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Abstract. Dynamic migration of workflows requires the notion of con-
sistency for safe migration. The literature primarily covers consistency
models based on the history of the workflow to be migrated. However,
for several situations, the history based models are not enough to de-
cide migratability of a state. The paper introduces lookahead models of
consistency, which are based on the question of how the remaining part
of the workflow is treated in the new process. Three lookahead models
are described and are illustrated with the help of example cases of re-
alistic migration scenarios. Moreover, in certain situations, even if there
is a consistent lookahead migration possible, the tokens can not be di-
rectly migrated into the new net due to contradictory traces available in
the new net. The paper also proposes an algorithm called Accept-Reject
Branching to compute the contradictory segment of the new net. A de-
tail case study of a library resource acquisition workflow is presented to
highlight the contributions.
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1 Introduction

In an ever-changing business environment the business processes do not remain
static. Instances of one workflow often need to follow the evolved business logic
of a different, or a refined schema. When an instance migrates from the old
process into the new process the issue of consistency has to be addressed. The
notion of consistency ensures that a migrated instance finishes execution without
encountering a runtime error or inconsistencies in application semantics.

One of the initial works discussing consistency in dynamic evolution of work-
flows is by Ellis et al. [1]. They describe consistency criterion as the possibility of
reproducing the execution history in the new schema. Moreover, mapping the old
history in the new schema obtains the runtime state of the workflow from where
it can resume to follow the new business logic. In this approach the consistency
is based only on the past execution of the old instance. Contemporary works by
Casati et al. [2], and Sadiq et al. [3] also adopt the same notion of consistency
under the terminology of compliance. In the context of instance-specific ad-hoc
dynamic changes, Reichert et al. [4] present the notion of consistency as a cri-
teria that preserves the validity of the instance-specific workflow schema after



modification and suits the old execution history. Later researchers have adopted
this same notion of history equivalence consistency under different terminologies
and with subtle differences in the interpretation of history. The notions of valid
mapping in the work of Weske [5], migration conditions by Dias et al. [6], sev-
eral classes of compliances by Rinderle et al., [7], [8], by Sun and Jiang [9], and
the consistency criteria in our previous work [10] are examples of history-based
consistency.

Notable works using Petri net models of workflows, on the other hand, adopt
the notion of consistency defined on the basis of marking. In Petri net models
various process states are explicitly modeled by places. In this model a marking
represents the current state of the process. Consistent markings in the old and
the new workflow are decided based on the equivalence of states. This approach
is taken in the works by Van der Aalst [11] and later by Circirelli et al. [12].

History based consistency model derives its motivation in the need to con-
sider as done what is already accomplished and proceed exactly thereafter by
resuming the workflow as per the new logic. Therefore, a primary goal of inter-
est in history based migration is to ascertain the preconditions before migration
takes place. However, apart from the models of history and state based consis-
tency, dynamic workflow migration in the context of other business goals such
as resource optimization, incidental migration, and handling eventualities often
require a lookahead consistency criterion. Motivating examples of such dynamic
migration scenarios are presented in this paper, on the basis of which, we de-
velop the notion of lookahead consistency. A Petri net based modeling notation
called WF-net [13] is used for representing workflows. The consistency models are
defined using the WF-net notation, which can also be adopted in generic work-
flow terminology in a model independent manner. Three variants of lookahead
consistency called strong, accommodative and weak lookahead are introduced.

An algorithm for generating weak lookahead consistent migrations for work-
flow instances is presented. It is possible that newer paths may be available in the
new net for a migrating instance. In order to enforce a stricter lookahead, these
paths need to be blocked, which can be done by blocking the head-transitions
of the contradictory segments. These blocking transitions are identified using an
algorithm called accept/reject branching.

The paper is organized as follows. Section 2 briefly outlines the preliminaries
of Petri net based workflow model. Section 3 discusses the related work and
the contributions of the paper. Sections 4, 5 and 6 discuss the three lookahead
consistency models with the help of realistic application scenarios. Section 7
lastly discusses the algorithms for lookahead consistency along with a case study.

