the back up parent reach the dependent after
those sent by the parent and hence this increases the lost
in fidelity.

5 Reducing the Delay at a Repository
In this section we focus our attention on the development
and evaluation of techniques used to reduce the fidelity
losses implied by� Queuing delays: Whenever an update arrives, it is

added to an update queue. The time delay between
the arrival of the update and the time when its pro-
cessing is started, is termed as the queuing delay.� Processing delays: When a data update reaches the
head of the queue, it is taken up for processing.
Dependents and their data coherency requirements
are checked to decide if the update should be pro-
cessed (check delay) and pushed to a specific de-
pendent (computation delay is the delay associated
with computing the data to be pushed and actually
pushing it).

Our aim is to improve the average fidelity over all the
repositories, which implies reducing the average delay
between a data update and the time at which each inter-
ested repository receives the update. This is done by (a)
better filtering of updates, i.e., reducing the processing
delay in determining if an update needs to be dissemi-
nated to one or more dependents and (b) better schedul-
ing of the disseminations. The details of how these are
achieved is discussed in the next two subsections.

5.1 Better Filtering of Updates

For each dependent, a repository maintains the co-
herency requirement, � v , and the value pushed last for
that dependent. Any new update must be pushed to a
dependent if the new value changes by � v . Thus as-
sociated with each dependent is an upper bound

j�� Z

0.3

B
A

0.5
10 10.3 10.5

21 Pseudo value 1 2’ 2

10.2
0.3

0.5
10 10.3 10.5

Figure 4: (left) Consider 2 dependents needing the same
data item: A with � v = 0.5 and B with 0.3. Let the last
values pushed to these dependents be 10. Then, B’s win-
dow is (9.7, 10.3). When update 10.3 arrives it has to be
pushed only to B, making the window for B (10, 10.6).
A subsequent update of 10.55 will have to be sent only
to A. (right) Changed scenario when a pseudo value of
10.2 is pushed to B.

l�?�c � q j c���� ��� ?�l j � G � v and a lower bound l � Zl�?�c � q j c���� �.� ?�l j � % � v . Until a new value is pushed
the user of the data knows that the data value lies in the
window (lower bound, upper bound).

It is important that a repository that receives an update
efficiently checks if the update lies outside a window. To
reduce the number of checks, it is preferable to order the
dependents’ needs by some parameter. We use � v as the
ordering parameter, so that when a new update arrives,
the ordered list of dependents can be searched to deter-
mine the largest � v that demands a dissemination. All
the dependents with � v less than this largest � v must also
be notified. As it turns out, using this ordering is not as
straightforward as described above because the fact that
a dependent with a lower � v does not require a push does
not mean that one with a higher � v also does not need the
data. These are illustrated in Figure 4(left). In fact, we
can have dependents with same � v , wherein for a given
update, one of the dependents requires a dissemination,
while the other does not. To address these problems,
we impose some restrictions on the ordered dependent
list, so that the following can be made to hold: (1) if an
update has to be pushed to a dependent with � v � , then
it needs to be pushed to dependents with coherency ��� ,
where �9� (� . (2) More importantly, if a dependent with� v � does not require a push, no dependent with � v � � ,
such that ���'>W� will require a push. The restrictions that
help us achieve the above are:

1. All dependents with the same � v have the same view
of the data.

2. We consider each dependent as a coherency window
than just a � v value. If

�
is the view of the data value

for a dependent with � v � , the coherency window is
the set of values lying between � �4% � � and � � G � � .
We restrict the value sent to a dependent such that
the coherency window for the dependent with larger

� v bounds the coherency window for the smaller � v ,
i.e., for dependent

v -
with bounds l - Z � � - % � - � andj - Z � � - G � - � and
v d with window l d Z � � d % � d �

to
j d Z � � d G � d � ,� - =�� d � l d (l - ?P� � j dw� j -

(1)

Consider the same scenario as described by Figure
4(left). Initially, the coherency windows for the depen-
dents 	 and Y are (9.5,10.5) and (9.7,10.3). When up-
date of 10.3 arrives, if the value of 10.3 is pushed to clientY , the new coherency window for it will be 10.0-10.6
which goes beyond the window of a dependent with � v
0.5. This violates our requirements above. Therefore in
this case, instead of 10.3, a pseudo value of 10.2, which
is closest to the actual value and satisfies both the query
constraint and the bound condition is pushed to client Y .
Figure 4(right) explains this pictorially.

