
1

A Comparison of Mechanisms for Improving TCP Performance over
Wireless Links

Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan Seshan and Randy H. Katz1

{hari,padmanab,ss,randy}@cs.berkeley.edu
Computer Science Division, Department of EECS, University of California at Berkeley

Abstract

Reliable transport protocols such as TCP are tuned to

perform well in traditional networks where packet

losses occur mostly because of congestion. However,

networks with wireless and other lossy links also suf-

fer from significant losses due to bit errors and hand-

offs. TCP responds to all losses by invoking

congestion control and avoidance algorithms, resulting

in degraded end-to-end performance in wireless and

lossy systems. In this paper, we compare several

schemes designed to improve the performance of TCP

in such networks. These schemes are classified into

three broad categories: end-to-end protocols, where

loss recovery is performed by the sender; link-layer

protocols, that provide local reliability; and split-con-

nection protocols, that break the end-to-end connec-

tion into two parts at the base station. We present the

results of several experiments performed in both LAN

and WAN environments, using throughput and good-

put as the metrics for comparison.
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Our results show that a reliable link-layer protocol

with some knowledge of TCP provides very good per-

formance. Furthermore, it is possible to achieve good

performance without splitting the end-to-end connec-

tion at the base station. We also demonstrate that

selective acknowledgments and explicit loss notifica-

tions result in significant performance improvements.

1. Introduction

The increasing popularity of wireless networks indi-

cates that wireless links will play an important role in

future internetworks. Reliable transport protocols such

as TCP [22, 24] have been tuned for traditional net-

works comprising wired links and stationary hosts.

These protocols assumecongestion in the network to

be the primary cause for packet losses and unusual

delays. TCP performs well over such networks by

adapting to end-to-end delays and congestion losses.

The TCP sender uses the cumulative acknowledg-

ments it receives to determine which packets have

reached the receiver, and provides reliability by

retransmitting lost packets. For this purpose, it main-

tains a running average of the estimated round-trip

delay and the mean linear deviation from it. The

sender identifies the loss of a packet either by the

arrival of several duplicate cumulative acknowledg-

ments or the absence of an acknowledgment for the

packet within atimeout interval equal to the sum of the

smoothed round-trip delay and four times its mean
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deviation. TCP reacts to packet losses by dropping its

transmission (congestion) window size before retrans-

mitting packets, initiating congestion control or avoid-

ance mechanisms (e.g., slow start [11]) and backing

off its retransmission timer (Karn’s Algorithm [14]).

These measures result in a reduction in the load on the

intermediate links, thereby controlling the congestion

in the network.

Unfortunately, when packets are lost in networks for

reasons other than congestion, these measures result in

an unnecessary reduction in end-to-end throughput

and hence, sub-optimal performance. Communication

over wireless links is often characterized by sporadic

high bit-error rates, and intermittent connectivity due

to handoffs. TCP performance in such networks suf-

fers from significant throughput degradation and very

high interactive delays [6].

Recently, several schemes have been proposed to the

alleviate the effects of non-congestion-related losses

on TCP performance over networks that have wireless

or similar high-loss links [3, 5, 26]. These schemes

choose from a variety of mechanisms, such as local

retransmissions, split-TCP connections, and forward

error correction, to improve end-to-end throughput.

However, it is unclear to what extent each of the mech-

anisms contributes to the improvement in perfor-

mance. In this paper, we examine and compare the

effectiveness of these schemes and their variants, and

experimentally analyze the individual mechanisms and

the degree of performance improvement due to each.

There are two different approaches to improving TCP

performance in such lossy systems. The first approach

hides any non-congestion-related losses from the TCP

sender and therefore requires no changes to existing

sender implementations. The intuition behind this

approach is that since the problem is local, it should be

solved locally, and that the transport layer need not be

aware of the characteristics of the individual links.

Protocols that adopt this approach attempt to make the

lossy link appear as a higher quality link with a

reduced effective bandwidth. As a result, most of the

losses seen by the TCP sender are caused by conges-

tion. Examples of this approach include wireless links

with reliable link-layer protocols such as AIRMAIL

[1], split connection approaches such as Indirect-TCP

[3], and TCP-aware link-layer schemes such as the

snoop protocol [5]. The second class of techniques

attempts to make the sender aware of the existence of

wireless hops and realize that some packet losses are

not due to congestion. The sender can then avoid

invoking congestion control algorithms when non-

congestion-related losses occur — we describe some

of these techniques in Section3. Finally, it is possible

for a wireless-aware transport protocol to coexist with

link-layer schemes to achieve good performance.

We classify the many schemes into three basic groups,

based on their fundamental philosophy: end-to-end

proposals, split-connection proposals and link-layer

proposals. The end-to-end protocols attempt to make

the TCP sender handle losses through the use of two

techniques. First, they use some form of selective

acknowledgments (SACKs) to allow the sender to

recover from multiple packet losses in a window with-

out resorting to a coarse timeout. Second, they attempt

to have the sender distinguish between congestion and

other forms of losses using an Explicit Loss Notifica-

tion (ELN) mechanism. At the other end of the solu-
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tion spectrum, split-connection approaches completely

hide the wireless link from the sender by terminating

the TCP connection at the base station. Such schemes

use a separate reliable connection between the base

station and the destination host. The second connec-

tion can use techniques such as negative or selective

acknowledgments, rather than just standard TCP, to

perform well over the wireless link. The third class of

protocols, link-layer solutions, lie between the other

two classes. These protocols attempt to hide link-

related losses from the TCP sender by using local

retransmissions and perhaps forward error correction

[e.g., 16] over the wireless link. The local retransmis-

sions use techniques that are tuned to the characteris-

tics of the wireless link to provide a significant

increase in performance. Since the end-to-end TCP

connection passes through the lossy link, the TCP

sender may not be fully shielded from wireless losses.

This can happen either because of timer interactions

between the two layers [8], or more likely because of

TCP’s duplicate acknowledgments causing sender fast

retransmissions even for segments that are locally

retransmitted. As a result, some proposals to improve

TCP performance use mechanisms based on the

knowledge of TCP messaging to shield the TCP

sender more effectively and avoid competing and

redundant retransmissions [5].

In this paper, we evaluate the performance of several

end-to-end, split-connection and link-layer protocols

using end-to-end throughput and goodput as perfor-

mance metrics, in both LAN and WAN configurations.

In particular, we seek to answer the following specific

questions:

1. What combination of mechanisms results in best

performance for each of the protocol classes?

2. How important is it for link-layer schemes to be

aware of TCP algorithms to achieve high end-to-

end throughput?

3. How useful are selective acknowledgments in

dealing with lossy links, especially in the pres-

ence of burst losses?

4. Is it important for the end-to-end connection to be

split in order to effectively shield the sender from

wireless losses and obtain the best performance?

