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Abstract

The Dynamic Source Routing protocol (DSR) is a simple and efficient routing protocol designed
specifically for use in multi-hop wireless ad hoc networks of mobile nodes. DSR allows the
network to be completely self-organizing and self-configuring, without the need for any existing
network infrastructure or administration. The protocol is composed of the two mechanisms of
Route Discovery and Route Maintenance, which work together to allow nodes to discover and
maintain source routes to arbitrary destinations in the ad hoc network. The use of source routing
allows packet routing to be trivially loop-free, avoids the need for up-to-date routing information
in the intermediate nodes through which packets are forwarded, and allows nodes forwarding
or overhearing packets to cache the routing information in them for their own future use. All
aspects of the protocol operate entirely on-demand, allowing the routing packet overhead of
DSR to scale automatically to only that needed to react to changes in the routes currently in use.
We have evaluated the operation of DSR through detailed simulation on a variety of movement
and communication patterns, and through implementation and significant experimentation in
a physical outdoor ad hoc networking testbed we have constructed in Pittsburgh, and have
demonstrated the excellent performance of the protocol. In this chapter, we describe the design
of DSR and provide a summary of some of our simulation and testbed implementation results
for the protocol.

1 Introduction

The Dynamic Source Routing protocol (DSR) [Johnson 1994, Johnson 1996a, Broch 1999a] is a simple and
efficient routing protocol designed specifically for use in multi-hop wireless ad hoc networks of mobile
nodes. Using DSR, the network is completely self-organizing and self-configuring, requiring no existing
network infrastructure or administration. Network nodes (computers) cooperate to forward packets for each
other to allow communication over multiple “hops” between nodes not directly within wireless transmission
range of one another. As nodes in the network move about or join or leave the network, and as wireless
transmission conditions such as sources of interference change, all routing is automatically determined and
maintained by the DSR routing protocol. Since the number or sequence of intermediate hops needed to
reach any destination may change at any time, the resulting network topology may be quite rich and rapidly
changing.

The DSR protocol allows nodes to dynamically discover a source route across multiple network hops
to any destination in the ad hoc network. Each data packet sent then carries in its header the complete,
ordered list of nodes through which the packet must pass, allowing packet routing to be trivially loop-free
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and avoiding the need for up-to-date routing information in the intermediate nodes through which the packet
is forwarded. By including this source route in the header of each data packet, other nodes forwarding or
overhearing any of these packets may also easily cache this routing information for future use.

This work is a part of the Monarch Project at Carnegie Mellon University [Johnson 1996b, Monarch],
a long-term research project that is developing networking protocols and protocol interfaces to allow truly
seamless wireless and mobile networking. The Monarch Project is named in reference to the migratory
behavior of the monarch butterfly, and can also be considered as an acronym for “Mobile Networking
Architectures.” The scope of our research includes protocol design, implementation, performance evalua-
tion, and usage-based validation, spanning areas ranging roughly from portions of the ISO Data Link layer
(layer 2) through the Presentation layer (layer 6).

In designing DSR, we sought to create a routing protocol that had very low overhead yet was able to react
quickly to changes in the network, providing highly reactive service to help ensure successful delivery of data
packets in spite of node movement or other changes in network conditions. Based on our evaluations of DSR
and other protocols to date, through detailed simulation and testbed implementation, we believe this goal
has been well met [Johnson 1996a, Broch 1998, Maltz 1999a, Maltz 1999b]. In particular, in our detailed
simulation comparison of routing protocols for ad hoc networks [Broch 1998], DSR outperformed the other
protocols that we studied, and recent results by Johansson et al. [Johansson 1999] have shown generally
similar results. The protocol specification for DSR has also been submitted to the Internet Engineering
Task Force (IETF), the principal protocol standards development body for the Internet, and is currently one
of the protocols under consideration in the IETF Mobile Ad Hoc Networks (MANET) Working Group for
adoption as an Internet Standard for IP routing in ad hoc networks [MANET].

This chapter describes the design of the DSR protocol and provides a summary of some of our current
simulation and testbed implementation results for DSR. Section 2 of this chapter discusses our assumptions
in the design of DSR. In Section 3, we present the design of the DSR protocol and describe the resulting
important properties of this design. In particular, we describe here the design of the two mechanisms
that make up the operation of DSR, Route Discovery and Route Maintenance; we also discuss the use of
DSR in supporting heterogeneous networks and interconnecting to the Internet, and describe the current
support present in DSR for routing of multicast packets in ad hoc networks. Section 4 then summarizes
some of our simulation results for DSR and describes a physical outdoor ad hoc network testbed we have
built in Pittsburgh for experimenting with DSR. Finally, we discuss related work in Section 5 and present
conclusions in Section 6.

2 Assumptions

We assume that all nodes wishing to communicate with other nodes within the ad hoc network are willing
to participate fully in the protocols of the network. In particular, each node participating in the network
should also be willing to forward packets for other nodes in the network.

We refer to the minimum number of hops necessary for a packet to reach from any node located at one
extreme edge of the ad hoc network to another node located at the opposite extreme, as the diameter of the
ad hoc network. We assume that the diameter of an ad hoc network will often be small (e.g., perhaps 5 or
10 hops), but may often be greater than 1.

Packets may be lost or corrupted in transmission on the wireless network. A node receiving a corrupted
packet can detect the error and discard the packet.

Nodes within the ad hoc network may move at any time without notice, and may even move continuously,
but we assume that the speed with which nodes move is moderate with respect to the packet transmission
latency and wireless transmission range of the particular underlying network hardware in use. In particular,
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DSR can support very rapid rates of arbitrary node mobility, but we assume that nodes do not continuously
move so rapidly as to make the flooding of every individual data packet the only possible routing protocol.

We assume that nodes may be able to enable promiscuous receive mode on their wireless network
interface hardware, causing the hardware to deliver every received packet to the network driver software
without filtering based on link-layer destination address. Although we do not require this facility, it is,
for example, common in current LAN hardware for broadcast media including wireless, and some of our
optimizations can take advantage of its availability. Use of promiscuous mode does increase the software
overhead on the CPU, but we believe that wireless network speeds are more the inherent limiting factor
to performance in current and future systems; we also believe that portions of the protocol are suitable
for implementation directly within a programmable network interface unit to avoid this overhead on the
CPU [Johnson 1996a]. Use of promiscuous mode may also increase the power consumption of the network
interface hardware, depending on the design of the receiver hardware, and in such cases, DSR can easily be
used without the optimizations that depend on promiscuous receive mode, or can be programmed to only
periodically switch the interface into promiscuous mode.

Wireless communication ability between any pair of nodes may at times not work equally well in both
directions, due for example to differing antenna or propagation patterns or sources of interference around
the two nodes [Bantz 1994, Lauer 1995]. That is, wireless communications between each pair of nodes will
in many cases be able to operate bi-directionally, but at times the wireless link between two nodes may be
only uni-directional, allowing one node to successfully send packets to the other while no communication
is possible in the reverse direction. Although many routing protocols operate correctly only over bi-
directional links, DSR can successfully discover and forward packets over paths that contain uni-directional
links. Some MAC protocols, however, such as MACA [Karn 1990], MACAW [Bharghavan 1994], or IEEE
802.11 [IEEE 1997], limit unicast data packet transmission to bi-directional links, due to the required bi-
directional exchange of RTS and CTS packets in these protocols and due to the link-level acknowledgement
feature in IEEE 802.11; when used on top of MAC protocols such as these, DSR can take advantage of
additional optimizations, such as the route reversal optimization described below.

