
Building Feature Rich POS Tagger for Morphologically Rich Languages:
Experiences in Hindi

Aniket Dalal
CSE department

IIT Bombay
Mumbai

Kumar Nagaraj
CSE department

IIT Bombay
Mumbai

Uma Sawant
CSE department

IIT Bombay
Mumbai

Sandeep Shelke
CSE department

IIT Bombay
Mumbai

(aniketd,kumar,uma,sandy,pb)

Pushpak Bhattacharyya
CSE department

IIT Bombay
Mumbai

@cse.iitb.ac.in

Abstract

In this paper we present a statistical part-
of-speech(POS) tagger for a morphologi-
cally rich language: Hindi. To the best
of our knowledge, our tagger achieves
the highest reported tagging accuracy for
Hindi. Our tagger employs the maximum
entropy Markov model with a rich set of
features capturing the lexical and mor-
phological characteristics of the language.
The feature set was arrived at after an ex-
haustive analysis of an annotated corpus.
The morphological aspects are addressed
by features based on information retrieved
from a lexicon generated from the cor-
pus, a dictionary of the Hindi language
and a stemmer. The system was evalu-
ated over a corpus of 15,562 words devel-
oped at IIT Bombay. We performed 4-fold
cross validation on the data, and our sys-
tem achieved the best accuracy of 94.89%
and an average accuracy of 94.38%. Our
work shows that linguistic features play a
critical role in overcoming the limitations
of the baseline statistical model for mor-
phologically rich languages.

1 Introduction

A POS tagger assigns appropriate part-of-speech
categories (e.g., noun, verb, adverb etc.) to unseen
text. Such a tagger is required for many applica-
tions, such as word sense disambiguation, parsing
etc. Part-of-speech tagging has been studied ex-
tensively in the past two decades (section 2 dis-
cusses related work). The fundamental problem in
POS tagging task stems from the fact that a word
can take different lexical categories depending on

its context. The tagger has to resolve this ambi-
guity and determine the best tag sequence for a
sentence.

Most of the work in tagging is concentrated on
corpus-rich languages like English. In this paper
we deal with POS tagging for Hindi, the national
language of India and ranking 4th in the world in
terms of the population size speaking it. Though
not as rich as English in terms of annotated cor-
pora, Hindi is morphologically rich - which is the
motivation for the work reported in the paper.

The morphological richness of Hindi language
increases the complexity of tagging. Hindi is a
free word order language, which implies that no
fixed order is imposed on the word sequence. This
creates difficulties for a statistical tagger as many
permutations of the same string are possible. Ad-
ditionally, by combining various morphemes, sev-
eral words can be generated, which may not be
present in the reference resources.

Various approaches to POS tagging have been
studied so far, which can be divided in two broad
categories, namely, rule based and statistical. Con-
sidering tagging as a stochastic process, we can
build a statistical model to predict tag sequences.
A statistical model learns required probability dis-
tributions from the training data and applies them
to the unseen text. Our approach uses an expo-
nential model known as the Maximum Entropy
Markov Model(MEMM) (Ratnaparkhi, 1996).

2 Related work

There have been many implementations of POS
tagger using machine learning techniques, mainly
for corpus-rich languages like English. Such
as, transformation-based error-driven learning
based tagger (Brill, 1995) and maximum entropy
Markov model based tagger (Ratnaparkhi, 1996).

A POS tagger for English based on probabilistic
triclass model was developed in (Merialdo, 1994).
(Brants, 2000) proposed TnT, a statistical POS
tagger based on Markov models with a smoothing
technique and methods to handle unknown words.
(Nakagawa et al., 2001) presents a method to pre-
dict POS tags of unknown English words as a post-
processing of POS tagging using Support Vector
Machines (SVMs), which can handle a large num-
ber of features.