We answer these questions by implementing and test-

ing the various protocols in a wireless testbed consist-

ing of Pentium PC base stations and IBM ThinkPad

mobile hosts communicating over a 915 MHz AT&T

Wavelan, all running BSD/OS 2.0. For each protocol,

we measure the end-to-end throughput, and goodputs

for the wired and (one-hop) wireless paths. For any

path (or link), goodput is defined as the ratio of the

actual transfer size to the total number of bytes trans-

mitted over that path. In general, the wired and wire-

less goodputs differ because of wireless losses, local

retransmissions and congestion losses in the wired net-

work. These metrics allow us to determine the end-to-

end performance as well as the transmission efficiency

across the network. While we used a wireless hop as

the lossy link in our experiments, we believe our

results are applicable in a wider context to links where

significant losses occur for reasons other than conges-
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tion. Examples of such links include high-speed

modems and cable modems.

We show that a reliable link-layer protocol with some

knowledge of TCP results in very good performance.

Our experiments indicate that shielding the TCP

sender from duplicate acknowledgments caused by

wireless losses improves throughput by 10-30%. Fur-

thermore, it is possible to achieve good performance

without splitting the end-to-end connection at the base

station. We also demonstrate that selective acknowl-

edgments and explicit loss notifications result in sig-

nificant performance improvements. For instance, the

simple ELN scheme we evaluated improved the end-

to-end throughput by a factor of more than two com-

pared to TCP Reno, with comparable goodput values.

The rest of this paper is organized as follows.

Section2 briefly describes some proposed solutions to

the problem of reliable transport protocols over wire-

less links. Section3 describes the implementation

details of the different protocols in our wireless test-

bed, and Section4 presents the results and analysis of

several experiments. Section5 discusses some miscel-

laneous issues related to handoffs, ELN implementa-

tion and selective acknowledgments. We present our

conclusions in Section6, and mention some future

work in Section7.

2. Related Work

In this section, we summarize some protocols that

have been proposed to improve the performance of

TCP over wireless links. We also briefly describe some

proposed methods to add SACKs to TCP.

• Link-layer protocols: There have been several

proposals for reliable link-layer protocols. The two

main classes of techniques employed by these pro-

tocols are: error correction, using techniques such

as forward error correction (FEC), and retransmis-

sion of lost packets in response to automatic repeat

request (ARQ) messages. The link-layer protocols

for the digital cellular systems in the U.S. — both

CDMA [13] and TDMA [20] — primarily use

ARQ techniques. While the TDMA protocol guar-

antees reliable, in-order delivery of link-layer

frames, the CDMA protocol only makes a limited

attempt and leaves eventual error recovery to the

(reliable) transport layer. Other protocols like the

AIRMAIL protocol [1] employ a combination of

FEC and ARQ techniques for loss recovery.

The main advantage of employing a link-layer pro-

tocol for loss recovery is that it fits naturally into

the layered structure of network protocols. The

link-layer protocol operates independently of

higher-layer protocols and does not maintain any

per-connection state. The main concern about link-

layer protocols is the possibility of adverse effect

on certain transport-layer protocols such as TCP, as

described in Section1. We investigate this in detail

in our experiments.

• Indirect-TCP (I-TCP) protocol [3]: This was one

of the early protocols to use the split-connection

approach. It involves splitting each TCP connection

between a sender and receiver into two separate

connections at the base station — one TCP connec-

tion between the sender and the base station, and

the other between the base station and the receiver.
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In our classification of protocols, I-TCP is a split-

connection solution that uses standard TCP for its

connection over wireless link.

I-TCP, like other split-connection proposals,

attempts to separate loss recovery over the wireless

link from that across the wireline network, thereby

shielding the original TCP sender from the wireless

link. However, as our experiments indicate, the

choice of TCP over the wireless link results in sev-

eral performance problems. Since TCP is not well-

tuned for the lossy link, the TCP sender of the wire-

less connection often times out, causing the origi-

nal sender to stall. In addition, every packet incurs

the overhead of going through TCP protocol pro-

cessing twice at the base station (as compared to

zero times for a non-split-connection approach),

although extra copies are avoided by an efficient

kernel implementation. Another disadvantage of

this approach is that the end-to-end semantics of

TCP acknowledgments is violated, since acknowl-

edgments to packets can now reach the source even

before the packets actually reach the mobile host.

Also, since this protocol maintains a significant

amount of state at the base station per TCP connec-

tion, handoff procedures tend to be complicated

and slow. Section 5.1 discusses some issues related

to cellular handoffs and TCP performance.

• The Snoop Protocol [5]: The snoop protocol intro-

duces a module, called the snoop agent, at the base

station. The agent monitors every packet that

passes through the TCP connection in both direc-

tions and maintains a cache of TCP segments sent

across the link that have not yet been acknowledged

by the receiver. A packet loss is detected by the

arrival of a small number of duplicate acknowledg-

ments from the receiver or by a local timeout. The

snoop agent retransmits the lost packet if it has it

cached and suppresses the duplicate acknowledg-

ments. In our classification of the protocols, the

snoop protocol is a link-layer protocol that takes

advantage of the knowledge of the higher-layer

transport protocol (TCP).

The main advantage of this approach is that it sup-

presses duplicate acknowledgments for TCP seg-

ments lost and retransmitted locally, thereby

avoiding unnecessary fast retransmissions and con-

gestion control invocations by the sender. The per-

connection state maintained by the snoop agent at

the base station is soft, and is not essential for cor-

rectness. Like other link-layer solutions, the snoop

approach could also suffer from not being able to

completely shield the sender from wireless losses.

• Selective Acknowledgments: Since standard TCP

uses a cumulative acknowledgment scheme, it

often does not provide the sender with sufficient

information to recover quickly from multiple

packet losses within a single transmission window.

Several studies [e.g., 9] have shown that TCP

enhanced with selective acknowledgments per-

forms better than standard TCP in such situations.

SACKs were added as an option to TCP by RFC

1072 [12]. However, disagreements over the use of

SACKs prevented the specification from being

adopted, and the SACK option was removed from

later TCP RFCs. Recently, there has been renewed

interest in adding SACKs to TCP. Two relevant
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proposals are the recent RFC on TCP SACKs [17]

and the SMART scheme [15].

The SACK RFC proposes that each acknowledg-

ment contain information about up to three non-

contiguous blocks of data that have been received

successfully by the receiver. Each block of data is

described by its starting and ending sequence num-

ber. Due to the limited number of blocks, it is best

to inform the sender about the most recent blocks

received. The RFC does not specify the sender

behavior, except to require that standard TCP con-

gestion control actions be performed when losses

occur.

An alternate proposal, SMART, uses acknowledg-

ments that contain the cumulative acknowledgment

and the sequence number of the packet that caused

the receiver to generate the acknowledgment (this

information is a subset of the three-blocks scheme

proposed in the RFC). The sender uses this infor-

mation to create a bitmask of packets that have

been delivered successfully to the receiver. When

the sender detects a gap in the bitmask, it immedi-

ately assumes that the missing packets have been

lost without considering the possibility that they

simply may have been reordered. Thus this scheme

trades off some resilience to reordering and lost

acknowledgments in exchange for a reduction in

overhead to generate and transmit acknowledg-

ments.

