
WIZCOM: A TOOL FOR SUPPORTING
DISTRIBUTED OBJECT ORIENTED PROGRAMMING

Amit S. Kale, Rushikesh K. Joshi
Department of Computer Science and Engineering

Indian Institute of Technology Bombay
Mumbai - 400 076, India

email: {askii,rkj}@cse.iitb.ernet.in

ABSTRACT

This paper presents the design and implementation of WizCom, a wiz-
ard tool for supporting object oriented distributed programming in
C++ without the need to use language extensions or special libraries.
WizCom generates client-side and server-side code interactively. Server
programmer is required to specify the server interface prototypes to the
tool and subsequently plug in the method definitions in the server-side
code generated by WizCom. Communication code is automatically
generated. The WizCom model supports anticipatory message which
makes it possible for the clients to invoke messages ahead of server ac-
tivations. The generated server code can be mixed with other code or
modified conveniently.

1 INTRODUCTION

WizCom is a wizard based tool for supporting object oriented dis-
tributed programming in C++ [9]. The C++ programming language
does not provide the remote invocation mechanism. Hence, a dis-
tributed program in C++ needs to use a suitable communication paradigm
such as sockets or message queues and provide an encoding scheme for
remote method invocation.

Solutions to this problem are available through some of the existing
concurrent and distributed programming paradigms. An approach is
to use languages that are tailored for concurrent or distributed com-
puting such as Actors [1], Hybrid [8], SR [2], DOWL [3] and COOL
[5]. For example, in Hybrid, all objects are active entities and activ-
itys are used for concurrent execution. Another approach is to provide
a library for supporting activation and communication. Examples of
this approach are the Concurrency class provided for Eiffel [7], and the

1

MessageQueue

Server

A

Serv_A

Generated
Wizard

Classes

Client

(Server Class)

(Proxy Class)

Classname:A, method prototypes:...

Generator

WizCom Code

Use relationship

Inheritance relationship

Legend

Library

Classes

Figure 1: WizCom Interactive Code Generator

Replica class of the C++ based ShadowObjects model [6]. However,
the library approach leaves the responsibility of method encoding and
method dispatch to the programmer.

The WizCom approach relieves the C++ programmer from the use
of language extensions or the difficulties faced in the library approach.
WizCom interactively accepts the class name and its method proto-
types and generates the skeletons that perform method encoding and
method dispatch. For the rest of the responsibilities, it uses its libraries.
A server code that is generated by WizCom can be subsequently stuffed
with actual method bodies. Other objects required to implement the
server functionalities can be conveniently implemented within the gen-
erated server code. It is also possible to iteratively evolve the existing
server code by addition of new member functions to an existing server
implementation.

Rest of the paper is organized as follows. Section 2 provides the
design of WizCom. Implementation details are provided in Section 3
followed by a brief discussion in the last section.

2 THE DESIGN OF WIZCOM

The tool contains two programs genclass and addmethod. The genclass
program is used for generating initial class template. The addmethod
program is used to add a method to be exported by the server class.
It is possible to evolve a server implementation code over time since

2

the addmethod program is designed to iteratively modify the generated
code.

The tool uses its library of two classes called Client and Server as
shown in Figure 1. The interfaces of these library classes are shown
in Figure 2. The class Client is used for sending method requests and
receiving the results, whereas, the class Server provides request retrieval
and result dispatch. The tool generates two classes, one serves as the
implementation and the other serves as a proxy [4] for an instance of
server implementation. For example, in Figure 1, two classes A and
Serv A are generated by WizCom. The other classes shown in the figure
are the library classes. The proxy class A uses class Client through
inheritance and similarly, the implementation class Serv A uses class
Server.

When an object of class A is instantiated, it can work as a proxy
for an actual implementation. WizCom supports two types of binding
methods for binding a proxy with an implementation. A proxy can
bind with an existing active server implementation by calling the mem-
ber function attach. This binding can be terminated through a call to
detach. This mode is suitable for client programs. In the other mode
of binding, a server implementation is activated first, followed by the
binding. This mode is used by server creator programs through a single
member function called activate. The server creator program can sub-
sequently terminate the server through a deactivate member function
call.

The Client and the Server class use the class MessageQueue for
actual communication of messages and results. Methods that are in-
voked by clients are deposited in a server message store. Servers asyn-
chronously pick up messages from the server message store and sub-
sequently deposit replies in the client message store. This method of
messaging makes it possible for clients to invoke methods on servers
ahead of server activation in anticipation. The interface for the Mes-
sageQueue class is shown in Figure 2.

Summarily, programmers are required to call only four member func-
tions called activate, deactivate, attach and detach on the proxy class in
order to initiate or terminate distributed computing mode. Once the
distributed computing mode is setup by server and client programs, any
further inter-object communication follows the conventional call syntax,
thus providing location transparency for server objects and eliminating
explicit handling of message encoding or message dispatch by the client
and server respectively.