Another approach for POS tagging is based on
incorporating a set of linguistic rules in the tag-
ger. A comparison (Samuelsson and Voutilainen,
1997) between stochastic tagger and tagger built
with hand-coded linguistic rules shows that for the
same amount of remaining ambiguity, the error
rate of the statistical tagger is one order of magni-
tude greater than that of the rule-based one. Some
implementations combine the statistical approach
with the rule-based, to build a hybrid POS tag-
ger. Such a tagger was constructed by (Kuba et
al., 2004) for Hungarian, which shares many diffi-
culties such as free word order, with Hindi. Ezeiza
and others (Ezeiza et al., 1998) built a hybrid tag-
ger for agglutinative languages.

There has been some previous work towards
building a Hindi POS tagger, such as the par-
tial POS tagger discussed in (Ray et al., 2003).
Shrivastava et al. propose harnessing morpholog-
ical characteristics of Hindi for POS tagging in
(Shrivastava et al., 2005). This was further en-
hanced in (Singh et al., 2006), which suggests a
methodology that makes use of detailed morpho-
logical analysis and lexicon lookup for tagging.
The results are further improved by applying dis-
ambiguation rules learnt from modestly sized cor-
pora.

Hindi, unlike English, belongs to the category
of inflectionally rich languages which suffer from
data sparseness problem. Hajič (Hajič, 2000) ar-
gues strongly in favor of use of an independent
morphological dictionary over collecting more an-
notated data. Hajič also proposes to further en-
rich some of the best taggers available by mak-
ing use of the dictionary information. Uchimoto et
al. (Uchimoto et al., 2001) describe a morphologi-
cal analysis method based on a maximum entropy
model. This method uses a model that not only
consults a dictionary with large amount of lexical
information but also identifies unknown words by
learning certain characteristics.

3 Methodology

We treat POS tagging as a stochastic sequence la-
belling task, in which, given an input sequence of
words W = w1w2...wn, the task is to construct a
label sequence T = t1t2...tn, where ti belongs to
the set of POS tags. The label sequence T gen-
erated by the model is the one which has highest
probability among all the possible label sequences
for the input word sequence W , that is

T = argmax
{

Pr(T
′

|W)
}

(1)

where T
′

belongs to list of possible label se-
quences. We employ a feature driven, exponen-
tial model based learner for tagging. The under-
lying model is maximum entropy Markov model
(MEMM). The general formulation of MEMM
model is given as (Berger et al., 1996):

p(t|c) =
1

Z
exp

n
∑

i=1

λifi(c, t) (2)

where Z is the normalization factor and p(t|c) is
the probability of tag t being assigned for a context
c. Also, fi(c, t) is a binary valued feature function
on the event (c, t). A set of such feature functions
are defined to capture relevant aspects of the lan-
guage. The model parameters λi’s are determined
through Generalized Iterative Scaling (GIS) (Dar-
roch and Ratcliff, 1972) algorithm.

The system architecture is shown in figure 1.
The dotted part, which includes the learner and
the tagger, is the heart of the system. Note that
the system incorporates training time informa-
tion (through training data) as well as prior belief
(through dictionary1). The learner puts together
all this information and generates the model. This
model is then used by the tagger to tag the raw data
file.

3.1 Feature functions

A crucial aspect of feature based probabilistic
modelling is to identify the appropriate facts about
the data. We have developed a rich set of features
capturing lexical and morphological characteris-
tics of the language. The feature set was arrived
at after an exhaustive analysis of an annotated cor-
pus. The morphological aspects of the language
are addressed by features based on information re-
trieved from dictionary, lexicon and stemmer.

1The dictionary contains only paradigmatic and categori-
cal information as explained in (Shrivastava et al., 2005)

Figure 1: System architecture

Contextual features2

Sense disambiguation has been a longstanding
problem in computational linguistics. In most of
the cases the ambiguity can be resolved using the
context of the usage. Consider an example Hindi
statement����� ���	�
��� ����� ��� ��

?
aaja sone kaa Bhaava kyaa hai?
today gold-of price what is?
What is the price of gold today?

The word
�����

[sone] can take two forms,
noun (gold) and verb (sleep). The ambiguity
between the two forms can be resolved only when
word

�����
[Bhaava] (price) is encountered. To

resolve such kind of ambiguities we define a
feature set within a context window. The size
of the context window is determined based on
empirical observations.