3. Implementation Details

This section describes the protocols we have imple-

mented and evaluated. Table1 summarizes the key

ideas in each scheme and the main differences

between them. Figure1 shows a typical loss situation

over the wireless link. Here, the TCP sender is in the

middle of a transfer across a two-hop network to a

mobile host. At the depicted time, the sender’s conges-

tion window consists of 5 packets. Of the five packets

in the network, the first two packets are lost on the

wireless link. For each protocol, we show the mes-

sages generated by the receiver and the response from

the base station and source nodes in Figures 2 through

Name Category Special Mechanisms

E2E end-to-end standard TCP-Reno

E2E-NEWRENO end-to-end TCP-NewReno

E2E-SMART end-to-end SMART-based selective acks

E2E-IETF-SACK end-to-end IETF selective acks

E2E-ELN end-to-end Explicit Loss Notification (ELN)

E2E-ELN-RXMT end-to-end ELN with retransmit on first dupack

LL link-layer none

LL-TCP-AWARE link-layer duplicate ack suppression

LL-SMART link-layer SMART-based selective acks

LL-SMART-TCP-AWARE link-layer SMART and duplicate ack suppression

SPLIT split-connection none

SPLIT-SMART split-connection SMART-based wireless connection

Table 1. Summary of protocols studied in this paper.



7

9. Although for the purposes of illustration we only

show the case of data packet loss, our experiments

(and indeed most wireless networks [21]) have wire-

less errors in both directions.

3.1  End-To-End Schemes

Although a wide variety of TCP versions are used on

the Internet, the current de facto standard for TCP

implementations is TCP Reno [24]. We call this the

E2E protocol, and use it as the standard basis for per-

formance comparison (Figure2).

The E2E-NEWRENO protocol improves the perfor-

mance of TCP-Reno after multiple packet losses in a

window by remaining in fast recovery mode if the first

new acknowledgment received after a fast retransmis-

sion is “partial”, i.e, is less than the value of the last

byte transmitted when the fast retransmission was

done. Such partial acknowledgements are indicative of

multiple packet losses within the original window of

data. Remaining in fast recovery mode enables the

connection to recover from losses at the rate of one

segment per round trip time, rather than stall until a

coarse timeout as TCP-Reno often would [9, 10].

The E2E-SMART and E2E-IETF-SACK protocols

(Figure3) add SMART-based and IETF selective

acknowledgments respectively to the standard TCP

Reno stack. This allows the sender to handle multiple

losses within a window of outstanding data more effi-

ciently. However, the sender still assumes that losses

are a result of congestion and invokes congestion con-

trol procedures, shrinking its congestion window size.

This allows us to identify what percentage of the end-

to-end performance degradation is associated with

standard TCP’s handling of error detection and

retransmission. We used the SMART-based scheme

[15] only for the LAN experiments. This scheme is

well-suited to situations where there is little reordering

of packets, which is true for one-hop wireless systems

1 2 3 4

4 3

2

1

5

5

congestion window = 5

Figure 1. A typical loss situation

TCP Source

Base Station

TCP Receiver
Lossy Link

Packets Stored
at Sender

Packets in Flight

Acknowledgments Returning

Figure 2. Normal TCP

0

congestion window = 5

00

1 2 3 4 5

congestion window = 2

1

1 2 3 4 5

Standard cumulative ACKs generated
by TCP Reno receiver.

Fast-retransmit from sender.
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such as ours. Unlike the scheme proposed in [15], we

do not use any special techniques to detect the loss of a

retransmission. The sender retransmits a packet when

it receives a SMART acknowledgment only if the

same packet was not retransmitted within the last

round-trip time. If no further SMART acknowledg-

ments arrive, the sender falls back to the coarse time-

out mechanism to recover from the loss. We used the

IETF selective acknowledgement scheme both for the

LAN and the WAN experiments. Our implementation

is based on the RFC and takes appropriate congestion

control actions upon receiving SACK information [4].

The E2E-ELN protocol (Figure4) adds an Explicit

Loss Notification (ELN) option to TCP acknowledg-

ments. When a packet is dropped on the wireless link,

future cumulative acknowledgments corresponding to

the lost packet are marked to identify that a non-con-

gestion related loss has occurred. Upon receiving this

information with duplicate acknowledgments, the

sender may perform retransmissions without invoking

the associated congestion-control procedures. This

option allows us to identify what percentage of the

end-to-end performance degradation is associated with

TCP’s incorrect invocation of congestion control algo-

rithms when it does a fast retransmission of a packet

lost on the wireless hop. The E2E-ELN-RXMT proto-

col is an enhancement of the previous one, where the

sender retransmits the packet on receiving the first

duplicate acknowledgement with the ELN option set

(as opposed to the third duplicate acknowledgement in

the case of TCP Reno), in addition to not shrinking its

window size in response to wireless losses.

In practice, it might be difficult to identify which pack-

ets are lost due to errors on a lossy link. However, in

our experiments we assume sufficient knowledge at

the receiver about wireless losses to generate ELN

information. We describe some possible implementa-

tion policies and strategies for the ELN mechanism in

Section5.2.

congestion window = 5

0

1 2 3 4 5

congestion window = 2

1

1 2 3 4 5

Figure 3. TCP with SMART-based selective acknowledgements
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Selective ACKs generated by
SMART receiver.

SACK response from sender.

congestion window = 5

0

1 2 3 4 5
congestion window = 5

1

1 2 3 4 5

Figure 4. TCP with ELN

L 0L

0L

Fast-retransmit from sender.Cumulative ACKs w/ ELN option
generated by receiver.
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3.2  Link-Layer Schemes

Unlike TCP for the transport layer, there is no de facto

standard for link-layer protocols. Existing link-layer

protocols choose from techniques such as Stop-and-

Wait, Go-Back-N, Selective Repeat and Forward Error

Correction to provide reliability. Our base link-layer

algorithm, called LL (Figure 5), uses cumulative

acknowledgments to determine lost packets that are

retransmitted locally from the base station to the

mobile host. To minimize overhead, our implementa-

tion of LL leverages off existing TCP acknowledg-

ments instead of generating its own. Timeout-based

retransmissions are done by maintaining a smoothed

round-trip time estimate, with a minimum timeout

granularity of 200 ms to limit the overhead of process-

ing timer events. This still allows the LL scheme to

retransmit packets several times before a typical TCP

Reno transmitter would time out. LL is equivalent to

the snoop agent that does not suppress any duplicate

acknowledgments, and does not attempt in-order

delivery of packets across the link (unlike protocols

proposed in [13], [20]).

While the use of TCP acknowledgments by our LL

protocol renders it atypical of traditional ARQ proto-

cols, we believe that it still preserves the key feature of

such protocols: the ability to retransmit packets

locally, independently of and on a much faster time

scale than TCP. Therefore, we expect the qualitative

aspects of our results to be applicable to general link-

layer protocols.

We also investigated a more sophisticated link-layer

protocol (LL-SMART) that uses selective retransmis-

sions to improve performance. The LL-SMART proto-

col (Figure 6) performs this by applying a SMART-

based acknowledgment scheme to the link layer. Like

the LL protocol, LL-SMART uses TCP acknowledg-

ments instead of generating its own and limits its min-

imum timeout to 200 ms. LL-SMART is equivalent to

the snoop agent performing retransmissions based on

congestion window = 5
1 2 3 4 5

congestion window = 2
1 2 3 4 5

Figure 5. Basic Link-Layer protocol (LL)

00

0

1

1

Local retransmit from router.
Sender also performs fast-retransmit.