Each node selects a single IP address by which it will be known in the ad hoc network. Although a
single node may have many different physical network interfaces, which in a typical IP network would
each have a different IP address, we require each node to select one of these and to use only that address
when participating in the DSR protocol. This allows each node to be recognized by all other nodes in the
ad hoc network as a single entity regardless of which network interface they use to communicate with it. In
keeping with the terminology used by Mobile IP [Johnson 1995, Perkins 1996], we refer to the address by
which each mobile node is known in the ad hoc network as the node’s home address, as this address would
typically be the address that the node uses while connected to its home network (rather than while away,
being a member of the ad hoc network). Each node’s home address may be assigned by any mechanism
(e.g., static assignment or use of DHCP for dynamic assignment [Droms 1997]), although the method of
such assignment is outside the scope of the DSR protocol.

3 DSR Protocol Description

3.1 Overview and Important Properties of the Protocol

The DSR protocol is composed of two mechanisms that work together to allow the discovery and maintenance
of source routes in the ad hoc network:

� Route Discovery is the mechanism by which a node S wishing to send a packet to a destination node D
obtains a source route to D. Route Discovery is used only when S attempts to send a packet to D and
does not already know a route to D.
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� Route Maintenance is the mechanism by which node S is able to detect, while using a source route
to D, if the network topology has changed such that it can no longer use its route to D because a link
along the route no longer works. When Route Maintenance indicates a source route is broken, S can
attempt to use any other route it happens to know to D, or can invoke Route Discovery again to find a
new route. Route Maintenance is used only when S is actually sending packets to D.

Route Discovery and Route Maintenance each operate entirely on demand. In particular, unlike other
protocols, DSR requires no periodic packets of any kind at any level within the network. For example, DSR
does not use any periodic routing advertisement, link status sensing, or neighbor detection packets, and does
not rely on these functions from any underlying protocols in the network. This entirely on-demand behavior
and lack of periodic activity allows the number of overhead packets caused by DSR to scale all the way down
to zero, when all nodes are approximately stationary with respect to each other and all routes needed for
current communication have already been discovered. As nodes begin to move more or as communication
patterns change, the routing packet overhead of DSR automatically scales to only that needed to track the
routes currently in use.

In response to a single Route Discovery (as well as through routing information from other packets
overheard), a node may learn and cache multiple routes to any destination. This allows the reaction to
routing changes to be much more rapid, since a node with multiple routes to a destination can try another
cached route if the one it has been using should fail. This caching of multiple routes also avoids the overhead
of needing to perform a new Route Discovery each time a route in use breaks.

The operation of Route Discovery and Route Maintenance in DSR are designed to allow uni-directional
links and asymmetric routes to be easily supported. In particular, as noted in Section 2, in wireless networks,
it is possible that a link between two nodes may not work equally well in both directions, due to differing
antenna or propagation patterns or sources of interference. DSR allows such uni-directional links to be used
when necessary, improving overall performance and network connectivity in the system.

DSR also supports internetworking between different types of wireless networks, allowing a source
route to be composed of hops over a combination of any types of networks available [Broch 1999b]. For
example, some nodes in the ad hoc network may have only short-range radios, while other nodes have both
short-range and long-range radios; the combination of these nodes together can be considered by DSR as a
single ad hoc network. In addition, the routing of DSR has been integrated into standard Internet routing,
where a “gateway” node connected to the Internet also participates in the ad hoc network routing protocols;
and has been integrated into Mobile IP routing, where such a gateway node also serves the role of a Mobile IP
foreign agent [Johnson 1995, Perkins 1996].

3.2 Basic DSR Route Discovery

When some node S originates a new packet destined to some other node D, it places in the header of the
packet a source route giving the sequence of hops that the packet should follow on its way to D. Normally,
S will obtain a suitable source route by searching its Route Cache of routes previously learned, but if no
route is found in its cache, it will initiate the Route Discovery protocol to dynamically find a new route to D.
In this case, we call S the initiator and D the target of the Route Discovery.

For example, Figure 1 illustrates an example Route Discovery, in which a node A is attempting to
discover a route to node E. To initiate the Route Discovery, A transmits a ROUTE REQUEST message as
a single local broadcast packet, which is received by (approximately) all nodes currently within wireless
transmission range of A. Each ROUTE REQUEST message identifies the initiator and target of the Route
Discovery, and also contains a unique request id, determined by the initiator of the REQUEST. Each ROUTE

REQUEST also contains a record listing the address of each intermediate node through which this particular
copy of the ROUTE REQUEST message has been forwarded. This route record is initialized to an empty list
by the initiator of the Route Discovery.
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Figure 1: Route Discovery example: Node A is the initiator, and node E is the target.

When another node receives a ROUTE REQUEST, if it is the target of the Route Discovery, it returns
a ROUTE REPLY message to the initiator of the Route Discovery, giving a copy of the accumulated route
record from the ROUTE REQUEST; when the initiator receives this ROUTE REPLY, it caches this route in its
Route Cache for use in sending subsequent packets to this destination. Otherwise, if this node receiving the
ROUTE REQUEST has recently seen another ROUTE REQUEST message from this initiator bearing this same
request id, or if it finds that its own address is already listed in the route record in the ROUTE REQUEST

message, it discards the REQUEST. Otherwise, this node appends its own address to the route record in the
ROUTE REQUEST message and propagates it by transmitting it as a local broadcast packet (with the same
request id).

In returning the ROUTE REPLY to the initiator of the Route Discovery, such as node E replying back to A
in Figure 1, node E will typically examine its own Route Cache for a route back to A, and if found, will use
it for the source route for delivery of the packet containing the ROUTE REPLY. Otherwise, E may perform its
own Route Discovery for target node A, but to avoid possible infinite recursion of Route Discoveries, it must
piggyback this ROUTE REPLY on its own ROUTE REQUEST message for A. It is also possible to piggyback
other small data packets, such as a TCP SYN packet [Postel 1981b], on a ROUTE REQUEST using this same
mechanism. Node E could also simply reverse the sequence of hops in the route record that it trying to
send in the ROUTE REPLY, and use this as the source route on the packet carrying the ROUTE REPLY itself.
For MAC protocols such as IEEE 802.11 that require a bi-directional frame exchange as part of the MAC
protocol [IEEE 1997], this route reversal is preferred as it avoids the overhead of a possible second Route
Discovery, and it tests the discovered route to ensure it is bi-directional before the Route Discovery initiator
begins using the route. However, this technique will prevent the discovery of routes using uni-directional
links. In wireless environments where the use of uni-directional links is permitted, such routes may in some
cases be more efficient than those with only bi-directional links, or they may be the only way to achieve
connectivity to the target node.

When initiating a Route Discovery, the sending node saves a copy of the original packet in a local buffer
called the Send Buffer. The Send Buffer contains a copy of each packet that cannot be transmitted by this
node because it does not yet have a source route to the packet’s destination. Each packet in the Send Buffer
is stamped with the time that it was placed into the Buffer and is discarded after residing in the Send Buffer
for some timeout period; if necessary for preventing the Send Buffer from overflowing, a FIFO or other
replacement strategy can also be used to evict packets before they expire.

While a packet remains in the Send Buffer, the node should occasionally initiate a new Route Discovery
for the packet’s destination address. However, the node must limit the rate at which such new Route
Discoveries for the same address are initiated, since it is possible that the destination node is not currently
reachable. In particular, due to the limited wireless transmission range and the movement of the nodes in
the network, the network may at times become partitioned, meaning that there is currently no sequence of
nodes through which a packet could be forwarded to reach the destination. Depending on the movement
pattern and the density of nodes in the network, such network partitions may be rare or may be common.