For a context window c =< ti−1, wi, wi+1 >,
the context based feature templates are

fprevTag(c, t) = δ(tj , t).δ(tk, ti−1) (3)

fword(c, t) = δ(tj , t).δ(w,wi) (4)

fnextWord(c, t) = δ(tj , t).δ(w,wi+1) (5)

for all tj , tk ∈ T and w ∈ W . Here, wi is the
word at ith position, ti is its tag, T is the tagset,
W is the set of all words and δ is the Kronecker
delta function.

2In our model, contextual features define baseline system.
In table 4, baseline system is tagger with just contextual fea-
tures.

Morphological features

Another classical problem in computational lin-
guistics is tagging of unseen words. These are set
of words which are not observed in the training
data and hence there are no context based events
within the model to facilitate correct tagging. Our
system uses a stemmer, a module which uses the
dictionary and outputs the list of suffixes for a
given word. We use the presence of suffixes as
a morphological feature. An example is the suf-
fix

���
[naa] (roughly a gerundial marker). Words

having
���

[naa] as suffix belong to the verb class,
for example, �

�	� ���
[tairanaa] (swimming),

���������
[Bhaaganaa] (running), ��� ��� [chalanaa] (walk-
ing).

Let S be the set of all possible suffixes. For
every context window c, the suffix based feature is
defined as :

fsuf (c, t) = δ(ti, t).δ(s, suf(wi)) ∀ s ∈ S (6)

where, suf(wi) is a suffix for the current word
within an event (c, t).

Lexical features

English letters and numerals are frequently used
in Hindi texts to represent the information of
things like year, quantity etc. In cases like 20

�!
��"# %$ �

[biisavii sadii mai] (in 20th century) the
Hindi suffix gets attached to English digits to form
a word. Words like ”IBM”, ”ISRO”, ”IIT” are
used in their original form in Hindi texts. We
take care of such possibilities where the data is
not necessarily clean by defining features that de-
tect anomalies in the text. We also add a feature

for dealing with special symbols and punctuation
characters. Mathematically, the feature functions
for capturing these properties (English characters,
special characters) can be represented as

fpropa
(c, t) = δ(ti, t).δ(propa(c), true)

where propa(c) is a function that returns true if the
property a holds in the context c.

Categorical features

Our approach extensively uses the lexical prop-
erties of words in feature functions. This is
achieved by collecting categorical information
from the dictionary. It is known that parts-of-
speech for a word is restricted to a limited set of
tags. For example, word

����$
[aama] has one of

the two possible POS categories, noun (mango)
and adjective (common). We use this restricted set
of POS categories for a word as a feature. This
boosts the probability of assigning a POS tag be-
longing to the restricted category list as tag for the
word. This feature is crucial for unseen words
where there is no explicit bias for a word in the
built model and we produce an artificial bias with
the help of limited tag set. A special case of this
feature is when the restricted category list has ex-
actly one POS tag, which implies that the word
would be tagged with that particular tag with very
high probability.

More formally, the feature functions based on
the dictionary are

• Can the word occur with a particular tag ac-
cording to the dictionary?

ftagset(c, t) = in(tagsetdict(wi), t) (7)

where, tagsetdict(wi) is the set of tags for wi

according to the dictionary and in(l, b) is true
if b ∈ l.

• Does the word have a single possible tag ac-
cording to the dictionary?

fsingleTag(c, t) = δ(|tagsetdict(wi)|, 1)
(8)

• Does the word have a single possible tag
of proper noun according to the dictionary?
This feature is the conjunction of the previ-
ous two feature functions with proper noun
as the tag.

Compound features

The lexicon is generated from the training data,
and it contains a detailed account of the observed
facts. An extensive analysis and understanding of
the language structure enabled us to come up with
a rule based feature set which helps in improv-
ing the performance of the tagger, especially for
proper nouns. These rules constitute compound
features as they are based on information from
multiple resources. Following are the rules ap-
plied, in order:

• Is the word absent in the lexicon (unseen
word)?

funseen(c, t) = δ(isSeen(wi), false) (9)

where, isSeen(wi) returns true if wi is in lex-
icon.