Standard cumulative ACKs generated
by TCP-Reno receiver.

congestion window = 5
1 2 3 4 5

congestion window = 2
1 2 3 4 5

Figure 6. Link-Layer with SMART-based selective acknowledgments
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1

40

50

1

SACKs generated by receiver.
Base station strips SACK info and
passes cumulative ACK onward.

Local SACK-based retransmit from base station.
Sender also performs fast-retransmit.

0
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selective acknowledgements but not suppressing

duplicate acknowledgments at the base station.

We added TCP awareness to both the LL and LL-

SMART protocols, resulting in the LL-TCP-AWARE

and LL-SMART-TCP-AWARE schemes. The LL-

TCP-AWARE protocol is identical to the snoop proto-

col, while the LL-SMART-TCP-AWARE protocol

(Figure7) uses SMART-based techniques for further

optimization using selective repeat. LL-SMART-TCP-

AWARE is the best link-layer protocol in our experi-

ments — it performs local retransmissions based on

selective acknowledgments and shields the sender

from duplicate acknowledgments caused by wireless

losses.

3.3  Split-Connection Schemes

Like I-TCP, our SPLIT scheme (Figure8) uses an

intermediate host to divide a TCP connection into two

separate TCP connections. The implementation avoids

data copying in the intermediate host by passing the

pointers to the same buffer between the two TCP con-

nections. A variant of the SPLIT approach we investi-

gated, SPLIT-SMART (Figure9), uses a selective

acknowledgment scheme on the wireless connection to

perform selective retransmissions. As before, the

SACKs generated by receiver.
Base station strips SACK info and
suppresses any duplicate ACKs.

Local SACK-based retransmit from base station.
Sender sees no duplicate ACKs.

congestion window = 5
1 2 3 4 5

congestion window = 5
1 2 3 4 5

Figure 7. Link-Layer with SMART-based selective acknowledgments and TCP awareness
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Figure 8. Split-Connection
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Receiver generates cumulative ACKs too.

Fast-retransmit from base station.
Sender frees packets from TCP stack.
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Figure 9. Split-Connection with SMART-based selective acknowledgments
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SACK-based retransmit from base station.
Sender frees packets from TCP stack.

Base station stores packets and generates
cumulative ACKs.
Receiver generates SACKs.
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selective acknowledgments are based on the SMART

scheme. There is little chance of reordering of packets

over the wireless connection since the intermediate

host is only one hop away from the final destination.

4. Experimental Results

In this section, we describe the experiments we per-

formed and the results we obtained, including detailed

explanations for observed performance. We start by

describing the experimental testbed and methodology.

We then describe the performance of the various link-

layer, end-to-end and split-connection schemes.

4.1  Experimental Methodology

We performed several experiments to determine the

performance and efficiency of each of the protocols.

The protocols were implemented as a set of modifica-

tions to the BSD/OS TCP/IP (Reno) network stack. To

ensure a fair basis for comparison, none of the proto-

cols implementations introduce any additional data

copying at intermediate points from sender to receiver.

Our experimental testbed consists of IBM ThinkPad

laptops and Pentium-based personal computers run-

ning BSD/OS 2.1 from BSDI. The machines are inter-

connected using a 10 Mbps Ethernet and 915 MHz

AT&T WaveLANs [25], a shared-medium wireless

LAN with a raw signalling bandwidth of 2 Mbps. The

network topology for our experiments is shown in

Figure10. The peak throughput for TCP bulk transfers

is 1.5 Mbps in the local area testbed and 1.35 Mbps in

the wide area testbed in the absence of congestion or

wireless losses. These testbed topologies represent

typical scenarios of wireless links and mobile hosts,

such as cellular wireless networks. In addition, our

experiments focus on data transfer to the mobile host,

which is the common case for mobile applications

(e.g., Web accesses).

In order to measure the performance of the protocols

under controlled conditions, we generate errors on the

lossy link using an exponentially distributed bit-error

model. The receiving entity on the lossy link generates

an exponential distribution for each bit-error rate and

changes the TCP checksum of the packet if the error

generator determines that the packet should be

dropped. Losses are generated in both directions of the

wireless channel, so TCP acknowledgments are

dropped too, albeit at a lower per-packet rate. The TCP

data packet size in our experiments is 1400 bytes. We

first measure and analyze the performance of the vari-

ous protocols at an average error rate of one every 64

KBytes (this corresponds to a bit-error rate of about

1.9x10-6 ). Note that since the exponential distribution

has a standard deviation equal to its mean, there are

several occasions when multiple packets are lost in

close succession. We then report the results of some

TCP Source

10 Mbps Ethernet

TCP Receiver2 Mbps WaveLAN
(lossy link)(Pentium-based PC

running BSD/OS)

Base Station
(Pentium-based PC
running BSD/OS)

(486-based laptops
running BSD/OS)

Figure 10. Experimental topology. There were an additional 16 Internet hops between the source and base station dur-
ing the WAN experiments.
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burst error situations, where between two and six

packets are dropped in every burst (Section4.5).

Finally, we investigate the performance of many of

these protocols across a range of error rates from one

every 16 KB to one every 256 KB. The choice of the

exponentially distributed error model is motivated by

our desire to understand the precise dynamics of each

protocol in response to a wireless loss, and is not an

attempt to empirically model a wireless channel.

While the actual performance numbers will be a func-

tion of the exact error model, the relative performance

is dependent on how the protocol behaves after one or

more losses in a single TCP window. Thus, we expect

our overall conclusions to be applicable under other

patterns of wireless loss as well. Finally, we believe

that though wireless errors are generated artificially in

our experiments, the use of a real testbed is still valu-

able in that it introduces realistic effects such as wire-

less bandwidth limitation, media access contention,

protocol processing delays, etc., which are hard to

model realistically in a simulation.

In our experiments, we attempt to ensure that losses

are only due to wireless errors (and not congestion).

This allows us to focus on the effectiveness of the

mechanisms in handling such losses. The WAN exper-

iments are performed across 16 Internet hops with

minimal congestion2 in order to study the impact of

large delay-bandwidth products.

Each run in the experiment consists of an 8 MByte

transfer from the source to receiver across the wired

2.  WAN experiments across the US were performed between 10
pm and 4 am, PST and we verified that no congestion losses
occurred in the runs reported.

net and the WaveLAN link. We chose this rather long

transfer size in order to limit the impact of transient

behavior at the start of a TCP connection. During each

run, we measure the throughput at the receiver in

Mbps, and the wired and wireless goodputs as percent-

ages. In addition, all packet transmissions on the

Ethernet and WaveLan are recorded for analysis using

tcpdump [18], and the sender’s TCP code instru-

mented to record events such as coarse timeouts,

retransmission times, duplicate acknowledgment arriv-

als, congestion window size changes, etc. The rest of

this section presents and discusses the results of these

experiments.