2 Notations

In this section a brief background is provided for WF-net notation of Van der
Aalst [13], which is used in this paper as a reference formal notation for defining
consistency and for developing the case studies.
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(a) Workflow Schema (b) Instance Trace: �

(c) Instance Trace: a (d) Instance Trace: a,b

Fig. 1. WF-net Model of Workflow and Workflow Instances

Fig. 1a depicts an example WF-net schema of a sequence workflow involv-
ing two tasks a and b. Tasks are represented as transitions (rectangles), and
conditions are represented as places (circles). A place models the precondition
and postcondition of its immediate successor and predecessor tasks respectively.
The source place captures the initial condition i.e. the start condition that trig-
gers the start of the corresponding workflow. Similarly, the sink place models
the terminal condition. A token (a dot in a place) makes up a marked place. If
all pre-conditions of a transition are true, the transition is enabled. An enabled
transition eventually fires by consuming one token from each of its pre-places
(all pre-conditions), and produces one token in each of its post-places (post-
conditions). A postcondition can be satisfied by firing of any one of its preceding
transitions.

A placement of tokens in a net is called a marking. A marking represents the
runtime state of an instance of a business process modeled by the net. A firing
of a transition changes the marking. A firing sequence is a sequence of transition
firings from one marking to another. The firing sequence from initial marking to
the marking shown in Fig. 1b is empty. Fig. 1c shows the marking after firing of
transition a, i.e. after completion of activity a, where the state of the workflow
is y. Similarly, Fig. 1d shows the final marking of the workflow after firing of b.

The following notations are used to represent the dynamics of the net: A
unit transition of marking m1

tÝÑ m2 means that firing of transition t changes
the marking (state) of the net from m1 to m2. In general a transition m1

σÝÑ
m2, where σ is a firing sequence t1t2...tn represents that the particular firing
sequence σ changes the state of the workflow from m1 to m2 through some other
states. Multiple firing sequences between two markings may be possible in nets
with choice and concurrency. In the figure, x aÝÑ y is an example unit transition,
and x

abÝÝÑ z is a transition from x to z through a longer firing sequence.

3 Related Work and Contributions of the Paper

The literature includes a variety of consistency criteria in the context of run-
time migration of workflows [14], [7]. They are primarily history and state based
approaches. For instance, the state based approach of behavioral consistency in
the work of Casati et al. [2] looks into validity of the mapped state to ensure
proper termination. Consequently their approach does not need to take the ac-
tual content and its variations in possible future execution traces into account.
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An example of history based consistency is the approach of Ellis et al. [1], in
which, the migrated instance state is required to have, starting from the initial
marking, the same trace that was before migration.

The only work in this context, where the possible lookahead parameters were
taken into account is the notion of inheritance of workflows by Van der Aalst
and Basten [15]. In their approach, consistency is defined based on branching
bisimilarity between the states of the old and the new workflows. As per the
notion of bisimulation [16], equivalence is established between two states based
on their future transitions and the states visited by those transitions. Branching
bisimilarity considers inclusion of silent transitions in addition. Therefore, the
adopted model of consistency in this work falls into the class of lookahead based
model. However, adopting the notion of bisimulation defined on LTS (labeled
transition system) states leads to much stronger criteria than intended in the
context of process migration. The addressed domain of process migration does
not consider a process to be interactive. In particular, the problem of dynamic
instance migration addressed in this paper does not consider conversation or col-
laboration issues. Therefore, observational behavior of a process is its trace, and
hence, equality relations based on the traces are sufficient to define consistency.
Our work takes up this point to develop a range of consistency models that are
based on lookahead traces.

Consulting lookahead parameters in the context of dynamic web-service pro-
tocol evolution has been identified as a necessary feature in the work of Ryu et
al. [17]. They describe the notion of forward compatibility that is a property to be
considered in the context of migrating web-service conversations. The forward
compatibility captures the ability for the clients to interact with the dynami-
cally evolved service after migration without confronting an error. Therefore, in
order to save the ongoing conversations from failing, the lookahead parameters
are vital. However, in contrast with the web-service conversation situation, as
pointed out in the previous paragraph, the dynamic migration in the context of
workflows are rather the changes in orchestration itself. Consequently, the need
for consideration of lookahead parameters requires a solution with focus moving
from interaction error to consistency in application semantics.

A benefit of these newly introduced models is that they can be used indepen-
dently or in commune with the history based or state based consistency models
as per the need of a particular workflow migration scenario. A lookahead based
migration approach can then be applied considering the traces starting from the
current state in the old workflow in the migration pair, and finding them in the
new workflow to compute consistent migration.