The rationale for the choice is that the view of the
data value seen by the dependents need not be the ac-
tual value, but can even be a coherency window of widthQ�� v about a pseudo value, such that the actual value is
guaranteed to lie within that window and it satisfies the
restrictions described above.

Thus, when a new update arrives, a search of the or-
dered list creates a threshold such that all dependents
with � v less than the threshold require the update to be
pushed. If

v �
is the bounding dependent i.e., the de-

pendent with the smallest � v larger than threshold and
(l � / j{�

) are the lower and upper bounds of
v �

, for each of
these dependents with � v of ��� , the pseudo value to be
pushed is computed using the function

Y�� j � � � � / �9� / v ��� Z
�� � �yl � G � � � if

� =Wl � G � �� j � % � � � if
� > j � % � ��

otherwise

where
�

is the actual update value. As shown in Section
5.3, this optimization, referred to as dependent ordering,
substantially reduces the number of pushes and also the
loss of fidelity. To enable dependent ordering to facilitate
fast insertions, deletions and searches, but allow ordered
retrieval, we use R-B trees which allow log(n) insertions,
deletions and searches.

5.2 Scheduling for performance improvement

This section establishes the criteria that should be used
for determining the order in which (i) the updates must
be processed and (ii) an update should be propagated
to its dependents so that the overall fidelity across all
repositories is maximized. Consider a set of up-
dates,

j -�/ j d /�0�0�0 j 2
, waiting in the update queue to

be processed. Let this be the order for processing
the updates as well. Let ��� j - � / ��� j d � 0�0�0 ��� j 2 �

be
the time delay for processing these updates (�9�Lc �) and� � j - � / � � j d � 0�0�0 � � j 2 �

be the total number of descendants
that would be benefited by the dissemination of these up-
dates respectively (

� �����5+r �). The queuing delay that is

experienced by the |y� update is ��� j � � Z�� � K -��� - ��� j � �
and this queuing delay will result in additional loss of
fidelity for all the beneficiaries. Therefore the total de-
lay added due to processing of update

j � at position Z � � j � �� �¡� j � � and total delay for processing Z� � � � � K -��� - ��� j � � ^ � � j � � �
We now prove that this sum will be minimum, ifj -�/ j d 0¢0 j 2

are such that for each , (
� � j � �1£ ��� j � � � >� � � j �¥¤ - �1£ ��� j �¥¤ - �

). For this consider an ordering
wherein, for some , update

j �¥¤ -
is processed before

j � .
In the original schedule delay due to

j � and
j �¥¤ -

��¦1§ �¥¨3Z � K -©��� - ����� j � �ª «� � j � � � G �©��� - ����� j � �¬ � � j �¥¤ - � �
and in the reverse schedule, the delay added due to

j �
and

j �¥¤ -
is

��� 2L® Z � K -©��� - ����� j � �¬ � � j �¥¤ - � � G � K -�¯ �¥¤ -©�9� - ����� j � �¬ «� � j � �1�

��¦1§ �¥¨ % � � 2L® Z ��� j � �¬ «� � j �¥¤ - �&% ��� j �¥¤ - �¬ «� � j � �
which is positive, since

� � j �¢¤ - ��£ ��� j �¢¤ - � >� � j � �1£ ��� j � � , as per our assumption. Therefore
any schedule with an order inversion causes a larger
total delay, and can be improved upon by removing the
inversion, and the schedule with no inversions i.e., one
ordered by a score Z � � � j � �1£ ��� j � �1� , is optimal.

Suppose repository 	 sends updates to repository Y
and also to some clients. To parallelize the servicing
of dependents by the two servers the updates should be
disseminated to Y first and then the clients. This im-
plies that pushes to dependents must be scheduled care-
fully. Suppose there is a set of outstanding dependentsv - / v d 0�0�0 v 2

to which an update needs to be pushed and
let this be the optimal order. Arguing on similar lines as
for determining the update processing order , if

� ��� j'�
is

the benefit of pushing an update
j

to the |y� dependentv � , and � � � j'�
is the cost of pushing it, the criterion for

the optimal pushing order comes out to be the same, i.e.,
(
� � � j{��£ � � � j'�

). Since the costs for each push is the same,
the optimal dissemination order is in the decreasing order
of benefits

� � � j'�
.