4.2 Link-Layer Protocols

Traditional link-layer protocols operate independently

of the higher-layer protocol, and consequently, do not

necessarily shield the sender from the lossy link. In

spite of local retransmissions, TCP performance could

be poor for two reasons: (i) competing retransmissions

caused by an incompatible setting of timers at the two

layers, and (ii) unnecessary invocations of the TCP

fast retransmission mechanism due to out-of-order

delivery of data. In [8], the effects of the first situation

are simulated and analyzed for a TCP-like transport

protocol (thatclosely tracks the round-trip time to set

its retransmission timeout) and a reliable link-layer

protocol. The conclusion was that unless the packet

loss rate is high (more than about 10%), competing

retransmissions by the link and transport layers often

lead to significant performance degradation. However,

this is not the dominating effect when link layer

schemes, such as LL, are used with TCP Reno and its

variants. These TCP implementations have coarse



13

retransmission timeout granularities that are typically

multiples of 500 ms, while link-layer protocols typi-

cally have much finer timeout granularities. The real

problem is that when packets are lost, link-layer proto-

cols that do not attempt in-order delivery across the

link (e.g., LL) cause packets to reach the TCP receiver

out-of-order. This leads to the generation of duplicate

acknowledgments by the TCP receiver, which causes

the sender to invoke fast retransmission and recovery.

This can potentially cause degraded throughput and

goodput, especially when the delay-bandwidth product

is large.

Our results substantiate this claim, as can be seen by

comparing the LL and LL-TCP-AWARE results

(Figure11 and Table2). For a packet size of 1400

bytes, a bit error rate of1.9x10-6 (1/65536 bytes)

translates to a packet error rate of about 2.2 to 2.3%.

Therefore, an optimal link-layer protocol that recovers

from errors locally and does not compete with TCP

retransmissions should have a wireless goodput of

97.7% and a wired goodput of 100% in the absence of

congestion. In the LAN experiments, the throughput

difference between LL and LL-TCP-AWARE is about

10%. However, the LL wireless goodput is only

95.5%, significantly less than LL-TCP-AWARE’s

wireless goodput of 97.6%, which is close to the max-

imum achievable goodput. When a loss occurs, the LL

protocol performs a local retransmission relatively

quickly. However, enough packets are typically in

transit to create more than 3 duplicate acknowledg-

LL LL-TCP-AWARE LL-SMART LL-SMART-TCP-AWARE

T
hr

ou
gh

pu
t 

(M
bp

s)

LAN: AbsoluteWireless Goodput
Wired Goodput

Figure 11. Performance of link-layer protocols: bit-error rate = 1.9x10-6 (1 error/65536 bytes), socket buffer size = 32
KB. For each case there are two bars: the thick one corresponds to the scale on the left and denotes the throughput in

Mbps; the thin one corresponds to the scale on the right and shows the throughput as a percentage of the maximum, i.e.
in the absence of wireless errors (1.5 Mbps in the LAN environment and 1.35 Mbps in the WAN environment).
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LL
LL-TCP-
AWARE LL-SMART

LL-SMART-TCP-
AWARE

LAN (8 KB) 1.20 (95.6%,97.9%) 1.29 (97.6%,100%) 1.29 (96.1%,98.9%) 1.37 (97.6%,100%)

LAN (32 KB) 1.20 (95.5%,97.9%) 1.36 (97.6%,100%) 1.29 (95.5%,98.3%) 1.39 (97.7%,100%)

WAN (32 KB) 0.82 (95.5%,98.4%) 1.19 (97.6%,100%) 0.93 (95.3%,99.4%) 1.22 (97.6%,100%)

Table 2. This table summarizes the results for the link-layer schemes for an average error rate of one every 65536
bytes of data. Each entry is of the form: throughput (wireless goodput, wired goodput). Throughput is measured in

Mbps. Goodput is expressed as a percentage.
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ments. These duplicates eventually propagate to the

sender and trigger a fast retransmission and the associ-

ated congestion control mechanisms. These fast

retransmissions result in reduced goodput; about 90%

of the lost packets are retransmitted by both the source

(due to fast retransmissions) and the base station.

The effects of this interaction are much more pro-

nounced in the wide-area experiments — the through-

put difference is about 30% in this case. The cause for

the more pronounced deterioration in performance is

the higher bandwidth-delay product of the wide-area

connection. The LL scheme causes the sender to

invoke congestion control procedures often due to

duplicate acknowledgments and causes the average

window size of the transmitter to be lower than for LL-

TCP-AWARE. This is shown in Figure12, which

compares the congestion window size of LL and LL-

TCP-AWARE as a function of time. Note that the

number of outstanding data bytes in the network is the

minimum of the congestion window and the receiver

advertised window. This is bounded by the receiver’s

socket buffer size. In the congestion window graphs

for each protocol, the receiver socket buffer is 32KB.

In the wide area, the bandwidth-delay product is about

23000 bytes (1.35 Mbps * 135 ms), and the congestion

window drops below this value several times during

each TCP transfer. On the other hand, the LAN experi-

ments do not suffer from such a large throughput deg-

radation because LL’s lower congestion-window size

is usually still larger than the connection’s delay-band-

width product of about 1900 bytes (1.5 Mbps * 10

ms). Therefore, the LL scheme can maintain a nearly

LL-TCP-AWARE

Figure 12. Congestion window size for link-layer protocols in wide area tests. The horizontal dashed line in the LL
graph shows the 23000 byte WAN bandwidth-delay product.
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full “data pipe” between the sender and receiver in the

local connection but not in the wide area one. The 10%

LAN degradation is almost entirely due to the exces-

sive retransmissions over the wireless link and to the

smaller average congestion window size compared to

LL-TCP-AWARE. Another important point to note is

that LL successfully prevents coarse timeouts from

happening at the source. Figure13 shows the sequence

traces of TCP transfers for LL-TCP-AWARE and LL.

In summary, our results indicate that a simple link-

layer retransmission scheme does not entirely avoid

the adverse effects of TCP fast retransmissions and the

consequent performance degradation. An enhanced

link-layer scheme that uses knowledge of TCP seman-

tics to prevent duplicate acknowledgments caused by

wireless losses from reaching the sender and locally

retransmits packets achieves significantly better per-

formance.

4.3  End-To-End Protocols

The performance of the various end-to-end protocols

is summarized in Figure14 and Table3. The perfor-

mance of TCP Reno, the baseline E2E protocol, high-

lights the problems with TCP over lossy links. At a

2.3% packet loss rate (as explained in Section4.2), the

E2E protocol achieves a throughput of less than 50%

of the maximum (i.e., throughput in the absence of

wireless losses) in the local-area and less than 25% of

the maximum in the wide-area experiments. However,

all the end-to-end protocols achieve goodputs close to

the optimal value of 97.7%. The primary cause for the

low throughput is the large number of timeout-driven

retransmissions that occur during the transfer
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E2E E2E-NEWRENO E2E-SMART E2E-ELN E2E-ELNRXMT

Figure 14. Performance of end-to-end protocols: bit error rate = 1.9x10-6 (1 error/65536 bytes).
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97.3
0.89
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0.64
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1.25
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97.5
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97.5
97.5
1.12 97.5

97.5
0.93

97.6
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97.5
97.5
0.95

97.4
97.4
0.72

E2E
E2E-

NEWRENO E2E-SMART
E2E-IETF-

SACK E2E-ELN
E2E-ELN-

RXMT

LAN (8 KB) 0.55 (97.0,96.0) 0.66 (97.3,97.3) 1.12 (97.6,97.6) 0.68 (97.3,97.3) 0.69 (97.3,97.2) 0.86 (97.4,97.3)

LAN (32 KB) 0.70 (97.5,97.5) 0.89 (97.7,97.3) 1.25 (97.2,97.2) 1.12 (97.5,97.5) 0.93 (97.5,97.5) 0.95 (97.5,97.5)

WAN (32 KB) 0.31 (97.3,97.3) 0.64 (97.5,97.5) N.A. 0.80 (97.5,97.5) 0.64 (97.6,97.6) 0.72 (97.4,97.4)

Table 3. This table summarizes the results for the end-to-end schemes for an average error rate of one every 65536
bytes of data. The numbers in the cells follow the same convention as in Table 2.
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(Figure15),and the small average window size during

the transfer that prevents the “data pipe” from being

kept full and reduces the effectiveness of the fast

retransmission mechanism (Figure16).