• Can the unseen word occur as proper noun
according to the dictionary or is the unseen
word unknown to the dictionary? This fea-
ture function is conjunction of feature of
equation 7 with proper noun as the tag and
feature 9.

• Did the word occur as proper noun in the lex-
icon?

flexPPN(c, t) = lexPPN (wi) (10)

where lexPPN(wi) is true if the proper noun
flag is set for wi in lexicon.

• Did the word occur as proper noun in the lex-
icon and it is also a proper noun according to
the dictionary or unknown to the dictionary?
This feature function is true if feature 10 is
true and the feature 7 is true with proper noun
as the tag.

• Did the word never appear with proper noun
tag in the training corpus and either the word
can occur as a proper noun as per the dictio-
nary or the word is unknown to the dictio-
nary? This compound feature is conjunction
of feature function 7 with proper noun as the
tag and negation of feature 10.

4 Experimental setup and results

In this section, we outline our experimental setup
and discuss the effect of the feature functions on
the system performance.

4.1 Data set

Data for our experiments was taken from Hindi
news corpus of BBC3 and manually tagged at IIT
Bombay. This data set consisted of 15562 words
tagged with 27 different POS tags. Although the
data set is of moderate size, care was taken to
ensure that data was not limited to a particular
domain by adding news items from wide range
of topics. This data was spread across four files
and each file had approximately same number of
words. We performed four fold cross validation
on this data set.

4.2 Preprocessing

Our system processes data in two phases. In
the first phase, resources necessary for the tag-
ging phase are generated. The generated resources
include the list of unique words in the training
corpus, called lexicon, and a restricted dictionary
called TinyDict. A lexicon generator is run on the
training corpus to create the lexicon. In the lexi-
con, along with the word, a flag is stored to indi-
cate occurrence of the word as a proper noun in
the training corpus. If a word appears with the
tag proper noun at least once in the training cor-
pus, then this flag is true. The purpose of lexicon
is two fold: (a) it serves as a list of seen proper
nouns, and (b) it serves as an indicator for seen
words, so that the information from the restricted
dictionary can be utilized for unseen words.

For every word in the corpus, TinyDict stores
information about the list of possible POS tags ac-
cording to the dictionary. Another resource that is
generated in preprocessing phase is the list of suf-
fixes for all words using stemmer 4. To avoid the
duplication in resources and processing, the list of
suffixes is appended to the POS tags in TinyDict.
In other words, along with the list of possible POS
tags for a word, TinyDict also stores suffixes of
that word.

Note that the lexicon stores only those words
that appear in the training corpus, whereas Tiny-
Dict has information about both training and test
corpus. This does not violate the basic rules of
tagging as TinyDict is a summarization of relevant
information from the dictionary, and the dictionary
is for the whole language.

Tables 1 and 2 show excerpts from the dictio-
nary and the lexicon, respectively.

3BBC Hindi news at http://www.bbc.co.uk/hindi/
4The Hindi stemmer was developed by IIT Bombay

Word Suffixes POS Categories Root�	��� � � � � verb
�	���

����� �
proper-noun, adj

����� �
��� �	� � noun

�
� �	� ��	������� �����
verb-aux, verb

�	�
���

cardinal, noun
���

Table 1: Dictionary

Word Proper Noun flag��� � � TRUE$ �
FALSE� � � � � FALSE�� ���
FALSE $��
TRUE

Table 2: Lexicon

4.3 Context window

The best context window was determined empiri-
cally. Our initial context window consisted of two
words on either side of the current word, POS tags
for the previous two words and the combination of
these POS tags. The best per word tagging accu-
racy of the tagger for this context window without
any other feature function was 77.73%. We exper-
imented with the context window by trying differ-
ent combinations of surrounding words and their
POS tags. The best result of 85.59% was obtained
with the context window consisting of the POS
tag of the previous word, the current word and
the next word. Best per word tagging accuracies
along with corresponding sentence accuracies5 are
reported in table 3. In the table, we use wordi+2

i−2

to mean all words in the sequence wordi−2 to
wordi+2, with i as the index for current word be-
ing tagged. Similar notation is followed for tags
and (tagi−2, tagi−1) stands for combination of the
tags tagi−2 and tagi−1.