If a new Route Discovery was initiated for each packet sent by a node in such a situation, a large number
of unproductive ROUTE REQUEST packets would be propagated throughout the subset of the ad hoc network
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Figure 2: Route Maintenance example: Node C is unable to forward a packet from A to E over its link to
next hop D.

reachable from this node. In order to reduce the overhead from such Route Discoveries, we use exponential
back-off to limit the rate at which new Route Discoveries may be initiated by any node for the same target.
If the node attempts to send additional data packets to this same node more frequently than this limit, the
subsequent packets should be buffered in the Send Buffer until a ROUTE REPLY is received, but the node must
not initiate a new Route Discovery until the minimum allowable interval between new Route Discoveries
for this target has been reached. This limitation on the maximum rate of Route Discoveries for the same
target is similar to the mechanism required by Internet nodes to limit the rate at which ARP REQUESTs are
sent for any single target IP address [Braden 1989].

3.3 Basic DSR Route Maintenance

When originating or forwarding a packet using a source route,each node transmitting the packet is responsible
for confirming that the packet has been received by the next hop along the source route; the packet is
retransmitted (up to a maximum number of attempts) until this confirmation of receipt is received. For
example, in the situation illustrated in Figure 2, node A has originated a packet for E using a source route
through intermediate nodes B, C, and D. In this case, node A is responsible for receipt of the packet at B,
node B is responsible for receipt at C, node C is responsible for receipt at D, and node D is responsible for
receipt finally at the destination E. This confirmation of receipt in many cases may be provided at no cost to
DSR, either as an existing standard part of the MAC protocol in use (such as the link-level acknowledgement
frame defined by IEEE 802.11 [IEEE 1997]), or by a passive acknowledgement [Jubin 1987] (in which, for
example, B confirms receipt at C by overhearing C transmit the packet to forward it on to D). If neither of
these confirmation mechanisms are available, the node transmitting the packet may set a bit in the packet’s
header to request a DSR-specific software acknowledgement be returned by the next hop; this software
acknowledgement will normally be transmitted directly to the sending node, but if the link between these
two nodes is uni-directional, this software acknowledgement may travel over a different, multi-hop path.

If the packet is retransmitted by some hop the maximum number of times and no receipt confirmation
is received, this node returns a ROUTE ERROR message to the original sender of the packet, identifying the
link over which the packet could not be forwarded. For example, in Figure 2, if C is unable to deliver the
packet to the next hop D, then C returns a ROUTE ERROR to A, stating that the link from C to D is currently
“broken.” Node A then removes this broken link from its cache; any retransmission of the original packet
is a function for upper layer protocols such as TCP. For sending such a retransmission or other packets to
this same destination E, if A has in its Route Cache another route to E (for example, from additional ROUTE

REPLYs from its earlier Route Discovery, or from having overheard sufficient routing information from other
packets), it can send the packet using the new route immediately. Otherwise, it may perform a new Route
Discovery for this target (subject to the exponential backoff described in Section 3.2).

3.4 Additional Route Discovery Features

3.4.1 Caching Overheard Routing Information

A node forwarding or otherwise overhearing any packet may add the routing information from that packet
to its own Route Cache. In particular, the source route used in a data packet, the accumulated route record in
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Figure 3: Limitations on caching overheard routing information: Node C is forwarding packets to E and
overhears packets from X.

a ROUTE REQUEST, or the route being returned in a ROUTE REPLY may all be cached by any node. Routing
information from any of these packets received may be cached, whether the packet was addressed to this
node, sent to a broadcast (or multicast) MAC address, or received while the node’s network interface is in
promiscuous mode.

One limitation, however, on caching of such overheard routing information is the possible presence of
uni-directional links in the ad hoc network (Section 2). For example, Figure 3 illustrates a situation in which
node A is using a source route to communicate with node E. As node C forwards a data packet along the
route from A to E, it can always add to its cache the presence of the “forward” direction links that it learns
from the headers of these packets, from itself to D and from D to E. However, the “reverse” direction of
the links identified in the packet headers, from itself back to B and from B to A, may not work for it since
these links might be uni-directional. If C knows that the links are in fact bi-directional, for example due to
the MAC protocol in use, it could cache them but otherwise should not.

Likewise, node V in Figure 3 is using a different source route to communicate with node Z. If node C
overhears node X transmitting a data packet to forward it to Y (from V), node C should consider whether the
links involved can be known to be bi-directional or not before caching them. If the link from X to C (over
which this data packet was received) can be known to be bi-directional, then C could cache the link from
itself to X, the link from X to Y, and the link from Y to Z. If all links can be assumed to be bi-directional,
C could also cache the links from X to W and from W to V. Similar considerations apply to the routing
information that might be learned from forwarded or otherwise overheard ROUTE REQUEST or ROUTE REPLY

packets.

3.4.2 Replying to ROUTE REQUESTs using Cached Routes

A node receiving a ROUTE REQUEST for which it is not the target, searches its own Route Cache for a route
to the target of the REQUEST. If found, the node generally returns a ROUTE REPLY to the initiator itself rather
than forwarding the ROUTE REQUEST. In the ROUTE REPLY, it sets the route record to list the sequence of
hops over which this copy of the ROUTE REQUEST was forwarded to it, concatenated with its own idea of
the route from itself to the target from its Route Cache.

However, before transmitting a ROUTE REPLY packet that was generated using information from its
Route Cache in this way, a node must verify that the resulting route being returned in the ROUTE REPLY,
after this concatenation, contains no duplicate nodes listed in the route record. For example, Figure 4
illustrates a case in which a ROUTE REQUEST for target E has been received by node F, and node F already
has in its Route Cache a route from itself to E. The concatenation of the accumulated route from the ROUTE

REQUEST and the cached route from F’s Route Cache would include a duplicate node in passing from C to
F and back to C.
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Figure 4: A possible duplication of route hops avoided by the Route Discovery limitation on replying to
ROUTE REQUESTs from the Route Cache.

Node F in this case could attempt to edit the route to eliminate the duplication, resulting in a route from
A to B to C to D and on to E, but in this case, node F would not be on the route that it returned in its
own ROUTE REPLY. DSR Route Discovery prohibits node F from returning such a ROUTE REPLY from its
cache for two reasons. First, this limitation increases the probability that the resulting route is valid, since
F in this case should have received a ROUTE ERROR if the route had previously stopped working. Second,
this limitation means that a ROUTE ERROR traversing the route is very likely to pass through any node that
sent the ROUTE REPLY for the route (including F), which helps to ensure that stale data is removed from
caches (such as at F) in a timely manner. Otherwise, the next Route Discovery initiated by A might also be
contaminated by a ROUTE REPLY from F containing the same stale route. If the ROUTE REQUEST does not
meet these restrictions, the node (node F in this example) discards the ROUTE REQUEST rather than replying
to it or propagating it.

3.4.3 Preventing ROUTE REPLY Storms

The ability for nodes to reply to a ROUTE REQUEST based on information in their Route Caches, as described
in Section 3.4.2, could result in a possible ROUTE REPLY “storm” in some cases. In particular, if a node
broadcasts a ROUTE REQUEST for a target node for which the node’s neighbors have a route in their Route
Caches, each neighbor may attempt to send a ROUTE REPLY, thereby wasting bandwidth and possibly
increasing the number of network collisions in the area.