The modified end-to-end protocols improve through-

put by retransmitting packets known to have been lost

on the wireless hop earlier than they would have been

by the baseline E2E protocol, and by reducing the fluc-

tuations in window size. The E2E-NEWRENO, E2E-

ELN, E2E-SMART and E2E-IETF-SACK protocols

each use new TCP options and more sophisticated

acknowledgment processing techniques to improve the

speed and accuracy of identifying and retransmitting

lost packets, as well as by recovering from multiple

losses in a single transmission window without timing

out. The remainder of this section discusses the perfor-

mance advantages of three techniques — partial

acknowledgments, explicit loss notifications, and

selective acknowledgments.

Partial acknowledgments: E2E-NEWRENO, which

uses partial acknowledgment information to recover

from multiple losses in a window at the rate of one

packet per round-trip time, performs between 10 and

25% better than E2E over a LAN and about 2 times

better than E2E in the WAN experiments. The perfor-

mance improvement is a function of the socket buffer

size — the larger the buffer size, the better the relative

performance. This is because in situations that E2E

suffers a coarse timeout for a loss, the probability that

E2E-NEWRENO does not, increases with the number

of outstanding packets in the network.

Figure 15. Packet sequence traces for E2E (TCP Reno) and E2E-ELN. The top row of horizontal dots shows the times
when fast retransmissions occur; the bottom row shows the coarse timeouts.
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Explicit Loss Notification: One way of eliminating the

long delays caused by coarse timeouts is to maintain

as large a window size as possible. E2E-NEWRENO

remains in fast recovery if the new acknowledgment is

only partial, but reduces the window size to half its

original value upon the arrival of the first new

acknowledgment. The E2E-ELN and E2E-ELN-

RXMT protocols use ELN information (Section3.1)

to prevent the sender from reducing the size of the

congestion window in response to a wireless loss.

Both these schemes perform better than E2E-

NEWRENO, and over two times better than E2E. This

is a result of the sender’s explicit awareness of the

wireless link which reduces the number of coarse tim-

eouts (Figure15), and rapid window size fluctuations

(Figure16). The E2E-ELN-RXMT protocol performs

only slightly better than E2E-ELN when the socket

buffer size is 32 KB. This is because there is usually

enough data in the pipe to trigger a fast retransmission

for E2E-ELN. The performance benefits of E2E-ELN-

RXMT are more pronounced when the socket buffer

size is smaller, as the numbers for the 8 KB socket

buffer size indicate (see Table3). This is because E2E-

ELN-RXMT does not wait for three duplicate

acknowledgments before retransmitting a packet, if it

has ELN information for it. The maximum socket

buffer size of 8 KB limits the number of unacknowl-

edged packets to a small number at any point in time,

which reduces the probability of three duplicate

acknowledgments arriving after a loss and triggering a

fast retransmission.

Despite explicit awareness of wireless losses, timeouts

sometimes occur in the ELN-based protocols. This is a

result of our implementation of the ELN protocol,

which does not convey information about multiple

wireless-related losses to the sender. Since it is cou-

pled with only cumulative acknowledgments, the

sender is unaware of the occurrence of multiple wire-

less-related losses in a window; we plan to couple

SACKs and ELN together in future work. Section5.2

discusses some possible implementation strategies and

policies for ELN.

Selective acknowledgments: We experimented with

two different SACK schemes. In the LAN case, we

used a simple SACK scheme based on a subset of the

SMART proposal. This protocol was the best of the

end-to-end protocols in this situation, achieving a

throughput of 1.25 Mbps (in contrast, the best local

scheme, LL-SMART-TCP-AWARE, obtained a

throughput of 1.39 Mbps).

In the WAN case, we based our SACK implementation

[4] on the recent RFC. For the exponentially distrib-

uted loss pattern we used, the throughput was about

0.8 Mbps, significantly higher than the 0.31 Mbps

throughput of TCP Reno. However, this is still about

35% worse than LL-OPT. Even though SACKs allow

the sender to often recover from multiple losses with-

out timing out, the sender’s congestion window

decreases every time there is a packet dropped on the

wireless link, causing it to remain small.

In summary, E2E-NEWRENO is better than E2E,

especially for large socket buffer sizes. Adding ELN to

TCP improves throughput significantly by success-

fully preventing unnecessary fluctuations in the trans-

mission window. Finally, SACKs provide significant

improvement over TCP Reno, but perform about 10-

15% worse than the best link-layer schemes in the
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LAN experiments, and about 35% worse in the WAN

experiments. These results suggest that an end-to-end

protocol that has both ELN and SACKs will result in

good performance, and is an area of current work.

4.4  Split-Connection Protocols

The main advantage of  the  spl i t -connect ion

approaches is that they isolate the TCP source from

wireless losses. The TCP sender of the second, wire-

less connection performs all the retransmissions in

response to wireless losses.

Figure 17 and Table 4 show the throughput and good-

put for the split connection approach in the LAN and

WAN environments. We report the results for two

cases: when the wireless connection uses TCP Reno

(labeled SPLIT) and when it uses the SMART-based

selective acknowledgment scheme described earlier

(labeled SPLIT-SMART). We see that the throughput

achieved by the SPLIT approach (0.6 Mbps) is quite

low, about the same as that for end-to-end TCP Reno

(labeled E2E in Figure 14). The reason for this is

apparent from Figures 18 and 19, which show the

progress of the data transfer and the size of the conges-

tion window for the wired and wireless connections.

We see that the wired connection neither has any

retransmissions nor any timeouts, resulting in a wired

goodput of 100%. However, it (eventually) stalls

SPLIT SPLIT-SMART
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Figure 17. Performance of split-connection protocols: bit error rate = 1.9x10-6 (1 error/65536 bytes).
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based ones.
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SPLIT SPLIT-SMART

LAN (8 KB) 0.54 (97.4%,100%) 1.30 (97.6%,100%)

LAN (32 KB) 0.60 (97.3%,100%) 1.30 (97.2%,100%)

WAN (32 KB) 0.58 (97.2%,100%) 1.10 (97.6%,100%)

Table 4. Summary of results for the split-connection
schemes at an average error rate of 1 every 64 KB.
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whenever the sender of the wireless connection experi-

ences a timeout, since the amount of buffer space at

the base station (64 KB in our experiments) is

bounded3. In the WAN case, the throughput of the

SPLIT approach is about 0.58 Mbps which is better

than the 0.31 Mbps that the E2E approach achieves

(Figure14), but not as good as several other protocols

described earlier. The large congestion window size of

the wired sender in SPLIT enables a higher bandwidth

utilization over the wired network, compared to an

end-to-end TCP connection where the congestion win-

dow size fluctuates rapidly.