The proposed lookahead models are demonstrated with the help of motivating
cases. In the subsequent sections we define and illustrate three lookahead consis-
tency models, which are strong lookahead consistency, accommodative lookahead
consistency and weak lookahead consistency models respectively. The accom-
modative and the strong lookahead consistency models are specializations of
the weak model, and the strong model is a specialization of the accommodative
model.
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4 Strong Lookahead Consistency

In this model, consistent states in the old and the new workflows are mapped
by equivalence between possible futures in both the workflows. States of the
old and the new workflows are consistent if the schedules that are yet to be
completed from the old workflow state are the only schedules that are possible
in the new workflow after migration. The strong lookahead model does permit
changes to the net as long as the set of possible future traces is the same. This
model can be applied to handle migration situations in process re-engineering
cases, in which, from the point of view of the current state of the migrating
instance, a change should not be perceived as far as the traces, i.e. the choices
and the sequences thereby are concerned. In practice, such a situation may arise
due to maintenance and compatibility issues. One such situation is illustrated
later through a case study of a food packaging workflow example.

The WF-net based definition of the strong lookahead consistency model is
given below. We use relational operator ˛ between two markings to represent
strong lookahead consistency between them. Subsequently relational operators :̨
and ˛ are used to represent the accommodative and the weak lookahead models.

Definition 1 Let the old and the new workflows be modeled as WF-nets W and
W 1 respectively, mf and m1

f be the final markings in W and W 1 respectively, m
be a marking in W , and m1 be a marking in W 1. Let Fm = tσ|m σÝÑ mfu, i.e.
be the set of all firing sequences starting from marking m and reaching the final
marking mf in the old net. Similarly, F 1

m = tσ1|m1 σ1ÝÑ m1
fu, i.e. be the set of all

firing sequences starting from marking m1 and reaching the final marking m1
f in

the new net. Strong Lookahead consistency m ˛ m1 is defined by the following
trace equivalence condition: (i) @σ P Fm, σ P F 1

m, and (ii) @σ1 P F 1
m, σ1 P Fm.

In other words, m ˛ m1 is defined by the equality Fm “ F 1
m.

Old Workflow Instance

New Workflow Instance in Optimized Schema

Fig. 2. Strongly Consistent Markings
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It can be noted that to satisfy the above criteria, the structure of the down-
stream nets of the old and new workflows need not be the same. Intentionally
different designs resulting into the same behavior may also fit to the definition.
For example, a new net may be an alteration of its corresponding old net for
achieving an optimization in the design as shown in Fig 2. In this example, the
set of traces is tt2t3, t3t2u, which is same in both the nets. As the firings of tran-
sitions in Petri net semantics (reachability graphs[18]) are atomic and therefore
instantaneous, a realization of parallel transitions t2 and t3 in the net results in
two possible firing sequences t2t3 and t3t2. Therefore, since the sets of all possi-
ble traces from the shown markings are the same, they satisfy strong lookahead
consistency.

However, real-life workflows may have long duration tasks, in which, the
semantics of non-overlapping atomic executions may not be possible. In such
cases, the trace-based model can still be applied considering discrete events such
as commencements or completions. For example, in an academic setup, if per-
forming two courses in two consecutive semesters and performing them together
in parallel in one semester needs to be considered as equivalent, it can be done so
by considering the events marking the first lectures of the two courses. So, though
there is physical interleaving of the task actions, if an academic process believes
that the interleaving is acceptable as long as strong lookahead consistency is
maintained w.r.t. the courses, a migration of a student from one system to an-
other is possible. This assumption is useful in applying the lookahead models in
non-Petri net workflow models such as ADEPT2 [19].

Fig. 3 shows packaging workflows for milk-products, chocolate and dry-fruits
respectively. The packaging company imports the food items in bulk from various
food processing companies and delivers them to distributors after packaging.
The activities of devanning, storing items in the warehouse, quality inspection,
and transport for delivery are manual activities. The fourth task in the dry-
fruit packaging workflow is a manual task of inserting fruits by weight. Cutting
of cheese and butter, food packaging in polythene or cardboard boxes, packet
sealing and labeling are user assisted automated activities. As shown in the
figure, in the case of dry-fruit, two kinds of packets are produced by the workflow
using polythene packets or cardboard boxes. The workflow process is organized
such that the packaging choice automatically alternates after regular intervals.