For example, in the situation shown in Figure 5, nodes B, C, D, E, and F all receive A’s ROUTE REQUEST

for target G, and each have the indicated route cached for this target. Normally, they would all attempt to
reply from their own Route Caches, and would all send their REPLYs at about the same time since they all
received the broadcast ROUTE REQUEST at about the same time. Such simultaneous replies from different
nodes all receiving the ROUTE REQUEST may create packet collisions among some or all of these REPLIES

and may cause local congestion in the wireless network. In addition, it will often be the case that the
different replies will indicate routes of different lengths, as shown in this example.

If a node can put its network interface into promiscuous receive mode, it should delay sending its own
ROUTE REPLY for a short period, while listening to see if the initiating node begins using a shorter route first.
That is, this node should delay sending its own ROUTE REPLY for a random period d � H � �h � 1 � r�,
where h is the length in number of network hops for the route to be returned in this node’s ROUTE REPLY,
r is a random number between 0 and 1, andH is a small constant delay (at least twice the maximum wireless
link propagation delay) to be introduced per hop. This delay effectively randomizes the time at which each
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Figure 5: A ROUTE REPLY storm could result if many nodes all reply to the same ROUTE REQUEST from
their own Route Caches. The route listed next to each node shows the route to destination G currently listed
in that node’s Route Cache.

node sends its ROUTE REPLY, with all nodes sending ROUTE REPLYs giving routes of length less than h

sending their REPLYs before this node, and all nodes sending ROUTE REPLYs giving routes of length greater
than h sending their REPLYs after this node. Within the delay period, this node promiscuously receives all
packets, looking for data packets from the initiator of this Route Discovery destined for the target of the
Discovery. If such a data packet received by this node during the delay period uses a source route of length
less than or equal to h, this node may infer that the initiator of the Route Discovery has already received a
ROUTE REPLY giving an equally good or better route. In this case, this node cancels its delay timer and does
not send its ROUTE REPLY for this Route Discovery.

3.4.4 ROUTE REQUEST Hop Limits

Each ROUTE REQUEST message contains a “hop limit” that may be used to limit the number of intermediate
nodes allowed to forward that copy of the ROUTE REQUEST. As the REQUEST is forwarded, this limit is
decremented, and the REQUEST packet is discarded if the limit reaches zero before finding the target. We
currently use this mechanism to send a nonpropagating ROUTE REQUEST (i.e., with hop limit 0) as an
inexpensive method of determining if the target is currently a neighbor of the initiator or if a neighbor node
has a route to the target cached (effectively using the neighbors’ caches as an extension of the initiator’s
own cache). If no ROUTE REPLY is received after a short timeout, then a propagating ROUTE REQUEST (i.e.,
with no hop limit) is sent.

We have also considered using this mechanism to implement an expanding ring search for the tar-
get [Johnson 1996a]. For example, a node could send an initial nonpropagating ROUTE REQUEST as
described above; if no ROUTE REPLY is received for it, the node could initiate another ROUTE REQUEST

with a hop limit of 1. For each ROUTE REQUEST initiated, if no ROUTE REPLY is received for it, the
node could double the hop limit used on the previous attempt, to progressively explore for the target node
without allowing the ROUTE REQUEST to propagate over the entire network. However, this expanding ring
search approach could have the effect of increasing the average latency of Route Discovery, since multiple
Discovery attempts and timeouts may be needed before discovering a route to the target node.
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Figure 6: Node C notices that the source route to D can be shortened, since it overheard a packet from A
intended first for B.

3.5 Additional Route Maintenance Features

3.5.1 Packet Salvaging

After sending a ROUTE ERROR message as part of Route Maintenance as described in Section 3.3, a node
may attempt to salvage the data packet that caused the ROUTE ERROR rather than discarding it. To attempt
to salvage a packet, the node sending a ROUTE ERROR searches its own Route Cache for a route from itself
to the destination of the packet causing the ERROR. If such a route is found, the node may salvage the packet
after returning the ROUTE ERROR by replacing the original source route on the packet with the route from
its Route Cache. The node then forwards the packet to the next node indicated along this source route. For
example, in Figure 2, if node C has another route cached to node E, it can salvage the packet by applying
this route to the packet rather than discarding the packet.

When salvaging a packet in this way, the packet is also marked as having been salvaged, to prevent a
single packet being salvaged multiple times. Otherwise, it could be possible for the packet to enter a routing
loop, as different nodes repeatedly salvage the packet and replace the source route on the packet with routes
to each other. An alternative mechanism of salvaging that we have considered would be to replace only
the unused suffix of the original route (the portion in advance of this node) with the new route from this
node’s Route Cache, forming a new route whose prefix is the original route and whose suffix is the route
from the Cache. In this case, the normal rules for avoiding duplicated nodes being listed in a source route
are sufficient to avoid routing loops. However, this mechanism of salvaging would prevent the new route
from “backtracking” from this node to an earlier node already traversed by this packet, to then be forwarded
along a different remaining sequence of hops to the destination. Our current salvaging mechanism allows
backtracking but prevents a packet from being salvaged more than once.

3.5.2 Automatic Route Shortening

Source routes in use may be automatically shortened if one or more intermediate hops in the route become
no longer necessary. This mechanism of automatically shortening routes in use is somewhat simular to the
use of of passive acknowledgements. In particular, if a node is able to overhear a packet carrying a source
route (e.g., by operating its network interface in promiscuous receive mode), then this node examines the
unused portion of that source route. If this node is not the intended next hop for the packet but is named
in the later unused portion of the packet’s source route, then it can infer that the intermediate nodes before
itself in the source route are no longer needed in the route. For example, Figure 6 illustrates an example
in which node C has overheard a data packet being transmitted from A to B, for later forwarding to C; the
arrow pointing to one node in the source route in each packet indicates the intended next receiver of the
packet along the route.

In this case, this node (node C) returns a gratuitous ROUTE REPLY message to the original sender of the
packet (node A). The ROUTE REPLY gives the shorter route as the concatenation of the portion of the original
source route up through the node that transmitted the overheard packet, plus the suffix of the original source
route beginning with the node returning the gratuitous ROUTE REPLY. In this example, the route returned in
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the gratuitous ROUTE REPLY message sent from C to A gives the new route as the sequence of hops from A
to C to D.

3.5.3 Increased Spreading of ROUTE ERROR Messages

When a source node receives a ROUTE ERROR for a data packet that it originated, this source node propagates
this ROUTE ERROR to its neighbors by piggybacking it on its next ROUTE REQUEST. In this way, stale
information in the caches of nodes around this source node will not generate ROUTE REPLYs that contain the
same invalid link for which this source node received the ROUTE ERROR.

For example, in the situation shown in Figure 2, node A learns from the ROUTE ERROR message from
C, that the link from C to D is currently broken. It thus removes this link from its own Route Cache and
initiates a new Route Discovery (if it doesn’t have another route to E in its Route Cache). On the ROUTE

REQUEST packet initiating this Route Discovery, node A piggybacks a copy of this ROUTE ERROR message,
ensuring that the ROUTE ERROR message spreads well to other nodes, and guaranteeing that any ROUTE

REPLY that it receives (including those from other node’s Route Caches) in response to this ROUTE REQUEST

does not contain a route that assumes the existence of this broken link.
We have also considered, but not simulated, a further improvement to Route Maintenance in which a

node, such as A in Figure 4, that receives a ROUTE ERROR will forward the ERROR along the same source
route that resulted in the ERROR. This will almost guarantee that the ROUTE ERROR reaches the node that
generated the ROUTE REPLY containing the broken link, which will prevent that node from contaminating a
future Route Discovery with the same broken link.