The scheduling schemes mentioned till now assume
that given an update

j
, we can determine the cost of pro-

cessing the update ��� j'�
, and the total benefit of process-

ing the update
� � j'�

, and the benefit of disseminating it to
a particular dependent , � � � j{�

. Since the checking delay
is much smaller compared to the computational delay,��� j{�

depends on the number of computations or pushes
that will be required. If � j'� � is the subtree rooted at the
dependent , � ��� j'�

will be the total number of dependents
under � j'� � , who need to be updated about

j
. These need

to be precomputed and stored. Therefore we discretize

Scheduling
dependent ordering

Simple algo

0 2 4 6 8 10 12 14 16
computation delay 0

0.5
1

1.5
2

2.5
3

3.5
4

Update rates

0

5

10

15

20

25

Fidelity loss

Figure 5: Variation of fidelity loss with update rates (per
sec, per data item), computational delay (ms) for � =80%

the update space by mapping it on to the � v space. This
is automatically done for us by the unique coherence al-
gorithm [26] used for data dissemination, wherein the
source has access to all unique coherency requirements
and maps the update value

j
to the maximum coherency

requirement violated, say ��°N±���� j'�
. Therefore, the map-

ping can be stored at each repository for each unique co-
herency requirement value in the subtree rooted at this
repository. Therefore� � � j'� Z number of dependents in � j'� � with coherency
requirement less that ��°N±���� j{�
and� � j{� Z � �y��°¬±9��� j'� � Z � � � � � j{���� j{� Z ���y�9°N±���� j'� � Z � � � ?�l"� j m � � v �L+��msms� � k? � �� ��q���� � ��� � c
²n � �a� v =�� °N±�� � j{�

.
Before we discuss the performance improvement due

to such informed scheduling, it is important to point out
that at higher update rates queue lengths can get very
high, resulting in large propagation delays and low fi-
delity. One way to reduce the effect of such overflow
situations is to ignore, i.e., drop, certain updates. As it
turns out, our scheduling approach gives us a good cri-
terion to use while dropping updates, namely, based on
the importance or the � � �����5+r �1£ �9�Lc � � ratio of an update.
In conjunction with our queuing policy, the processing of
updates with a low ratio gets delayed, and it is likely that
when a new update to the same data item comes in later,
the older one will be dropped.

5.3 Experimental results

It can be seen from Figure 5 that dependent ordering has
lower loss of fidelity compared to the “simple algorithm”
i.e., one without any specific scheduling policy or de-
pendent ordering built into a repository, but scheduling
performs the same or much better than these two. This
difference in performance is substantial, up to 15%, for� =80%, i.e., tight coherency situations. All the results

(a) (b)

A

0.5

A
B

0.3

A
B

B
B

coherency
 window
oscillations

 Value
Oscillations

10 10.6
0.5

10 10.3 10.5

10.2
0.3

B

Pseudo value

 Value
Oscillations

2121

A
B

2’

10.3 10.5

Figure 6: For requests as in Figure 4, Normal
method(left): When data value oscillates between 10 and
10.3, the values 10 and 10.3 are successively pushed to
B, and its coherency window oscillates.Dependent order-
ing(right) - Pushing a pseudo value of 10.2 sets the co-
herency window to (9.9,10.5) and further oscillations be-
tween 10 and 10.3 fall within this window and need not
be pushed.

shown are for 100 data items unless explicitly mentioned.
The performance can be explained by examining the

number of pushes. Figure 7 shows the number of pushes
for T=80%. As it can be seen, the number of pushes for
the dependent ordering case has reduced from 3.245 mil-
lion pushes to 3.093 million. This is somewhat counter
intuitive, because one would expect that since the values
pushed are bounded by other dependents as in Eq. (1), a
more restricted value is pushed and is likely to require a
push earlier than using a simple algorithm. However, if
the data item shows an oscillatory behavior as shown in
Figure 6(a), sending an restricted value will reduce the
number of pushes as shown in Figure 6(b). The use
of scheduling improves the performance further because
it makes informed decisions regarding the order of up-
dates and the order of pushes. The number of pushes re-
duces further at high update rates (rates are measured as
the average number of updates per data item per sec) and
computational delays further to 3.055 million from 3.093
million. This is because the queue starts building up at
that point and some of the updates get dropped. That ac-
counts for the fact that the techniques not using schedul-
ing and dropping of updates exhibit a large loss in fidelity
at high update rates, while the improved technique has a
near linear behaviour even at high loads/update rates.