The packaging unit uses three different assembly-lines for the three food
items. However, we can observe that polythene-based packaging of milk-products
can use part of the assembly-line for the chocolate packaging once they reach the
equivalent state (i.e. marking) p. Such an equivalent state is not available in the
assembly-line of the dry-fruit packaging workflow due to the strictly alternating
packaging designed feature. As the possible future execution sequences of the
workflows for milk-products and chocolate packaging are exactly the same from
the shown markings, a single assembly-line can take care of both of the packaging
processes downstream the equivalent markings. The migration decision can be
helpful when one assembly-line needs to be shut down for maintenance. Such
a migration does not require any modification to the new process when strong
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Workflow for Butter and Cheese Packaging

Workflow for Chocolate Packaging

Workflow for Dry-fruit Packaging

Fig. 3. Food Packaging Workflows

lookahead is established. As the alternating path of cardboard packaging in the
dry-fruit assembly-line is not used for milk-products, the assembly-line is not
suitable in this migration situation, in spite of the existence of the polythene
packaging option inside the proposed new assembly.

The above example of dynamic workflow migration situation occurs in the
context of resource maintenance, which is an assembly line in this case. It can
be observed that the necessity of comparing the future of the running cases with
the available assembly line is vital to finish the cases by dynamically migrating
them. Clearly, history based consistency models do not serve a useful purpose,
whereas a lookahead model captures the consistency requirement.

5 Accommodative Lookahead Consistency

This class of lookahead consistency notion is a weaker one as compared to the
earlier class. The accommodative lookahead consistency can be defined to permit
new alternatives which are not found in the old net, in addition to the existing
traces. In this model, if a trace is possible in the old workflow, it is also possible
in the new workflow. However, the converse is not required.

Definition 2 Following the terms m, m1, mf , m1
f , Fm, F 1

m as used in Definition
1, Accommodative Lookahead Consistency m :̨ m1 is defined by the following
trace equivalence condition: @σ P Fm, σ P F 1

m. In other words, Fm Ď F 1
m.
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From the definition we can note that the accommodative lookahead consis-
tency between m and m1, i.e. m :̨ m1, satisfies the trace equivalence condition (i)
of Definition 1. Therefore, strong lookahead consistency between two markings
implies accommodative lookahead consistency between them as well, i.e. m ˛ m1
ùñ m :̨ m1. Now we present a dynamic process migration scenario based on
accommodative lookahead model.

Old and New Workflows for Two-year Masters Program

Old Subprocess for Each Semester

Foreign University Process

Fig. 4. Student Exchange Program

In an academic curriculum process depicted in Fig. 4, the old process in
the migration situation represents a 4-semester masters program. Semesters are
sequences of tasks involving orientation, registration, course work and grade
reports. Course work comprises of credit courses in the first three semester, and
a project in the last semester. The backlog credits are carried over into the next
semester. In the process shown in the figure, the semester activities are firstly
shown as single transitions of higher level, and they are expanded as a generic
subprocess.

A migration situation arises when a student applies for an academic exchange
program and joins a foreign university to replace a portion of her academics in
the host institute. The student comes back and joins into the old process after
completing the exchange credits.
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The rules for the exchange program are outlined as follows:

– One student can join an exchange program to study in the foreign university
in her second or/and third semester.

– The minimum cut-off CPI for availing the exchange program to join course
work in a foreign university is 8.0.

– During the study in the foreign university, a student must complete the
courses equivalent to the core credit courses in the home university.

– A student with CPI above 9.0 can join additional honors credit courses as
electives.

The foreign subprocess that can replace sem-2 and/or sem-3 activities in the
in the old 2-year program to avail the exchange program is highlighted in Fig. 4.
It is only a part of a bigger process in the foreign university. A student is allowed
to migrate if equivalent core credit courses are available in that semester. The list
of courses offered at the foreign university website is to be consulted externally.
Therefore, an application for migration are processed at states (markings) sem-1
completed or sem-2 completed. As the foreign university course work also offers
the option of performing elective courses in addition to the core courses, the host
institute permits the additional paths.

The above example brings us to the application of accommodative looka-
head consistency at the point of migration. This migration scenario shows that
a combination of past and lookahead parameters can also be used for deciding
migratability. The set of new traces possible for a migrating student is a su-
perset of the old. In this case, several historic or present parameters such as
CPI, position in the academic calender are also used to determine the points of
migration.