3.5.4 Caching Negative Information

In some cases, DSR could potentially benefit from nodes caching “negative” information in their Route
Caches. For example, in Figure 2, if node A caches the fact that the link from C to D is currently broken
(rather than simply removing this hop from its Route Cache), it can guarantee that no ROUTE REPLY that
it receives in response to its new Route Discovery will be accepted that utilizes this broken link. A short
expiration period must be placed on this negative cached information, since while this entry is in its Route
Cache, A will otherwise refuse to allow this link in its cache, even if this link begins working again.

Another case in which caching negative information in a node’s Route Cache might be useful is the case
in which a link is providing highly variable service, sometimes working correctly but often not working.
This situation could occur, for example, in the case in which the link is near the limit of the sending
node’s wireless transmission range and there are significant sources of interference (e.g., multipath) near
the receiving node on this link. In this case, by caching the negative information that this link is broken, a
node could avoid adding this problematic link back to its Route Cache during the brief periods in which it
is working correctly.

We have not currently included this caching of negative information in our simulations or implementation
of DSR, although we have found situations in our DSR testbed implementation (Section 4.2) where it could
potentially improve the performance of Route Discovery [Maltz 1999b]. A challenge in implementing the
caching of negative information that we are currently researching is the difficulty of picking a suitable
expiration period for such cache entries.

3.6 Support for Heterogeneous Networks and Mobile IP

In configuring and deploying an ad hoc network, in many cases, all nodes will be equiped with the same type
of wireless network interfaces, allowing simple routing between nodes over arbitrary sequences of network
hops. However, a more flexible configuration might be to also equip a subset of the nodes with a second
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Figure 7: An ad hoc network consisting of nodes communicating via short-range radios, with nodes A, B,
and C also having long-range radios. Communication between other nodes such as X and Y may involve
multiple short-range hops, followed by a long-range hop, followed by additional short-range hops.

network interface consisting of a longer-range (and thus generally lower speed) wireless network interface.
For example, in a military setting, a group of soldiers might all use short-range radios to communicate
among themselves, while relaying through truck-mounted higher power radios to communicate with other
groups.

This general type of network configuration is the ad hoc networking equivalent of wireless overlay
networks [Katz 1996]. Due to the high degree of locality likely to be present among directly cooperating
nodes communicating with each other, such a network configuration would allow high speed communication
among such cooperating nodes, while at the same time allowing communication with other nodes further
away without requiring very large numbers of network hops. The longer-range radios might also allow gaps
between different groups of nodes to be spanned, reducing the probability of network partition. A simple
example of such an ad hoc network configuration is shown in Figure 7. Nodes A, B, and C, here, each have
both short-range and long-range radio interfaces, all other nodes in the ad hoc network have only short-range
radio network interfaces. Node X is using a source route to node Y that uses a sequence of both short-range
and long-range hops.

3.6.1 Use of Interface Indices in DSR

DSR supports automatic, seamless routing in these and other heterogeneous configurations, through its
logical addressing model [Broch 1999b]. Using conventional IP addressing, each ad hoc network node
would configure a different IP address for each of its possibly many network interfaces, but as noted in
Section 2, each node using DSR chooses one of these as its home address to use for all communication while
in the ad hoc network. This use of a single IP address per node gives DSR the ability to treat the overall
network as single routing domain. To then distinguish between the different network interfaces on a node,
each node independently assigns a locally unique interface index to each of its own network interfaces.
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Figure 8: An ad hoc network consisting of nodes with heterogeneous network interfaces.

The interface index for any network interface on a node is an opaque value assigned by the node itself.
The particular value chosen must be unique among the network interfaces on that individual node but
need have no other significance and need not be coordinated with any other nodes in choosing their own
interface indices. On many operating systems, a unique value to identify each network interface is already
available and can be used for this purpose; for example, the if index field in the ifnet structure for a
network interface in BSD Unix-based networking stacks [Wright 1995] can be used directly by a node for
the interface index for that network interface.

For example, Figure 8 illustrates a simple ad hoc network of four nodes, in which node A is using one
type of network interface (represented by the triangles), node C and node D are using an different type of
physical network interface (represented by the circles), and node B is configured with both types of network
interfaces and can forward packets between the two different types of radio technologies. The number
labeling each network interface indicates the interface index chosen by the corresponding node for that
interface. Since the interface indices are chosen independently by each node, it is possible, for example,
that nodes B and D each chose index 1 for their circle network interfaces, but node C chooses index 4.

The interface index is used as part of each hop in each source route discovered and used by DSR.
Specifically, a path through the ad hoc network from a source node N 0 to a destination node Nm is fully
represented as a series of hops N0/i0 � N1/i1 � N2/i2 � � � �� Nm, where the notation Nk/ik is used to
indicate that node Nk must transmit the packet using its network interface ik in order to deliver the packet
over the next hop to node Nk�1.

In forwarding a ROUTE REQUEST, a node adds to the route record in the REQUEST, not only its own
address (Section 3.2), but also the interface index of its own network interface on which it forwards the
packet. To allow the reversing of a sequence of hops for a reverse route back to the originating node (when,
for example, the existence of bi-directional links can by assumed based on the underlying MAC protocol),
the node forwarding the ROUTE REQUEST may also add to the route record in the REQUEST, the interface index
of its own network interface on which it received the ROUTE REQUEST packet. For example, the source route
shown in Figure 8 is A/1� B/1� C/4� D. The corresponding reversed route is D/1� C/4� B/2� A.
The interface indices to represent a route are carried in the ROUTE REQUEST, the ROUTE REPLY, and the
source route in the header of data packets.

3.6.2 Internet Interconnection and Mobile IP

DSR supports the seamless interoperation between an ad hoc network and the Internet, allowing packets
to transparently be routed from the ad hoc network to nodes in the Internet and from the Internet to nodes
in the ad hoc network [Broch 1999b]. To enable this interoperation, one (or more) nodes in the ad hoc
network must be connected to the Internet, such that it participates in the ad hoc network through DSR, and
also participates in the Internet through standard IP routing. We call such a node a gateway between the
ad hoc network and the Internet. In this way, DSR allows the coverage range around a wireless Internet
base station, for example, to be dynamically enlarged through multiple “hops” between nodes through the
ad hoc network. It is also possible for such a gateway node to operate as a Mobile IP home agent or foreign
agent [Johnson 1995, Perkins 1996], allowing nodes to visit the ad hoc network as a Mobile IP foreign
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network, and allowing nodes whose home network is the ad hoc network to visit other networks using
Mobile IP.

This functionality of interconnection with the Internet is implemented through two special reserved
interface index values, used by gateway nodes to identify their interconnection to the Internet. If the
node has a separate physical network interface by which it connects to the Internet, other than the network
interface(s) that it uses for participation in the ad hoc network, the reserved interface index is used to identify
that interface. However, it is also possible for a node to use a single network interface both for participation
in the ad hoc network and also for connection to the Internet through standard IP routing; in this case,
the reserved interface index identifies the logically separate functionality of this interface for its Internet
connection, and the node uses another (locally assigned) interface index value to identify this interface in
its separate logical function of participation in the ad hoc network.

If the gateway node is acting as a Mobile IP home agent or foreign agent (termed a mobility agent)
on this network interface, it uses the reserved interface index value IF_INDEX_MA. Otherwise, the
gateway node uses the reserved value IF_INDEX_ROUTER. The distinction between the reserved index
values for mobility agents and for routers allows mobility agents to advertise their existence (as needed for
Mobile IP) at no cost. A node in the ad hoc network that processes a routing header listing the interface index
IF_INDEX_MA can then send a unicast Mobile IP AGENT SOLICITATION [Perkins 1996] to the corresponding
address in the routing header to obtain complete information about the Mobile IP services being provided.

