
Non-conceptual Inheritance
Back to Conceptual Inheritance

More Reuse through Polymorphic Code

CS 617 Object Oriented Systems
Lecture 8

Inheritance, Reuse,
Polymorphism, Dynamic Binding

3:30-5:00 pm Mon, Jan 28

Rushikesh K Joshi

Department of Computer Science and Engineering
Indian Institute of Technology Bombay



Non-conceptual Inheritance
Back to Conceptual Inheritance

More Reuse through Polymorphic Code

Outline

1 Non-conceptual Inheritance

2 Back to Conceptual Inheritance

3 More Reuse through Polymorphic Code



Non-conceptual Inheritance
Back to Conceptual Inheritance

More Reuse through Polymorphic Code

Outline

1 Non-conceptual Inheritance

2 Back to Conceptual Inheritance

3 More Reuse through Polymorphic Code



Non-conceptual Inheritance
Back to Conceptual Inheritance

More Reuse through Polymorphic Code

Is Conceptual Compatibility Enforced?

The models of inheritance in OOPLs do not enforce conceptual
compatibility between a subclass and its superclass



Non-conceptual Inheritance
Back to Conceptual Inheritance

More Reuse through Polymorphic Code

Some Examples

A set of mathematical functions in a class, use the class as
superclass to avoid call indirections or additional receiver
names
An implementation as a superclass e.g. an Array used
inside a class implementing LIFO abstraction
When a whole component needs exactly one instance of
each of its components

What happens to the visibilities of members in superclasses in
the private inheritance model?



Non-conceptual Inheritance
Back to Conceptual Inheritance

More Reuse through Polymorphic Code

Impact of Private Inheritance on Member Visibility

X: superclass
Y: subclass
Z: an independent class using an object reference of type Y
YY: subclass of subclass

Private members of X are visible in X, not in Y, not from Z
Protected members of X are visible in X, in Y, not from Z
Public members of X are visible in X, in Y, not from YY,Z
Private and Protected members of X are not visible in YY



Non-conceptual Inheritance
Back to Conceptual Inheritance

More Reuse through Polymorphic Code

Extended Inheritance Model: Protected Inheritance

X: superclass
Y: subclass
Z: an independent class using an object reference of type Y
YY: subclass of subclass

Private members of X are visible in X, not in Y, not from Z
Protected members of X are visible in X, in Y, not from Z
Public members of X are visible in X, in Y, not from Z
Private members of X are not visible in YY, but protected
and public members of X are



Non-conceptual Inheritance
Back to Conceptual Inheritance

More Reuse through Polymorphic Code

The Model of Private Inheritance

It’s known that inheritance is being used for
non-conceptual reasons
Derived class does not export base class’s interface
Derived class uses implementation of base class
If inheritance was not be used, what alternative design
would you choose?



Non-conceptual Inheritance
Back to Conceptual Inheritance

More Reuse through Polymorphic Code

Outline

1 Non-conceptual Inheritance

2 Back to Conceptual Inheritance

3 More Reuse through Polymorphic Code



Non-conceptual Inheritance
Back to Conceptual Inheritance

More Reuse through Polymorphic Code

Reuse Through Extension and Refinements



Non-conceptual Inheritance
Back to Conceptual Inheritance

More Reuse through Polymorphic Code

Outline

1 Non-conceptual Inheritance

2 Back to Conceptual Inheritance

3 More Reuse through Polymorphic Code



Non-conceptual Inheritance
Back to Conceptual Inheritance

More Reuse through Polymorphic Code

Towards Higher Reuse through Polymorphism



Non-conceptual Inheritance
Back to Conceptual Inheritance

More Reuse through Polymorphic Code

Dynamic Binding and Polymorphism I
class A {
public:

virtual void f () { cout « "A.f "; };
virtual void g () { cout « "A.g "; };
virtual void h () { cout « "A.h "; };
virtual void k () { cout « "A.k "; };

};
class B : public A {
public:

virtual void g () { cout « "B.g "; };
virtual void h () { cout « "B.h "; };

};
class C : public B {
public:

virtual void h () { cout « "C.h "; };
virtual void k () { cout « "C.k "; };

};



Non-conceptual Inheritance
Back to Conceptual Inheritance

More Reuse through Polymorphic Code

Dynamic Binding and Polymorphism II

main () {

C *cp = new C;
B* bp = cp;
A* a1 = cp;
A* a2 = bp;
A* a3 = new B;

cp->f(); cp->g(); cp->h(); cp->k();
bp->f(); bp->g(); bp->h(); bp->k();
a1->f(); a1->g(); a1->h(); a1->k();
a2->f(); a2->g(); a2->h(); a2->k();
a3->f(); a3->g(); a3->h(); a3->k();

}


	Non-conceptual Inheritance
	Back to Conceptual Inheritance
	More Reuse through Polymorphic Code