6 Weak Lookahead Consistency

The third kind of lookahead consistency model is the weak model. A state of
the old workflow is consistent with a state in the new workflow by the weak
lookahead model if at least one of the possible future traces is retained in the
future of the new net. However, the future of the new net may have additional
alternative traces.

Definition 3 Following the terms m, m1, mf , m1
f , Fm, F 1

m as used in Defini-
tion 1, Weak Lookahead Consistency m ˛ m1 is defined by the following trace
equivalence condition: For non-empty Fm, Dσ P Fm such that σ P F 1

m. For empty
Fm, Fm “ F 1

m.

It can be observed that, quantifier @σ P Fm in Definition 2 is enough to find
one such case required in Definition 3. Therefore, m :̨ m1 ùñ m ˛ m1. Moreover,
we can obtain m ˛ m1 ùñ m ˛ m1 from the already established relation m ˛
m1 ùñ m :̨ m1.
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Old Curriculum

New Curriculum

Fig. 5. Academic Curriculum Revision

Fig. 5 depicts an example case of academic curriculum revision of a 4-semester
masters program. In the old curriculum, credits for three groups of courses are
to be completed in the first three semesters. Alternate branches with backlog
credits are available. The allocation of a project-supervisor is arranged before
the final semester project work. The program ends with project reporting. The
revised curriculum emphasizes on the depth in course work rather than the
extent of the covered syllabus, by reducing the number of compulsory credits
for the under-performing students. After completing group-1 courses in the first
semester, the students have to perform two groups of courses. They can take up
group-2 and group-3 courses as per the old curriculum, or they have the option
of a seminar and a mini-project course. The students having backlogs can not
register for group-3 courses.

A student in the old curriculum can migrate from current state into a state
in the new curriculum, the design makes available at least one path in the new
which is exactly a path in the old. However, new alternatives are also open to the
migrating student. One set of equivalent markings by this criteria is shown in
the figure. It can be noted that for the single token in the old workflow, two to-
kens are generated in the new workflow, which together constitute the consistent
mapping. The new workflow preserves the traces group2, group3, supervisor allo-
cation, project, report and group2, group3, supervisor allocation, project+backlog,
report from the old workflow and not the others. Some traces of the old workflow
are suppressed in the new workflow. In this way, the weak lookahead model can
be applied to define flexible but at least minimally compatible workflows.
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7 Instance Adaptations through Lookahead Consistency

In the previous sections, we have developed the lookahead consistency models
and illustrated their applicability in several dynamic workflow migration situa-
tions. In this section, we first discuss the computation of weak lookahead con-
sistent markings in the new net. Further, we discuss the approach of enforcing
lookahead consistent execution on migrating instances in situations in which a
weaker model is available in the new net. The accept/reject branching algorithm
is then presented to support the lookahead consistency enforcement approach.
The workflow nets considered in the following algorithms are considered to be
acyclic. Moreover, all transition labels in the nets are assumed to be unique.

7.1 Algorithms for Lookahead Consistency

Algorithm 1 computes the weak lookahead consistent markings in the new net
by replaying the lookahead traces possible in the old net. As only acyclic nets
are considered, the set Traces of lookahead traces is finite. For a set of computed
traces in the old net, all of them may not replay in the new net. The algorithm
finds out the markings in the new net each of which can replay at least one of
the traces. The outputs of the algorithm are set S of weak lookahead markings
and set L containing the preserved lookahead traces in the new net.

Algorithm 1: Computation of Weak Lookahead Consistent Marking
Input: Old WF-net N “ pP, T, F q, Marking M in N , New WF-net

N 1 “ pP 1, T 1, F 1q
Result: Set of Markings S in N 1, Set of Preserved Lookahead Traces L