4.4 Influence of feature functions

The best per word tagging accuracy that can
be obtained using appropriate context window is
85.59%. We call this as the baseline tagger. As
can be expected, the addition of linguistic fea-
tures boosts the performance of the baseline sys-
tem. Improvement in performance with the ad-
dition of each feature function is summarized in
table 4. The addition of TinyDict suggested pos-

5Sentence accuracy is the ratio of number of complete
sentences tagged correctly to the number of sentences tagged.

Context window Per word accuracy Sentence accuracy

(tagi−2, tagi−1), tagi−1

i−2
, wordi+2

i−2
77.73 3.91

(tagi−2, tagi−1), tagi−1

i−2
, wordi+1

i−2
79.85 2.79

(tagi−2, tagi−1), tagi−1

i−2
, wordi+1

i−1
83.17 4.47

(tagi−2, tagi−1), tagi−1, wordi+1

i−1
84.06 5.59

(tagi−2, tagi−1), tagi−1, wordi+1

i 84.71 7.82

tagi−1, wordi+1

i−1
84.86 7.26

tagi−1, wordi
i−1

83.52 8.94

tagi−1,wordi+1

i
85.59 8.94

wordi+1

i 82.18 5.03

wordi 77.27 5.59

Table 3: Different context windows and corresponding results

Feature function Per word
accuracy

Sentence
accuracy

Baseline 85.59 8.94
Morphological 86.57 11.18
Lexical 86.95 11.18
Categorical 94.39 33.52
Compound 94.89 38.54

Table 4: Performance gain with addition of feature
functions

sible POS tags as feature greatly improves the ac-
curacy of the system. This is because, for unseen
words the information in TinyDict aids in deter-
mining the set of possible POS tags.

4.5 Implementation

Our POS tagger was developed in Java6 and uses
the maxent7 package for maximum entropy model.
This package employs generalized iterative scal-
ing (GIS) algorithm to estimate the model param-
eters. The number of iterations for GIS is con-
figurable and we ran the algorithm for 100 itera-
tions. During the tagging phase, beam search al-
gorithm is employed to find the most promising

6Java at http://java.sun.com
7maxent package for Maximum Entropy Markov models

at http://maxent.sourceforge.net/

Data set Per word
accuracy

Sentence
accuracy

Unseen
word
accuracy

Set1 94.89 37.99 92.32
Set2 94.26 35.00 92.23
Set3 94.65 34.29 92.50
Set4 93.73 33.33 93.25

Table 5: Results of four fold cross validation.

tag sequence with a beam width of 6. Typical ex-
ecution times on an Intel Pentium 4 machine with
linux are approximately 14.79 seconds for training
and 2.30 seconds for tagging.

4.6 Results

We use two measures to evaluate the performance
of our system, namely, per word tagging accuracy
and sentence accuracy. Per word tagging accuracy
is the ratio of number of words that are tagged
correctly to the number of words present in the
text. Sentence accuracy represents the percentage
of sentences for which the tag sequence assigned
by the system matches the true tag sequence. If all
the words in a sentence are assigned correct tags,
then the sentence is said to be correctly tagged.
Sentence accuracy is the ratio of correctly tagged
sentences to the number of sentences present in the

Figure 2: Per tag accuracy

text.

We performed 4-fold cross validation on the
data. The results of 4-fold cross validation are
provided in table 5. The best per word tagging
accuracy of our system is 94.89% and the average
per word tagging accuracy is 94.38%. The best
and average sentence accuracies are 37.99% and
35.15%. To the best of our knowledge, these are
the highest reported accuracies for Hindi. On the
same data set and a similar tag set (Singh et al.,
2006) reports a best accuracy of 93.45%.

4.7 Performance analysis

The graph in figure 2 shows precision, recall and
total number of occurrences of individual tags.
From the figure, it can be observed that precision
and recall for categories like case marker (CM),
negation (NEG), pronoun genitive (PNG) and con-
juction (CONJ) are exceptionally good, as these
are closed word list categories. In case of numbers
(NUMBER) also the performance of the tagger is
excellent, as they are handled by lexical features.