In processing a received ROUTE REQUEST, a gateway node generates a ROUTE REPLY, giving its reserved
interface index value, if it believes it may be able to reach the target node through its Internet connection.
Thus, the originator of the Route Discovery may receive REPLYs both from the gateway and from the node
itself, if the node is really present in the ad hoc network. When later sending packets to this destination,
the sender should prefer cached routes that do not traverse a hop with an interface index of IF_INDEX_MA
or IF_INDEX_ROUTER, since this will prefer routes that lead directly to the destination node within the
ad hoc network.

3.7 Multicast Routing with DSR

DSR does not currently support true multicast routing, but does support an approximation of this that
is sufficient in many network contexts. Through an extension of the Route Discovery mechanism, DSR
supports the controlled flooding of a data packet to all nodes in the ad hoc network that are within some
specified number of hops of the originator; these nodes may then apply destination address filtering (e.g., in
software) to limit the packet to those nodes subscribed to the packet’s indicated multicast destination address.
While this mechanism does not support pruning of the broadcast tree to conserve network resources, it can
be used to distribute information to all nodes in the ad hoc network subscribed to the destination multicast
address. This mechanism may also be useful for sending application level packets to all nodes in a limited
range around the sender.

To utilize this form of multicasting, when an application on a DSR node sends a packet to a multicast
destination address, DSR piggybacks the data from the packet inside a ROUTE REQUEST targeted at the
multicast address. The normal ROUTE REQUEST propagation scheme described in Section 3.2 will result
in this packet being efficiently distributed to all nodes in the network within the specified hop count (TTL)
of the originator. After forwarding the packet as defined for Route Discovery, each receiving node then
individually examines the destination address of the packet and discards the packet if it is destined to a
multicast address to which this node is not subscribed.
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3.8 Location of DSR Functions in the ISO Network Reference Model

When designing DSR, we had to determine at what layer within the protocol hierarchy to implement ad hoc
network routing. We considered two different options: routing at the link layer (ISO layer 2) and routing at
the network layer (ISO layer 3). Originally, we opted to route at the link layer for several reasons:

� Pragmatically, running the DSR protocol at the link layer maximizes the number of mobile nodes
that can participate in ad hoc networks. For example, the protocol can route equally well between
IPv4 [Postel 1981a], IPv6 [Deering 1998], and IPX [Turner 1990] nodes.

� Historically [Johnson 1994, Johnson 1996a], as described more fully in Section 5, DSR grew from
our contemplation of a multi-hop propagating version of the Internet’s Address Resolution Protocol
(ARP) [Plummer 1982], as well as from the routing mechanism used in IEEE 802 source routing
bridges [Perlman 1992]. These are layer 2 protocols.

� Technically, we designed DSR to be simple enough that that it could be implemented directly in
the firmware inside wireless network interface cards [Johnson 1994, Johnson 1996a], well below the
layer 3 software within a mobile node. We see great potential in this for DSR running inside a cloud of
mobile nodes around a fixed base station, where DSR would act to transparently extend the coverage
range to these nodes. Mobile nodes that would otherwise be unable to communicate with the base
station due to factors such as distance, fading, or local interference sources could then reach the base
station through their peers.

Ultimately, however, we decided to specify [Broch 1999a] and to implement [Maltz 1999b] DSR as a layer 3
protocol, since this is the only layer at which we could realistically support nodes with multiple network
interfaces of different types, as described in Section 3.6.

4 DSR Evaluation

This section summarizes some of our experiences evaluating DSR through detailed studies using discrete
event simulation, and through implementation and actual operation and experience with the protocol in an
ad hoc networking testbed environment. Complete details of this evaluation work can be found in other
publications [Broch 1998, Maltz 1999a, Maltz 1999b].

4.1 Simulation Summary

Our simulation environment consists of a set of wireless and mobile networking extensions that we have cre-
ated [Broch 1998], based on the publicly-available ns-2 network simulator from the University of California
at Berkeley and the VINT Project [Fall 1997]. These extensions provide a detailed model of the physical
and link layer behavior of a wireless network and allow arbitrary movement of nodes within the network. At
the physical layer, we provide realistic modeling of factors such as free space and ground reflection propa-
gation, transmission power, antenna gain, receiver sensitivity, propagation delay, carrier sense, and capture
effect [Rappaport 1996]. At the link layer, we model the complete Distributed Coordination Function (DCF)
Media Access Control (MAC) protocol of the IEEE 802.11 wireless LAN protocol standard [IEEE 1997],
along with the standard Internet Address Resolution Protocol (ARP) [Plummer 1982]. These wireless and
mobile networking extensions are available from the Carnegie Mellon University Monarch Project web
pages [Monarch] and have been widely used by other researchers; a version of them have also now been
adopted as a part of the standard VINT release of ns-2.

We have done a number of different simulation studies with this environment, analyzing the behavior and
performance of DSR and comparing it to other proposed routing protocols for ad hoc networks [Broch 1998,
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Maltz 1999a]. Here we summarize only some of the basic results that indicate DSR’s excellent performance.
In the results presented here, all simulations were run in ad hoc networks of 50 mobile nodes moving
according to the random waypointmobility model [Johnson 1996a] within a flat rectangular (1500m� 300m)
area; all simulations were run for 15 minutes (900 seconds) of simulated time. Data traffic was generated
using constant bit rate (CBR) UDP traffic sources, with either 10, 20, or 30 mobile nodes acting as traffic
sources generating 4 packets/second each; we show here the results for 20 sources, although the results
for 10 and 30 sources are similar. All movement and application-layer communication was generated in
advance and captured in a scenario file, allowing us to rerun DSR or other ad hoc network routing protocols
on the identical workloads. The physical radio characteristics of each mobile node’s network interface,
such as the antenna gain, transmit power, and receiver sensitivity, were chosen to approximate the Lucent
WaveLAN [Tuch 1993] direct sequence spread spectrum radio.

In the random waypoint mobility model [Johnson 1996a], each mobile node begins at a random location
and and moves independently during the simulation. Each node remains stationary for a specified period
that we call the pause time and then moves in a straight line to some new randomly chosen location at
a randomly chosen speed up to some maximum speed. Once reaching that new location, the node again
remains stationary for the pause time, and then chooses a new random location to proceed to at some new
randomly chosen speed, and the node continues to repeat this behavior throughout the simulation run. We
have found that this model can produce large amounts of relative node movement and network topology
change, and thus provides a good movement model with which to stress DSR or other ad hoc network
routing protocols.

Figure 9 summarizes the performance of DSR as a function of pause time, for two different maximum
node movement speeds: Figures 9(a) and (b) show the performance for 1 meter/second (about 2 miles/hour),
and Figures 9(c) and (d) show the performance for 20 meters/second (about 45 miles/hour). The packet
delivery ratio (Figures 9(a) and (c)) is the overall percentage of the UDP data packets originated by nodes
that were successfully delivered by DSR, and the routing overhead (Figures 9(b) and (d)) is the number
of routing overhead packets generated by DSR to achieve this level of data packet delivery, for the two
respective node movement speeds. Each point in the graphs represent the average of 10 random movement
and communication scenarios for the given pause time. At a pause time of 0 (on the lefthand-side of each
graph), all nodes in the network are in constant motion, and as the pause time increases from left to right,
the average node movement rate in the network decreases. At a pause time of 900 (on the righthand-side of
each graph), all nodes are stationary, since each simulation was run for 900 simulated seconds of operation
of the ad hoc network. The vertical scales on the graphs for 1 meter/second and for 20 meters/second differ
in order to make the detail in the graphs visible.