1 Let Mf and M 1
f are the terminal markings in N and N 1 respectively

2 Traces Ð tσ | M σÝÑ Mfu
3 if Traces “ tu then
4 S Ð M 1

f

5 L Ð tu
6 return

7 Tracesr Ð tσr | σr is reverse of σ,σ P Tracesu
8 F 1

edit Ð tpx, yq | py, xq P F 1u
9 N 1

edit Ð pP 1, T 1, F 1
editq

10 S Ð tu, Lr Ð tu
11 while Tracesr ‰ tu do
12 Let σr be a member of Tracesr

13 if M 1
f

σrÝÝÑ M 1
e in N 1

edit then
14 S Ð S Y M 1

e

15 Lr Ð Lr Y σr

16 Tracesr Ð Tracesr ´ tσru
17 L Ð tσ | σ is reverse of σr,σr P Lru
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First it computes Traces, the set of lookahead traces in the old net. If set
Traces is empty, it indicates that the old net is already terminally marked.
Therefore, the only lookahead consistent marking in the new net is the terminal
marking M 1

f . Also, since there is no lookahead trace in the old instance, the
set of preserved lookahead traces in the new net is also empty. Therefore, the
algorithm terminates here after computing these boundary outputs. Lines 3-6
handle this boundary case.

For non-empty Traces, it flips the member traces and stores them into set
Tracesr. Lines 8-9 reverse the arcs directions in the new net N 1 and stores the
reversed net as N 1

edit. For each of the traces in Tracesr, the algorithm looks for
its occurrence in N 1

edit. Finally, set L contains those original lookahead traces
that can be replayed in N 1, and set S contains the weak lookahead consistent
markings in N 1.

The algorithm thus looks for all traces starting from the current marking in
the old net, collecting all new markings corresponding to these traces in set S.
Since, this collection is a set, a marking appears only once even though it can
trigger more than one lookahead traces due to fork-join patterns. The set S can
however have multiple markings in certain configurations as given in Fig. 6. For
the example given in this figure, the algorithm starts with Traces “ tt1t3, t2t3u
and ends with computing S “ ttp1

1u, tp1
2uu, L “ tt1t3, t2t3u.

Fig. 6. An Example Case for Algorithm 1

7.2 Support vs. Enforcement of Lookahead Consistency

The motivation behind enforcing lookahead consistency is as follows. Given a
marked old net and a new net schema, even though the lookahead consistent
marking is supported in the new net, due to the generality of the new net, the
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tokens can not be guaranteed to follow the execution path as prescribed by the
old model. For example, consider two consistent markings are shown in the milk-
product packaging and dry-fruit packaging workflows of Fig. 3 as per the weak
or accommodative consistency model. As noted out earlier, since they do not
satisfy the strong model, the assembly line of dry-fruit packaging can not take
over the task of milk-product packaging. However, if we disable the traces in
the new workflow which violate strong lookahead, the same can still be ensured
for conforming to the desired post-migration paths. As a result, this approach
achieves stricter consistency as intended for the migrating instance, which is not
otherwise enforced by the new schema.

Fig. 7. Output of Accept/Reject Branching Algorithm

For the marking given in the milk-product packaging workflow in Fig. 3, Fig.
7 depicts the consistent marking and transition to be blocked to enforce strong
lookahead consistency for the instance migrating into the dry-fruit packaging
workflow. The only transition to be blocked in this case is shown as a box with
thick border.

Next, the accept/reject branching algorithm given in Algorithm 2 identifies
such transitions that need to be blocked to enforce the consistency preserving
lookahead executions. It is assumed that a suitable implementation mechanism
for disabling the transitions is available in the workflow management system.

Algorithm 2: Accept/Reject Branching
Input: WF-Net N “ pP, T, F q, Marking M in N , Set of lookahead traces Σ
Result: Set of transitions Tblock

1 let pathpe0, e0q = TRUE
2 let pathpei, ejq be a boolean function indicating the existence of directed path

from net element (place or transition) ei to net element ej
3 Pexchoice Ð t p | pp, tiq, pp, tjq P F , i ‰ j, Dp0 such that Mpp0q “ 1, pp0, pq =

TRUE u
4 Tpotential Ð t t | t P T, p P Pexchoice, pp, tq P F u
5 Tlookahead Ð t t | σ P Σ, t P Tpotential, t P σ u
6 Tblock Ð Tpotential ´ Tlookahead
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The inputs to the algorithm is a marking in the new net and the set of desired
lookahead traces Σ which is set to L, the output of Algorithm 1. As output it
produces the set of transitions Tblock which can be blocked to disable all the
lookahead traces that are not in Σ.