As expected, the throughput for the SPLIT-SMART

scheme is much higher. It is about 1.3 Mbps in the

LAN case and about 1.1 Mbps in the WAN case. The

SMART-based selective acknowledgment scheme

operating over the wireless link performs very well,

especially since no reordering of packets occurs over

this hop. However, there are a few times when both the

original transmission and the first retransmission of a

packet get lost, which sometimes results in a coarse

3.  A larger buffer at the base station will not necessarily improve
performance for two reasons: (1) we measure performance in
terms of receiver throughput, which is limited by the small conges-
tion window size of the wireless connection, and (2) a long enough
transfer will still fill up the buffer.

timeout (as described in Section3.1). This explains the

difference in throughput between the SPLIT-SMART

scheme and the LL-SMART-TCP-AWARE scheme

(Figure11).

In summary, while the split-connection approach

results in good throughput if the wireless connection

uses some special mechanisms, the performance does

not exceed that of a well-tuned, TCP-aware link-layer

protocol (LL-TCP-AWARE or LL-SMART-TCP-

AWARE). Moreover, the link-layer protocol preserves

the end-to-end semantics of TCP acknowledgments,

unlike the split-connection approach. This demon-

strates that the end-to-end connection need not be split

at the base station in order to achieve good perfor-

mance.

4.5  Reaction to Burst Errors

In this section, we report the results of some experi-

ments that illustrate the benefit of selective acknowl-

edgments in handling burst losses. We consider two of

the best performing local protocols: LL-TCP-AWARE

(Snoop) and LL-SMART-TCP-AWARE (Snoop with

SMART-based selective acknowledgments). LL-TCP-

AWARE recovers from a single loss by retransmitting

the lost packet when two duplicate acknowledgments

Figure 19. Congestion window sizes as a function of time for the wired and wireless parts of the split TCP connection.
The wired sender never sees any losses and maintains a 64 KB congestion window. However, the wireless TCP connec-

tion’ s congestion window fluctuates rapidly.

0
8192

16384
24576
32768
40960
49152
57344
65536

0 20 40 60 80 100 120C
on

ge
st

io
n 

W
in

do
w

 (
by

te
s)

Time (sec)
0

8192
16384
24576
32768
40960
49152
57344
65536

0 20 40 60 80 100 120C
on

ge
st

io
n 

W
in

do
w

 (
by

te
s)

Time (sec)

Wired Wireless



20

arrive for it. It also keeps track of the number of

expected duplicate acknowledgments and the next

expected new acknowledgment after this local retrans-

mission. If this loss is part of a burst, the first new

acknowledgment to arrive after the duplicates will be

less than the next expected new one; this causes an

immediate retransmission of the lost segment. This is

similar to the mechanism used by E2E-NEWRENO

(Section3.1). LL-SMART-TCP-AWARE uses the

additional useful information provided by the SMART

scheme — the sequence number of the segment that

caused the duplicate acknowledgment — to accurately

determine losses and recover from them.

Table5 shows the performance of the two protocols

for bursts of lengths 2, 4, and 6 packets. These errors

are generated at an average rate of one every 64

KBytes of data, and 2, 4, or 6 packets are destroyed in

each case. Selective acknowledgments improve the

performance of LL-SMART-TCP-AWARE over LL-

TCP-AWARE by up to 30% in the presence of burst

errors. While this is a fairly simplistic burst-error

model, it does illustrate the problems caused by the

loss of multiple packets in succession. We are in the

process of experimenting with atemporal burst-loss

model based on average lengths of fades and other

causes of wireless losses. The parameters of this

model are derived from a trace-based modeling and

characterization of the WaveLAN network [21].

4.6  Performance at Different Error Rates

In this section, we present the results of several experi-

ments performed across a range of bit-error rates, for

some of the protocols described earlier — E2E (the

baseline case), LL-TCP-AWARE, LL-SMART-TCP-

AWARE, E2E-SMART, E2E-IETF-SACK, and

SPLIT-SMART. We chose the best performing proto-

cols from each category, as well as some other proto-

cols (e.g., E2E-IETF-SACK) to illustrate some

interesting effects.

Figure20 shows the performance of these protocols

for an 8 MByte end-to-end transfer in a LAN environ-

ment, across exponentially distributed error rates rang-

ing from 1 error every 16 KB to 1 error every 256 KB,

in increasing powers of two. We find that the overall

qualitative results and conclusions are similar to those

presented earlier for the 64 KB error rate. At low error

rates (128 KB and 256 KB points in the graph), all the

protocols shown perform almost equally well in

improving TCP performance. At the 16 KB error rate,

Burst
Length

LL-TCP-
AWARE (Mbps)

LL-SMAR T-TCP-
AWARE (Mbps)

2 1.25 1.28

4 1.02 1.20

6 0.84 1.10

Table 5. Throughputs of LL-TCP-AWARE and LL-
SMART-TCP-AWARE at differ ent burst lengths. This

illustrates the benefits of SACKs, even for a high-
performance, TCP-aware link protocol.
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the performance of the TCP-aware link-layer schemes

is about 1.75-2 times better than E2E-SMART and

about 9 times better than TCP Reno.

Another interesting point to note is the relative perfor-

mance of E2E-IETF-SACK and E2E-SMART, espe-

cially at the high error rates. The congestion window

does not grow larger than a few packets in the steady

state at these error rates where there are multiple

losses in many windows. E2E-IETF-SACK does not

retransmit any packet using SACK information unless

it receives three duplicate acknowledgments (to over-

come potential reordering of packets in the network),

which implies that no fast retransmissions are trig-

gered if the number of packets in the window is less

than four or five4. The sender’s congestion window is

often smaller than this, resulting in timeouts and

degraded performance. In contrast, our implementa-

tion of E2E-SMART assumes no reordering of packets

(which is justified in the LAN case) and retransmits

the lost packet when the first duplicate acknowledg-

ment with loss information arrives. This reduces the

number of timeouts and results in better end-to-end

performance. In Section5.3, we outline a scheme in

which the IETF protocol can be modified to work well

even when the sender’s congestion window is not large

enough to provide enough duplicate acknowledg-

ments.

5. Discussion

In this section, we present a discussion of some mis-

cellaneous issues. We discuss the effects of handoff on

TCP performance, some implementation strategies

4.  This depends on whether delayed acknowledgments are used.

and policies for the ELN mechanism introduced in

Section3.1, and some issues related to SMART-based

and IETF selective acknowledgment schemes.

5.1  Wireless Handoffs

Wireless networks are usually organized in a cellular

topology where each cell includes a base station that

acts as a router between the wireless subnet and a

wireline backbone. Mobile hosts typically communi-

cate via the base station in the cell they are currently

located in. Examples of networks organized in this

fashion include cellular telephone networks and wire-

less local-area networks.