Graph 8 shows the fidelity loss with better scheduling,
across various number of data items. It can be seen that
though the fidelity drops with an increase in the number
of data items, even at reasonably high update rates and
computational delays, the fidelity loss with a large num-
ber of data items is within 10%. Thus good scheduling
techniques allow the system to scale much better and de-

Scheduling
dependent ordering

Simple algo

0 2 4 6 8 10 12 14 16
computation delay 0

0.5
1

1.5
2

2.5
3

3.5
4

Update rates

3.04
3.06
3.08
3.1

3.12
3.14
3.16
3.18
3.2

3.22
3.24
3.26

Pushes(million)

Figure 7: Variation in Number of Messages with update
rates (per data item, per sec), computational delay (ms)
for � =80%

grades gracefully.
Finally, we discuss performance results that show how

our scheduling technique interacts with the resiliency im-
provement technique. In Figures 3(b) and (c), the graph
marked “scheduling” clearly shows that improvements
do occur by as much as 1%, beyond those made possi-
ble by the resiliency improvement techniques, especially
when the number of data items is not very high.

In summary, the key benefits of maintaining the de-
pendents ordered by � v s are: (a) It reduces the number of
checks required for processing each update. (b) More of-
ten than not, it reduces the number of pushes required as
well. This is because this approach disseminates pseudo
values to the user, which results in a coherency window
covering oscillatory behavior of the data.

Our scheduling approach (a) reduces the overall prop-
agation delay to the end clients, by processing updates
which provide a higher benefit at a lower cost earlier, (b)
gives a better choice in dropping updates as low score
updates may be dropped rather than later arriving ones,
and (c) due to a lower propagation delay, a system which
uses scheduling scales better and degrades gracefully un-
der unexpected heavy loads.

6 Related Work

Push-based dissemination techniques that have been
recently developed include broadcast disks [1], pub-
lish/subscribe applications [20, 3], web-based push
caching [14], and speculative dissemination [4].

The design of coherency mechanisms for web work-
loads has also received significant attention recently.
Proposed techniques include strong and weak consis-
tency [18] and the leases approach [9, 30]. Our contri-
butions in this area lie in the definition of coherency in
combination with the fidelity requirements of users. Co-
herency maintenance has also been studied for coopera-

500 data items
300 data items
100 data items

0 2 4 6 8 10 12 14 16
computation delay 0

0.5
1

1.5
2

2.5
3

3.5
4

Update rates

0
1
2
3
4
5
6
7

Fidelity loss

Figure 8: Variation of fidelity with computation delay
(ms), update rates (per sec, per data item) for network
containing 100 repositories for 100, 300 and 500 data
items at � =50%

tive web caching in [29, 28, 30]. The difference between
these efforts and our work is that we focus on rapidly-
changing dynamic web data while they focus on web data
that changes at slower time-scales (e.g., tens of minutes
or hours)—an important difference that results in very
different solutions.

Efforts that focus on dynamic web content include
[16] where push-based invalidation and dependence
graphs are employed to determine where to push inval-
idates and when. Scalability can be improved by ad-
justing the coherency requirements of data items [31].
The difference between these approaches and ours is that
repositories don’t cooperate with one another to maintain
coherency.

Mechanisms for disseminating fast changing docu-
ments using multicast-based push has been studied in
[25]. The difference though is that recipients receive
all updates to an object (thereby providing strong con-
sistency), whereas our focus is on disseminating only
those updates that are necessary to meet user-specified
coherency tolerances. Multicast tree construction al-
gorithms in the context of application-level multicast
have been studied in [13]. Whereas these algorithms
are generic, the

� � �
in our case, which is akin to an

application-level multicast tree, is specifically optimized
for the problem at hand, namely maintaining coherency
of dynamic data.

Several research groups and startup companies have
designed adaptive techniques for web workloads [6, 12].
But as far as we know, these efforts have not focused
on distributing very fast changing content through their
networks, instead, handling highly dynamic data at the
server end. Our approaches are motivated by the goal
of offloading this work to repositories at the edge of the
network.

The concept of approximate data at the users is stud-
ied in [23, 22]; the approach focuses on pushing in-
dividual data items directly to clients, based on client
coherency requirements and does not address the addi-
tional mechanisms necessary to make the techniques re-
silient. We believe that in this sense, the two approaches
are complementary since our approaches to cooperative
repository based dissemination can be used with their ba-
sic source-client based dissemination.