First the algorithm identifies the choice gateways which are not yet traversed
by the tokens in the new net. In a sequence, disabling the head-task prevents
the whole sequence. Paths following exclusive-choice gateways are sequences with
head-tasks as the first tasks after the choice. The algorithm finds out the set of
tasks Tpotential which holds all the head-tasks following the choice gateways in
the new net. Discarding those tasks from Tpotential which are not in the lookahead
traces gives the remainder portion of the net which should be left as active. In
this way, the algorithm finds out the tasks to be blocked as the set Tblock, which
is Tpotential ´ Tlookahead.

Fig. 8. Blocked transitions in the new workflow shown in Fig. 5

It can be noted that blocking of lookahead transitions for the migrated in-
stances may not be an appropriate solution in a given application. For instance,
consider the case of migrated instance in Fig. 8 of the academic workflow process
shown in Fig. 5. The blocked transitions are shown as boxes with thick border.
As a result of blocking these transitions, the migrating student can proceed only
through group2 and group3 courses. However, due to the additional constraint of
the university that a student having backlogs can not register for group3 courses,
such students can not be migrated since there is no path left for them in the
new net. Also, migrating students can not take seminar and mini-project courses
available in the changed curriculum. Therefore, with reason of retaining flexi-
bility, blocking of transitions is not suitable for this situation. On the contrary,
the approach of blocking transitions is suitable for those cases where migration
is inevitable, and yet sticking to the old execution paths is necessary for appli-
cation semantics. A case study of a library resource acquisition workflow given
in Section 7.3 describes one such suitable migration scenario for accept/reject
branching.
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The following conditions summarize the inferences regarding the class of
lookahead consistency that can be drawn from the outputs of the two algorithms.

1. L ‰ tu confirms weak lookahead consistency. (Algo. 1)
2. In addition, |S| “ 1 and L “ Traces confirms accommodative lookahead

consistency. If S contains more than one markings, no single marking can
fire all lookahead traces since there are no duplicate transitions. Hence, the
condition |S| “ 1. (Algo. 1)

3. In addition, Tblock “ tu confirms strong lookahead consistency. (Algos. 1, 2)
4. S “ tu implies absence of lookahead consistency.
5. If Tblock ‰ tu, blocking of the transitions in set Tblock is a mechanism to en-

force the desired lookahead traces. This converts accommodative lookahead
to strong lookahead. In the case of weak lookahead, the lookahead traces
found can indeed be enforced by blocking these transitions.

7.3 Case Study of a Library Resource Acquisition Workflow

A library resource acquisition workflow case is considered for this case study.
Processes in this system are orders of the kind firm orders. (There are other types
of library acquisitions such as serial subscriptions, standing orders and blanket
orders which are not considered in the case study.) In the old system, the institute
has separate processes of resource acquisition for the academic departments and
for the central library as shown in Fig. 9a and Fig. 9b respectively. It is proposed
to merge these processes into a single one. We first describe the old processes
after which the new process is outlined. After this, a consistent lookahead based
migration solution is worked out.

The Old Departmental Process The departmental process can be followed
only for acquisition of hard-copies. First the bibliographer has to prepare the list
of books to be purchased. The overall expense is then estimated and an appli-
cation is sent next to the department office for approval of the budget. Arrival
of the funding approval initiates the negotiation procedure with the vendors. In
the case of rejection of the funding application from the department office, the
workflow can proceed in one of the two ways. If the applicant can arrange money
from her/his project funds, the workflow can proceed to join the flow of usual
acquisition process by initiating the price negotiation. Otherwise, in the case
of unavailability of funding, the acquisition case is dropped. Next, the payment
is carried out for the agreed price as a confirmation of the purchase order to
the vendor. Delivery of the books along with the invoice completes the resource
acquisition. The workflow finishes after recording the acquisition details in the
department resource database and with cataloging of the acquired resources.

The Old Central Library Process The central library workflow follows simi-
lar logic for hard-copy resource purchase, though the funding agencies are differ-
ent. All acquisition requests are sent to the academic office for funding approval.
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(a) Departmental Workflow (b) Workflow of Central Library

Fig. 9. Library Workflows for Resource Acquisition

In the case of rejection, either the Industrial Research and Consultancy Center
(IRCC) supports the funding issues, or the case has to be dropped. In addition
to the above, the central library workflow supports purchases of e-resource. In
the case of e-resource acquisition, additional activities for license negotiation
and agreement are incorporated in the workflow. Once the license is signed, its
copy is received by the library which is recorded in the central library database.
After payment, the e-resource is activated. According to the license agreement,
this step can involve storing a local copy of the resource or enabling password
protected access of the document residing on its remote host. Cataloging of the
resource is performed on the central library database, which wraps up the pro-
cess.