At both movement speeds, DSR delivers almost all data packets, regardless of pause time, with packet
delivery ratio rising to equal 100% at pause time 900 (a stationary network). Similarly, at all pause times,
routing overhead is low, with overhead being essentially 0 at pause time 900 and rising only slowly as pause
time decreases (as the average node mobility rate in the network increases). At the lower movement speed
of 1 meter/second, DSR is able to deliver greater than 99.5% of all packets, with most cases delivering
greater than 99.8% of all packets; the slight decrease at pause time 30 is due to the random generation of
the scenarios that we used in the simulations. At the higher movement speed of 20 meters/second, DSR is
able to deliver greater than 98% of all packets, even at pause time 0.

4.2 DSR Implementation and Testbed Summary

To study the behavior of DSR in a real network, we have implemented DSR in the FreeBSD version of
Unix [FreeBSD], and have experimented with this implementation extensively in an outdoor testbed we
constructed in Pittsburgh, where Carnegie Mellon University is located [Maltz 1999b]. Experimentation
with the protocol in a real implementation and wireless and mobile testbed allows us to experience the full
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Figure 9: Summary of DSR performance as a function of pause time. A pause time of 0 represents
continuous node motion, and a pause time of 900 represents a stationary network. The vertical scales on the
graphs for 1 meter/second and for 20 meters/second differ in order to show detail.

variability and dynamics of real radio propagation, to evaluate user perceptions of applications running over
the protocols, and to confirm the results from our simulations.

All of the code implementing DSR resides inside the kernel in a module that straddles the IP layer.
Conceptually, however, DSR can be thought of as a virtual network interface (dsr0) residing below the
IP layer. Like other protocol implementation efforts that have used virtual interfaces to hide mobility from
the normal network stack [Cheshire 1996], the dsr0 interface accepts packets from the normal IP stack just
as any other network interface would, but uses its own mechanisms to arrange for their delivery via the
actual physical network interfaces.

To allow multiple types of DSR information to be combined together in a single packet, and to allow
DSR information to be piggybacked on existing packets, we used a packet format for DSR modeled after
the extension header and option format used by IPv6 [Deering 1998, Hinden 1996]. In particular, ROUTE

REQUESTs, ROUTE REPLYs, and ROUTE ERRORs are each encoded as an option within either a Hop-by-Hop
or End-to-End extension header, and a DSR source route on a packet is encoded as a separate extension
header.
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Figure 10: A map of the Carnegie Mellon University Monarch Project DSR ad hoc networking testbed site.

We have experimented extensively with this implementation of DSR in our actual ad hoc networking
testbed [Maltz 1999b]. Over a period of four months between December 1998 and March 1999, we operated
this ad hoc networking testbed daily. Figure 10 shows a map of the testbed site and illustrates the layout of
the nodes and the mobility in the network. We describe here the movement and communication behavior
that we utilized for many of our experiments with the testbed.

The testbed consisted of 5 mobile nodes implemented as cars driving at about 25 MPH (about 10 me-
ters/second), plus two stationary nodes (labeled A and B in Figure 10) separated by a distance of about
700 meters (typically about 3 radio hops). The mobile node cars were continuously driven in a loop along
a path starting in the rectangular parking area near A (in front of the Site Office building and the building
next to it), driving along the shaded roadway to the parking area at B, turning there and returning to the
first parking area, and repeating; all cars were typically driven along this loop, in nearly constant motion,
throughout a run of the testbed. As the cars moved, the route between the two stationary nodes A and B
was constantly changing, and the route between any car and any other car also changed frequently as the
cars moved relative to one another. The area used for the testbed was open to general vehicle traffic and
has several Stop signs, so the actual speed of each node also varies over time, just as it would in any real,
deployed network. All of the routes within the ad hoc network were dynamically found and maintained
through our DSR ad hoc network routing protocol.

In each car, a laptop computer implemented the DSR routing protocol, served as an endpoint in different
higher layer protocol connections and applications, and allowed local logging of network events on the
laptop’s hard disk. The wireless network interfaces used to form the ad hoc network were WaveLAN
PCMCIA PC Card radios, operating at 900 MHz, from Lucent Technologies [Tuch 1993]. Each car was
also outfitted with a highly accurate GPS (Global Positioning System) receiver operating in Real Time
Kinematic (RTK) mode, providing each node with its own current position to centimeter-level accuracy.
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During different runs of the testbed, we were thus able to have each mobile node log its own current GPS
position, as well as the source, destination, and contents of each packet sent or received, along with all
significant DSR state transition events. To facilitate additional position logging, the sender’s current GPS
position was piggybacked on each packet sent, which was logged along with the data of the packet on
receipt. In addition, the signal strength and signal quality (as reported by the WaveLAN hardware) for
each received packet was also logged. Logging this data allowed us to determine whether the protocol was
working as intended and to help diagnose any problems encountered. We have also begun attempting to use
this data to help with a detailed validation of our simulation models and results [Johnson 1999].

In operating the testbed [Maltz 1999b], we experimented with a wide variety of simultaneous data traffic
types and network loads, including bulk file transfer, telnet, constant bit rate UDP streams loading the
network similar to voice or video, and realtime position and status reporting packets. All realtime GPS
“correction” data, required for the RTK GPS operation, was also sent once per second to each node over the
ad hoc network from a GPS reference station located on top of the Site Office building shown in the map
in Figure 10. This system was successfully demonstrated in February and March 1999 to a number of the
sponsors and partners in our research, including the DARPA Global Mobile Information Systems Program
(GloMo), Lucent Technologies, Bell Atlantic Mobile, and Caterpillar Corporation. In these demonstrations,
the mobile node cars were in constant motion as described above, with the network successfully carrying a
large volume of all of these types of traffic; the demonstrations also included interconnection of the ad hoc
network to the Internet and integration with Mobile IP, as described in Section 3.6.

5 Related Work

Research in the area of routing in multi-hop wireless ad hoc networks dates back at least to 1973, when
the U.S. Defense Advanced Research Projects Agency (DARPA) began the Packet Radio Network (PR-
NET) project [Jubin 1987]. PRNET and its successor, the Survivable Adaptive Networks (SURAN)
project [Lauer 1995], generated a substantial number of fundamental results in this area. With the in-
creasing capabilities and decreasing costs of small, portable computers such as laptops and PDAs (Personal
Digital Assistants), and with the increasing availability of inexpensive wireless network interface devices
such as wireless LAN interfaces packaged as PCMCIA PC Cards, a growing number of other research
projects in ad hoc networking have developed, some of which are described in other chapters of this book.
In our discussion of related work here, we concentrate on research specifically related to the DSR protocol.

The initial design of the DSR protocol, including our basic Route Maintenance and Route Discovery
mechanisms, was first published in December 1994, with significant additional design details and initial
simulation results published in early 1996 [Johnson 1994, Johnson 1996a]. As noted in Section 1, the design
specification for DSR has also been submitted to the MANET (Mobile Ad Hoc Networks) Working Group
of the IETF (Internet Engineering Task Force) in their efforts to standardize a protocol for routing of IP
packets in an ad hoc network [Broch 1999a, MANET].