As a mobile host moves, it may get out of the range of

its current base station but still be within the range of

other neighboring base stations. To maintain the

mobile host’s connectivity, a handoff procedure is

invoked to re-route traffic to and from the mobile host

via the new base station. However, depending on the

details of the handoff algorithms, this procedure could

lead to packet losses and reordering, which in turn

could cause significant deterioration in the perfor-

mance of ongoing TCP transfers [6].

Several proposals have been made for achieving fast

handoffs. Two examples include multicast-based

handoffs [23] and hierarchical handoffs [7]. In both

these schemes, handoffs are made fast by restricting

updates to the immediate vicinity of the mobile host.

As a result the handoff latency in a WaveLAN-based

wireless local-area network is of the order of 10-30

ms.

A small amount of buffering and retransmission from

base stations prevents packet loss during the short
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handoff period. In [7], the buffering happens at the

mobile host’s old base station, which forwards packets

to the new base station at the time of handoff. In [23],

one or more base stations in the vicinity join a multi-

cast group corresponding to the mobile host and

receive all packets destined to it, in anticipation of a

handoff. When the handoff happens, the new base sta-

tion is readily able to forward the buffered and the

newly arriving packets without introducing any reor-

dering, thereby preventing unnecessary invocations of

TCP fast retransmissions. Experimental results

reported in [23] indicate that such fast handoffs have a

minimal adverse effect on TCP performance, even

when the handoff frequency is as high as once per sec-

ond.

In contrast to the above schemes that operate at the

network layer, handoffs in a split-connection context,

such as in I-TCP [3], involve the transfer of transport-

layer state from the old base station to the new one.

This results in significantly higher latency; for exam-

ple, [2] reports I-TCP handoff latencies of the order of

hundreds of milliseconds in a WaveLAN-based net-

work.

5.2  Implementation Strategies for ELN

Section3.1 described the ELN mechanism by which

the transport protocol can be made aware of losses

unrelated to network congestion and react appropri-

ately to such losses. In this section, we outline possible

implementation strategies and policies for this mecha-

nism.

A simple strategy for implementing ELN would be to

do so at the receiver, as we did for the results presented

in this paper. In this method, the corruption of a packet

at the link-layer, indicated by a CRC error, is passed

up to the transport layer, which sends an ELN message

with the duplicate acknowledgments for the lost

packet. In practice, it may be hard to determine the

connection that a corrupted packet belongs to, since

the header could itself be corrupted: this can be han-

dled by protecting the TCP/IP header using an FEC

scheme. However, there are circumstances in which

entire packets, including link-level headers, are

dropped over a wireless link. In such circumstances,

the base station generates ELN messages to the sender

(in-band, as part of the acknowledgment stream) when

it observes duplicate TCP acknowledgments arriving

from the mobile host.

We expect Explicit Loss Notifications to be useful in

the context of multi-hop wireless networks, and are

exploring this in on-going work. Such networks (e.g.,

Metricom’s Ricochet network [19]) typically use

packet radio units to route packets to and from a wired

infrastructure. Here, in order to implement ELN, peri-

odic messages are exchanged between adjacent packet

radio units about queue lengths and this information is

used as a heuristic to distinguish between congestion

and packet corruption, especially when entire packets

(including headers) are corrupted or dropped over a

wireless link. This, coupled with a simple link-level

scheme to convey NACK information about missing

packets, is sufficient to generate ELN messages to the

source.

5.3  Selective Acknowledgment Issues

Our experience with the IETF SACK scheme high-

lights some weaknesses with it when the loss rate is

high and the window sizes are not large. However, this
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is not a fundamental problem with the SACK mecha-

nism and performance can be improved by modifying

the sender’s loss recovery algorithm. In general, the

arrival of one duplicate acknowledgment at the

receiver indicates that one segment has successfully

reached the receiver; with SACKs, it is possible to

determine exactly how many bytes have reached since

the last acknowledgment. Rather than wait for three

duplicate acknowledgments and perform a fast retrans-

mission, the sender transmits anew segment from

beyond the “right edge” of the current window in order

to probe the network for sustained congestion and gen-

erate duplicate acknowledgments with SACK infor-

mation. Note that we have not violated standard

congestion control procedures by doing this: we only

send out a segment when one has left the data pipe. In

addition, the arrival of an acknowledgment with a

SACK block indicating the reception of the newly

transmitted segment is a strong indicator that the origi-

nal segment was lost, independent of whether three

duplicate acknowledgments arrive or not. Thus, this

mechanism will improve performance when the

sender’s window is small and losses occur.

6. Conclusions

In this paper, we have presented a comparative analy-

sis of several techniques to improve the end-to-end

performance of TCP over lossy, wireless hops. We cat-

egorize these techniques as end-to-end, link-layer or

split-connection based. We use the end-to-end

throughput, and the wired and wireless goodputs as

metrics for comparison.

Our results lead to the following conclusions:

1. A reliable link-layer protocol that uses knowledge

of TCP (LL-TCP-AWARE) to shield the sender from

duplicate acknowledgments arising from wireless

losses gives a 10-30% higher throughput than one

(LL) that operates independently of TCP and does not

attempt in-order delivery of packets. Also, the former

avoids redundant retransmissions by both the sender

and the base station, resulting in a higher goodput. Of

the schemes we investigated, the TCP-aware link-layer

protocol with selective acknowledgements performs

the best.

2. The split-connection approach, with standard TCP

used for the wireless hop, shields the sender from

wireless losses. However, the sender often stalls due to

timeouts on the wireless connection, resulting in poor

end-to-end throughput. Using a SMART-based selec-

tive acknowledgment mechanism for the wireless hop

yields good throughput. However, the throughput is

still slightly less than that for a well-tuned link-layer

scheme that does not split the connection. This demon-

strates that splitting the end-to-end connection is not a

requirement for good performance.

3. The SMART-based selective acknowledgment

scheme we used is quite effective in dealing with a

high packet loss rate when employed over the wireless

hop or by a sender in a LAN environment. In the WAN

experiments, the SACK scheme based on the IETF

Draft resulted in significantly improving end-to-end

performance, although its performance was not as

good as in the best link schemes. From our results we

conclude that selective acknowledgment schemes are

very useful in the presence of lossy links, especially

when losses occur in bursts.
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4. End-to-end schemes, while not as effective as local

techniques in handling wireless losses, are promising

since significant performance gains can be achieved

without any extensive support from intermediate

nodes in the network. The explicit loss notification

scheme we evaluated resulted in a throughput

improvement of more than a factor of two over TCP-

Reno, with comparable goodput values.

7. Future Work

Our experiments with various selective acknowledg-

ment and ELN mechanisms demonstrate the signifi-

cant benefits of such schemes, as outlined in Section5.

We are in the process of evaluating protocol enhance-

ments based on these ideas in the presence of both net-

work congestion and wireless losses in different

network topologies, especially in networks with multi-

ple wireless hops. In addition, we are evaluating the

performance of several of the protocols described in

this paper under other patterns of loss derived from

traces in [21], as mentioned in Section4.5.

We are investigating the impact of large variations in

connection round-trip times and the impact of band-

width and latency asymmetry on transport perfor-

mance. Large round-trip variation is common in

networks like the Metricom Ricochet wireless network

[19], especially in the presence of bidirectional traffic.

Bandwidth asymmetry is prevalent in man satellite and

cable networks with low-bandwidth return channels.
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