Process Re-engineering A process re-engineering team decides to merge all
the departmental workflows with the central library workflow due to the following
reasons.
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– A consolidated storage of the library resources across all the academic de-
partments can achieve better resource sharing among several departments,
to the benefit of multi-disciplinary studies and projects.

– E-resource acquisition can be performed using the departmental or individual
project funds introducing a level of flexibility.

– Individual departments can leave the responsibilities of library-staff recruit-
ment and related activities to the central library authority reducing the
redundant efforts in the old system.

As a result, the department resource databases has to be merged with the
central library database. Secondly, the running instances need to be migrated in
a consistent way by applying appropriate models as per the needs of individual
old cases. It is observed that the task record acquisition details & catalog in the
old process updates department resource database, whereas, in the new merged
process it updates the central library database. This requires migration of all
old incomplete instances into the new schema.

Lookahead Based Consistent Dynamic Instance Migration Fig. 10a
shows such an on-going workflow instance that is in state funds available. The
migration scenario requires weak lookahead consistency criterion for the safe mi-
gration of the running instances in order to complete the hard-copy acquisition
process from the department. The merged workflow schema and the migrated
marking is shown in Fig. 10b.

In addition to the migration, the situation requires that the same path be
enforced for the migrating instance without giving the additional flexibility of
the alternative of e-resource purchase. Therefore, the execution of these running
cases must be prevented from traversing the path for e-resource purchase, which
is achieved by blocking the transitions which are output of the accept/reject
branching algorithm. The traces of both the algorithms are given below.

– Traces “ t negotiate price, payment, recv. delivery & invoice, record acqui-
sition details & catalog u.

– L “ t negotiate price, payment, recv. delivery & invoice, record acquisition
details & catalog u.

– S = t funds available u.
– Pexchoice “ t funds available, payment complete u.
– Tpotential “ t negotiate price, negotiate price and license, recv. delivery &

invoice, activate e-resource u.
– Tlookahead “ L.
– As a result, Tblock “ t negotiate price and license, activate e-resource u.
– It can be noted that, L ‰ tu ensures weak lookahead consistency. Further,

|S| “ 1 and L “ Traces ensures accommodative lookahead consistency.
However, Tblock ‰ tu implies that strong consistency is not supported by the
modified workflow schema.

The transitions in set Tblock are shown as boxes with thick border in Fig. 10b.
These transitions can be blocked in the new workflow execution environment
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(a) Old Instance in-progress (b) Migrated Instance in Merged Workflow

Fig. 10. Instance Migration into the Re-engineered Workflow

only for this migrating instance to enforce its required lookahead consistency as
discussed above.

8 Discussion and Conclusion

In the literature, execution history based consistency notions are widely adopted
wherever dynamic evolution and adaptation of workflows are considered. The
proposed new model of lookahead consistency uses the remainder of the work-
flow instead of the completed history in defining consistency between states in
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a migration scenario. Three broad classes of the lookahead consistency were
brought out with illustrative examples. The weak lookahead model looks for
preservation of at least one lookahead trace of the old instance across the new
net. For accommodative lookahead model, preservation of all lookahead traces
of the old instance is necessary. The strong model requires the lookahead traces
of the old instance and its migrated marking in the new net to be same. Strong
lookahead implies accommodative lookahead, which in turn implies weak looka-
head consistency.

Besides their usefulness and the inter-relationships among the models, two re-
lated algorithms were also presented for deciding lookahead consistency, comput-
ing token transfer, and for lookahead trace enforcement. The new set of lookahead
models provide future-centric approaches of varying flexibility for token transfer
in dynamic migration scenarios with applications to process re-engineering and
maintenance. A case study of library resource acquisition workflow demonstrated
the relevance of the approach.

As the past execution traces are not taken into account in the context of
lookahead based consistency models, these can not be used stand-alone in sit-
uations requiring history equivalence. However, the lookahead models can also
be applied in combination with history equivalence as per the needs of business
goals. The algorithms for acyclic nets were implemented in GNU Octave [20].
We are working on an integration of this implementation with the facility of
blocking the unintended transitions in a workflow engine [21] environment, and
an extension of the ideas to work with cyclic nets.
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