The original motivation in the design of DSR came from the operation of the Address Resolution Protocol
(ARP) [Plummer 1982] used in the TCP/IP suite of protocols in the Internet. ARP is used on Ethernets and
other types of networks to find the link-layer MAC address of a node on the same subnet as the sender.
A node sending a packet to a local IP address for which it does not yet have the MAC address cached,
broadcasts an ARP REQUEST packet on the local subnet link, giving the IP address of the node it is looking
for; that node responds with an ARP REPLY packet, giving its MAC address, and all other nodes ignore the
REQUEST. If all nodes in an ad hoc network are within wireless transmission range of each other, this is the
only routing protocol needed for the ad hoc network. DSR extends this basic behavior of ARP by allowing
the REQUEST packet (the ROUTE REQUEST rather than an ARP REQUEST) to be propagated multiple hops
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away by being forwarded by neighbor nodes, with the ultimate ROUTE REPLY being returned over multiple
hops back to the initiator of the REQUEST.

DSR’s nonpropagating ROUTE REQUEST packets are indeed quite similar to the basic ARP REQUEST

behavior, except that a mobile node may answer the ROUTE REQUEST from its cache,whereas ARP REQUESTS

are normally only answered by the target node itself. With ARP, in cases in which several LANs have been
bridged together, the bridge may run “proxy” ARP [Postel 1984], which allows the bridge to answer an
ARP REQUEST on behalf of another node (behind the bridge). In this sense, our nonpropagating ROUTE

REQUESTS are also similar to proxy ARP; they expand the effective size of a single node’s Route Cache
by allowing it to cheaply make use of the caches of neighboring nodes to reduce the need for propagating
ROUTE REQUESTs. Our original implementation of DSR in 1997 also was structured as an extension of ARP,
integrated into the existing ARP implementation in the FreeBSD Unix kernel [FreeBSD], using an extension
of the ARP REQUEST and ARP REPLY packet formats; as described in Sections 3.8 and 4.2, however, we
ultimately decided to operate DSR at the network layer rather than at the link layer, to allow routing between
different heterogeneous networks all forming a single ad hoc network.

DSR is also similar in approach to the source routing discovery mechanism used in the IEEE 802 SRT
bridge standard [Perlman 1992], and related mechanisms have also been used in other systems including
FLIP [Kaashoek 1993] and SDRP [Estrin 1995]. In particular, our ROUTE REQUEST packet serves essentially
the same role in Route Discovery as an “all paths explorer” packet does in IEEE 802 source routed bridges.
However, in wired networks, a bridge can copy such an explorer packet from one network interface onto
each of its other interfaces (i.e., to each other link to which this bridge is attached) and be sure that the
explorer packet will flood the network in an orderly and complete way. DSR, however, must operate in a
wireless ad hoc network, in which nodes forward packets on the same wireless network interface on which
they receive them, making such a flood more difficult to implement efficiently. DSR also contains many
optimizations designed specifically for the problem of routing in multi-hop wireless ad hoc networks, and
defines the new Route Maintenance mechanism to quickly and efficiently detect broken links between nodes,
allowing alternate routing paths to be taken or new paths to be discovered.

The amateur radio community has also worked extensively with routing in wireless networks of (some-
times) mobile hosts [Karn 1985], holding an annual packet radio computer networking conference sponsored
by the American Radio Relay League (ARRL) since 1981. Amateur packet radio networking originally
used only source routing, with explicit source routes constructed by the user, although some had considered
the possibility of a more dynamic source routing scheme [Garbee 1987]. A system known as NET/ROM
was also developed to allow the routing decisions to be automated, using a form of distance vector routing
protocol rather than source routing [Frank 1988, Geier 1990]. NET/ROM also allows updating of its routing
table based on the source address information in the headers of packets that it receives.

Recently, a number of other protocols have been structured around mechanisms similar to the Route
Discovery and Route Maintenance mechanisms in DSR. For example, the Signal Stability-Based Adaptive
routing protocol (SSA) [Dube 1997] and the Associativity Based Routing protocol (ABR) [Toh 1996] each
discover routes on demand in a way similar to Route Discovery in DSR, but each attempts to select only
long-lived links between nodes where possible; favoring long-lived links helps avoid routes breaking soon
after discovering them but may result in use of routes over a greater number of hops than the shortest routes
available. ABR also adds overhead for periodic beacon packets required to monitor link stability. The
Ad Hoc On-Demand Distance Vector routing protocol (AODV) [Perkins 1999] uses mechanisms similar to
DSR’s Route Discovery and Route Maintenance, but it uses them to create hop-by-hop routes rather than
source routes as is done in DSR; this use of hop-by-hop routes avoids the source routing header overhead
of DSR but prevents or makes difficult many of the route caching and other Route Discovery optimizations
present in DSR and prevents AODV from supporting uni-directional links between nodes. The Zone
Routing Protocol (ZRP) [Haas 1997, Haas 1998] defines a “routing zone” around each individual node,
with a periodic (proactive) protocol such as distance vector or link state for routing within a zone and an
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on-demand protocol such as DSR for routing between zones; the use of routing zones reduces some aspects
of the overhead of the Route Discovery procedure as in DSR but adds the overhead of maintaining zone
membership and routing information within each zone. ZRP may also fail at times to successfully deliver
packets with highly mobile nodes, since the routing protocol within a zone does not utilize on-demand
operation.

Finally, DSR has recently been used as a basis for further work by other researchers, including suggested
improvements to the Route Discovery mechanism. For example, Ko and Vaidya [Ko 1998] have proposed
an optimization to Route Discovery, known as Location-Aided Routing (LAR), that uses knowledge of the
physical (geographical) location of the target node of the Route Discovery (e.g., from GPS, the Global
Positioning System) to narrow the area of the network over which the ROUTE REQUEST packets must be
propagated. Castañeda and Das [Castañeda 1999] have proposed a similar Route Discovery optimization
that uses only logical (topological) location information, not physical location information, and thus does
not require access to GPS. Above the routing layer, Holland and Vaidya [Holland 1999] have recently
studied the behavior of TCP in ad hoc networks, using DSR as a routing protocol; their work added explicit
interaction between TCP and the Route Discovery and Route Maintenance mechanisms to allow TCP to
correctly react to a route failure rather than treating it as network congestion, and to allow TCP to restart
sending as soon as a new route to the destination is discovered.

6 Conclusion

The Dynamic Source Routing protocol (DSR) provides excellent performance for routing in multi-hop
wireless ad hoc networks. As shown in our detailed simulation studies and in our implementation of the
protocol in a real ad hoc network of cars driving and routing among themselves, DSR has very low routing
overhead and is able to correctly deliver almost all originated data packets, even with continuous, rapid
motion of all nodes in the network.

A key reason for this good performance is the fact that DSR operates entirely on demand [Johnson 1994],
with no periodic activity of any kind required at any level within the network. For example, DSR does not
use any periodic routing advertisement, link status sensing, or neighbor detection packets, and does not rely
on these functions from any underlying protocols in the network. This entirely on-demand behavior and lack
of periodic activity allows the number of routing overhead packets caused by DSR to scale all the way down
to zero, when all nodes are approximately stationary with respect to each other and all routes needed for
current communication have already been discovered. As nodes begin to move more or as communication
patterns change, the routing packet overhead of DSR automatically scales to only that needed to track the
routes currently in use.

In this chapter, we have described the principle mechanisms of Route Discovery and Route Maintenance
used by DSR, and have shown how they enable wireless mobile nodes to automatically form a completely
self-organizing and self-configuring network among themselves. Our current work in the Monarch Project at
Carnegie Mellon University includes further improvements to the performance of DSR, for example to allow
scaling to very large networks, and the addition of new features to the protocol, such as multicast routing and
adaptive Quality of Service (QoS) reservations and resource management. Our goal is to create an integrated
set of protocols that allow mobile computers, and the applications running on them and communicating with
them, to seamlessly make the most efficient use of the best available network connections at any time. The
Dynamic Source Routing protocol (DSR) is an important component of such a system.
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