One of the main challanges in POS tagging is
correct identification of proper nouns (PPN) and
disambiguating them from nouns (N). Our tagger
has considerably high precision and recall for both
categories. This can be attributed to the set of
compound features specifically designed for han-

dling proper nouns.

In contrast, adverbs (ADV), quantifiers
(QUAN) and intensifiers (INTEN) display low
recall and average precision. This is due to the
substantially less number of training instances
for these categories. We observed that less then
2.4% of training instances are adverbs, wheras
for Quantifiers and intensifiers the percentage of
training instances is less then 1.

Precision and recall for verb-copula (VCOP) are
low even though the training data has consider-
able number of instances. Our tagger tends to fre-
quently misclassify VCOP’s as verb-main (VM),
because of ambiguity in words like

��
[hai] (is) ,

� �
[tha] (was) which can occur as VCOP as well

as VM in similar sentence structure/context. The
difference is largely semantic and it is hard to dis-
ambiguate at syntactic level.

4.8 Unseen words

To handle unseen words, information from lexi-
con and TinyDict are used as feature functions. A
word is unseen if it is not present in training cor-
pus. Equivalently, if a word is absent in lexicon,
then it is unseen. A feature function is defined to
capture the information that a word is unseen. Fea-
ture functions are also defined on the possibility of
an unseen word occurring as proper noun accord-

ing to TinyDict. On an average 19% of test data
consisted of unseen words. The best and average
tagging accuracies for unseen words were 93.25%
and 92.58%, respectively.

5 Case study : IIIT Hyderabad corpus

We conducted experiments on Hindi corpus pro-
vided as part of NLPAI-ML 2006 contest8 by IIIT
Hyderabad (IIITH). We outline the modifications
made to the feature set for this corpus and the re-
sults in this section.

5.1 IIIT Hyderabad corpus : feature
functions

The tagset of IIITH corpus consisted of 29 differ-
ent POS tags. These POS tags were considerably
different from the POS tags of IITB corpus. Al-
though our approach is largely independent of cor-
pus and its tagset, the mismatch in tags of TinyDict
and the IIITH tagset resulted in reduced perfor-
mance. To overcome this, for every word, we ap-
pended the information stored in the lexicon with
its POS tags. Specifically, the list of unique words
in the training data and the set of POS tags with
which that word appears in the training data are
stored in the lexicon for IIITH corpus. This set of
POS tags are used in feature functions in place of
the possible POS tags provided by TinyDict.

IIITH tagset has tags to represent the notion of
kriyamuls9 . The root of the next word plays a cru-
cial role in identifying such kriyamuls. A feature
function is defined to capture this relation on the
root of the next word.

5.2 IIIT Hyderabad corpus : results

The development corpus for the task was provided
by contest organizers. We conducted experiments
with a 75-25 split for training and test data in our
experiments. The results were averaged out across
different runs, each time randomly picking train-
ing and test data. The best POS tagging accuracy
of the system in these runs was found to be 89.34%
and the least accuracy was 87.04%. The average
accuracy over 10 runs was 88.4%. In the final
round of the contest, our system had the highest
POS tagging accuracy for Hindi and second high-
est among all languages.

8NLPAI Machine Learning Contest 2006,
http://ltrc.iiit.net/nlpai contest06/proceedings.php

9As defined by the contest organizers, kriyamul is a verb
formed by combining a noun or an adjective or an adverb
with a helping verb.

6 Discussions

In this paper we have showed that contextual, mor-
phological and lexical feature of a language when
used judiciously can deliver high performance for
a morphologically rich language like Hindi. We
have also discussed the exact nature of various fea-
tures and their role in boosting the tagging accu-
racy for stochastic exponential-model-based tag-
ger. Our system reached the best accuracy of
94.89% and an average accuracy of 94.38%.

We have developed a stochastic tagger to which
morphological and linguistic features can be easily
augmented through resources like stemmer, dic-
tionary and lexicon. Our methods have distinc-
tive advantage over other pure stochastic and rule
based linguistic systems as it provides a simplis-
tic approach for embedding the linguistic proper-
ties within a stochastic model. Rule based sys-
tems are strongly coupled with the language spe-
cific properties and the associated tag set, whereas
pure stochastic systems fail to capture language
specific peculiarities. Our method overcomes the
shortcoming of both the approaches and can be
easily extended to other morphologically rich lan-
guages just by building language appropriate re-
sources like lexicon and stemmer.