Our work can be seen as providing support for execut-
ing continuous queries over dynamically changing data
[19, 8]. Continuous queries in the Conquer system [19]
are tailored for heterogeneous data, rather than for real
time data, and uses a disk-based database as its back end.
NiagraCQ [8] focuses on efficient evaluation of queries
as opposed to coherent data dissemination to repositories
(which in turn can execute the continuous queries result-
ing in better scalability).

There has also been some work on dissemination in
database systems. An architecture for a scalable trigger
processing system, and an index structure for it is de-
scribed in [15]. Given a set of materialized views, [17]
focuses on finding the best order to refresh them in the
presence of continuous updates, to maximize the quality
of data served to users. [2] deals with processing up-
dates in a soft real time system in a manner such that it
keeps database ”fresh”, by deciding the order in which
updates and transactions are executed. On the one hand,
our problem, of determining which update needs to be
propagated is simpler because of the numerical nature of
the data. This implies that simpler techniques than the
ones above, e.g., [15], are sufficient. On the other hand,
given the

� � �
structure, the scheduling decisions of one

repository can have implications for the fidelity experi-
enced way downstream in the tree. Our solutions exploit
the simplicity of decision making while catering to the
specific characteristics of the

�����
and the semantics of

coherency.
Finally, it is important to point out that our work is

among the first to directly deal with the problem of fail-
ures in disseminating dynamic data by constructing a re-
silient dissemination network.

7 Conclusions

In this paper, we examined the design of a data dissem-
ination architecture for time-varying data. The architec-
ture ensures data coherency, resiliency, and efficiency.
The key contributions of our work are:

� Design of a push-based dissemination architecture
for time-varying data. One of the attractions of our
approach is that it does not require all updates to
a data item to be disseminated to all repositories,
since each repository’s coherency needs are explic-
itly taken into account by the filtering component of
the dissemination algorithm.

� Design of a mechanism for making the coopera-
tive dissemination network resilient to failures so
that even under failures data coherency is not com-
pletely lost. In fact, an interesting byproduct of the
way resiliency is provided is that even under many
non-failure situations, fidelity improves due the re-
siliency improvement measures.� The intelligent filtering, selective dissemination,
and smart scheduling of pushes by a repository re-
duces the system-wide network overhead as well as
the load on repositories. These in turn improve the
fidelity of data stored at repositories. Further ad-
vantages accrue when the resiliency enhancement
features are combined with the scheduling features.

Whereas our approach uses push-based dissemination,
other dissemination mechanisms such as pull, adaptive
combinations of push and pull [5], as well as leases [21]
could be used to disseminate data through our repository
overlay network. The use of such alternative dissemina-
tion mechanisms as well as the evaluation of our mech-
anisms in a real network setting is the subject of future
research.

References
[1] S. Acharya, M. J. Franklin, and S. B. Zdonik. Balancing push

and pull for data broadcast. In Proceedings of the ACM SIGMOD
Conference, May 1997.

[2] B. Adelberg, H. Garcia-Molina and B. Kao, Applying Update
Streams in a Soft Real-Time Database System Proceedings of
the 1995 ACM SIGMOD, pp. 245 - 256, 1995

[3] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E.
Strom, and D. C. Sturman. An efficient multicast protocol for
content-based publish-subscribe systems. In International Con-
ference on Distributed Computing System, 1999.

[4] A. Bestavros. Speculative data dissemination and service to re-
duce server load, network traffic and service time in distributed
information systems. In International Conference on Data Engi-
neering, March 1996.

[5] M. Bhide, P. Deolasse, A. Katker, A. Panchgupte, K. Ra-
mamritham, and P. Shenoy. Adaptive push pull: Disseminating
dynamic web data. IEEE Transactions on Computers special is-
sue on Quality of Service, May 2002.

[6] P. Cao and S. Irani, Cost-Aware WWW Proxy Caching Algo-
rithms., Proceedings of the USENIX Symposium on Internet Tech-
nologies and Systems, December 1997.

[7] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz,
and K. J. Worell. A hierarchical internet object cache. In Pro-
ceedings of 1996 USENIX Technical Conference, January 1996.

[8] J. Chen, D. Dewitt, F. Tian, and Y. Wang. Niagracq: A scalable
continuous query system for internet databases. In Proceedings
of the 2000 ACM SIGMOD International Conference on Man-
agement of Data, May 16-18 2000.

[9] V. Duvvuri, P. Shenoy and R. Tewari, Adaptive Leases: A
Strong Consistency Mechanism for the World Wide Web. Info-
Com March 2000.

[10] A. Fei, G. Pei, R. Liu, and L. Zhang. Measurements on delay and
hop-count of the internet. In IEEE GLOBECOM’98 - Internet
Mini-Conference, 1998.

[11] Z. Fei, A Novel Approach to Managing Consistency in Con-
tent Distribution Networks Proc. of Sixth Int’l Workshop on Web
Caching and Content Distribution., 2001

[12] A. Fox, Y. Chawate, S. D. Gribble and E. A. Brewer, Adapting
to Network and Client Variations Using Active Proxies: Lessons
and Perspectives., IEEE Personal Communications, August 1998.

[13] P. Francis. Yallcast: Extending the internet multicast architecture.
http://www.yallcast.com, September 1999.

[14] J. Gwertzman and M. Seltzer. The case for geographical push
caching. In Proceedings of the Fifth Annual Workshop on Hot
Operating Systems, May 1995.

[15] E. N. Hanson, C. Carnes, L. Huang, M. Konyala, L. Noronha,
S. Parthasarathy and J. B. Park and A. Vernon, Scalable Trig-
ger Processing, In Proceedings International Conference on Data
Engineering 1999, pages 266-275.

[16] A. Iyengar and J. Challenger. Improving web server perfor-
mance by caching dynamic data. In USENIX Symposium on In-
ternet Technologies and Systems, 1997.

[17] A. Labrinidis, N. Roussopoulos, Update Propagation Strategies
for Improving the Quality of Data on the Web In the Proceedings
of the 27th International Conference on Very Large Data Bases
(VLDB’01), Roma, Italy, September 2001.

[18] C. Liu and P. Cao. Maintaining strong cache consistency in the
world wide web. In Proceedings of ICDCS, May 1997.

[19] L. Liu, C. Pu, and W. Tang. Continual queries for internet scale
event-driven information delivery. IEEE Trans. on Knowledge
and Data Engg., July/August 1999.

[20] G. R. Malan, F. Jahanian, and S. Subramanian. Salamander: A
push based distribution substrate for internet applications. In Pro-
ceedings of the USENIX Symposium on Internet Technologies and
Systems, December 1997.

[21] A. Ninan, P. Kulkarni, P. Shenoy, K. Ramamritham, and
R. Tewari. Cooperative leases: Scalable consistency maintenance
in content distribution networks. In Proceedings of WWW10,
2002.

[22] C. Olston and J.Widom. Best effort cache synchronization with
source cooperation. In Proceedings of the ACM SIGMOD Con-
ference, June 2002.

[23] C. Olston, B. T. Loo, and J.Widom. Adaptive precision setting for
cached approximate values. In Proceedings of the ACM SIGMOD
Conference, May 2001.

[24] M. S. Raunak, P. J. Shenoy, P. Goyal, and K. Ramamritham.
Implications of proxy caching for provisioning networks and
servers. In In Proceedings of ACM SiGMETRICS conference,
pages 66–77, 2000.

[25] P. Rodriguez, K. W. Ross, and E. W. Biersack. Improving the
WWW: caching or multicast? Computer Networks and ISDN
Systems, 1998.

[26] S. Shah, K. Ramamritham and P. Shenoy, Maintaining Co-
herency of Dynamic Data in Cooperating Repositories, Proceed-
ings of the 28th Conference on Very Large Data Bases, 2002.

[27] S. Shah, K. Ramamritham and P. Shenoy, Resilient and Co-
herency Preserving Dissemination of Dynamic Data Using Co-
operating Peers, Technical Report-1, May 2003, IIT. Bombay.

[28] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Beyond hierarchies:
Design considerations for distributed caching on the internet. In
IEEE International Conference on Distributed Computing Sys-
tems, 1999.

[29] J. Yin, L. Alvisi, M. Dahlin, C. Lin, and A. Iyengar. Engineering
server driven consistency for large scale dynamic web services.
Proceedings of the WWW10, 2001.

[30] Jian Yin, Lorenzo Alvisi, Mike Dahlin, and Calvin Lin. Hierar-
chical cache consistency in a WAN. In USENIX Symposium on
Internet Technologies and Systems, 1999.

[31] H.Yu and A.Vahdat. Design and evaluation of a continuous con-
sistency model for replicated services. In Proceedings of OSDI,
October 2000.