7 Acknowledgment

We would like to thank Manish Shrivastava for
many helpful suggestions and comments.

References

Adam L. Berger, Stephen Della Pietra, and Vincent
J. Della Pietra. 1996. A maximum entropy ap-
proach to natural language processing. Computa-
tional Linguistics, 22(1):39–71.

Thorsten Brants. 2000. Tnt – a statistical part-of-
speech tagger. In Proceedings of the 6th Applied
NLP Conference, ANLP-2000, April.

Eric Brill. 1995. Transformation-based error-driven
learning and natural language processing: A case
study in part-of-speech tagging. Computational Lin-
guistics, 21(4):543–565.

J.N. Darroch and D. Ratcliff. 1972. Generalized itera-
tive scaling for log-linear models. Annals of Mathe-
matical Statistics, 43(5):1470–1480.

N. Ezeiza, I. Alegria, J. M. Arriola, R. Urizar, and
I. Aduriz. 1998. Combining stochastic and rule-
based methods for disambiguation in agglutinative
languages. In Christian Boitet and Pete White-
lock, editors, Proceedings of the Thirty-Sixth Annual

Meeting of the Association for Computational Lin-
guistics and Seventeenth International Conference
on Computational Linguistics, pages 379–384, San
Francisco, California. Morgan Kaufmann Publish-
ers.

Jan Hajič. 2000. Morphological tagging: Data vs. dic-
tionaries. In Proceedings of the 6th Applied Natural
Language Processing and the 1st NAACL Confer-
ence, pages 94–101.

András Kuba, András Hócza, and János Csirik. 2004.
Pos tagging of hungarian with combined statistical
and rule-based methods. In Proceedings of the 7th
International Conference on Text, Speech and Dia-
logue, pages 113–120.

Bernard Merialdo. 1994. Tagging english text with
a probabilistic model. Computational Linguistics,
20(2):155–171.

Tetsuji Nakagawa, Taku Kudo, and Yuji Matsumoto.
2001. Unknown word guessing and part-of-speech
tagging using support vector machines. In Proceed-
ings of the Sixth Natural Language Processing Pa-
cific Rim Symposium, pages 325–331, Tokyo, Japan.

Adwait Ratnaparkhi. 1996. A maximum entropy
model for part-of-speech tagging. In Eric Brill and
Kenneth Church, editors, Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, pages 133–142. Association for Com-
putational Linguistics, Somerset, New Jersey.

P. R. Ray, V. Harish, A. Basu, and S. Sarkar. 2003.
Part of speech tagging and local word grouping tech-
niques for natural language parsing in hindi. In Pro-
ceedings of the International Conference on Natural
Language Processing (ICON 2003), Mysore.

Christer Samuelsson and Atro Voutilainen. 1997.
Comparing a linguistic and a stochastic tagger. In
Proceedings of the eighth conference on European
chapter of the Association for Computational Lin-
guistics, pages 246–253, Morristown, NJ, USA. As-
sociation for Computational Linguistics.

M. Shrivastava, N. Agrawal, S. Singh, and P. Bhat-
tacharya. 2005. Harnessing morphological analysis
in pos tagging task. In Proceedings of the Interna-
tional Conference on Natural Language Processing
(ICON 05), December.

Smriti Singh, Kuhoo Gupta, Manish Shrivastava, and
Pushpak Bhattacharyya. 2006. Morphological
richness offsets resource poverty- an experience in
building a pos tagger for hindi. In Proceedings of
Coling/ACL 2006, Sydney, Australia, July.

Kiyotaka Uchimoto, Satoshi Sekine, and Hitoshi Isa-
hara. 2001. The unknown word problem: a morpho-
logical analysis of japanese using maximum entropy
aided by a dictionary. In Lillian Lee and Donna Har-
man, editors, Proceedings of the 2001 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 91–99.