3 IMPLEMENTATION OF WIZCOM

WizCom generates a proxy class and an implementation class for every
server class specified. The proxy class is given the same name as the
specified name. The implementation class has to be later stuffed with

3

activate : Creates a server object and attaches to it.

detach: Detaches the client from the server

Client
public:

given ID.

scheduler: Virtual method that runs a loop which

deactivate: Deactivates the server.

remote_invoke: Calls a given server object method

get_request: Returns a request from queue of method

send_result: sends result of a method call to

send: Adds given message to the message queue
receive: Receives a message of given type

protected:

with given parameters.
Server
protected:

fetches requests and calls appropriate methods.

the caller proxy.

call requests.

MessageQueue
public:

from the message queue

attach: Attaches to a server object identified by

Figure 2: Methods in library classes

#include "Client.h"
class A: public Client {
...
public:
 //@@marker for exported functions
 int m(int i,int j);
};

Figure 3: File A.h Client class interface

the actual method implementations by the programmer. As far as
the usage of the server object is concerned, it is always through the
proxy object. The interfaces and implementations of the proxy and
implementation classes are provided in Figures 3, 4, 5 and 6. Code
denoted by normal text in these figures is generated at the time of
file creation whereas code denoted by bold text is generated by adding
a method m. Implementations of these classes make calls to member
functions inherited from their respective superclasses.

As soon as a server class is activated through an activate member
call, a fork operation is performed to start an active server implementa-
tion. The child process assumes the role of the server implementation
by starting the method dispatcher called scheduler as soon as it comes
into existence. The scheduler waits on the server message queue to re-
ceive requests from clients. The client requests are targeted to servers
identified by their unique names or uids. A server picks up a request
and deposits the result in the client message queue. The result is iden-
tified by the process name or pid of the requesting client. A client
subsequently picks up its result from its message queue.

4

remote_invoke("m",sizeof(packet),

packet.i=i;packet.j=j;
struct args_m { int i; int j; } packet;
int A::m(int i,int j) {
...
#include "serv_A.h"

#include "A.h"

return ret;
}

int ret;

&packet.sizeof(ret),&ret);

Figure 4: File A.C Client class implementation

#include "MessageQueue.h"
#include "Server.h"
class Serv_A: public Server {

private:
...

//@@ marker for exported methods

int m(int i,int j);
};

Figure 5: File Serv A.h Server class interface

#include <string.h>
#include "Serv_A.h"
...
void Serv_A::scheduler(void) {

 ...
 get_request(sizeof(buffer),(void*)buffer);
 if(!strcmp(buffer,"attach")) {
 ...
 }
 if(!strcmp(buffer,"deactivate")) {
 ...
 }
 //@@ marker for exported methods
 if(!strcmp(buffer,"m")) {
 struct args_m { int i;int j; }
 &packet=*(args_m*)data;
 int ret=m(packet.i,packet.j);
 send_result(sizeof(ret),&ret);
 continue;
 }
}

}
int conc_A::m(int i,int j){
}

do {

...

Figure 6: File Serv A.C Server class implementation

5

m

invoke
remote_

send

receive

get_
request

result
send_

send

receive

Client Process Server Process

m

serv_A

ServerClient

A
UserCode

Queues
Message
Unix
Shared

MessageQueue MessageQueue

msgrcv

msgrcv

msgsnd

msgsnd

(Dispatch)

Figure 7: Event Trace of call to A::m

The present prototype implementation of WizCom runs on a sin-
gle machine and can handle objects distributed in different address
spaces on the same machine. It can however be extended to handle ob-
jects that are distributed across address spaces on different machines
by modifying some of the library classes without having to change the
user interfaces.

Figure 7 shows event trace of a successful call to method m in proxy
class A . When a method from a client object is called, it further invokes
the method remote invoke from the base class. This method invokes the
method send on class MessageQueue that acts as a wrapper to Unix
message queues. This call deposits the request into a Unix message
queue. The type field in this request message identifies the destination
uid for this message. The request message also carries an identifier
pid for the requesting client. It can be noted that the wizard does not
support nested objects as arguments to method invocations. The server
subsequently receives the request and dispatches it to an actual method
implementation. The result is placed in message queue by class Server.
Client subsequently pick up the result through the member function
receive in class Client.

This mechanism allows the clients to send anticipatory messages.
Method requests can be placed in the message queue before the server
is ready to receive them. The server need not be activated at the time
of a client call. Server can eventually read the requests and process it.

The genclass program generates four new files for the mentioned
class as shown in Figures 3, 4, 5 and 6. Special markers are placed in the

6

client and server class header files, and also in the server implementation
file. The markers are subsequently used by the addmethod program
for finding place for inserting new methods into the class. Once the
markers are placed by the genclass program, they remain unchanged. A
server implementor can use the implementation file to stuff appropriate
implementation code.

4 SUMMARY AND FUTURE WORK

The WizCom tool provides a support for easy to use distributed com-
puting in C++. The main advantage of the WizCom approach is that it
eliminates the use of extended language features or special libraries re-
quired for handling distribution. Standard C++ compilers can be used
to compile the generated code. The classes generated by WizCom can
be easily integrated with other code. It is possible to evolve an existing
class without disturbing its interface. Communication through message
queues allows asynchronous operations inclusive of asynchronous acti-
vations that leads to the anticipatory message invocations. Some of the
classes in the tool can be evolved to handle distribution of objects across
address spaces on multiple machines. Currently, clients have to wait to
receive their replies causing a busy wait situation. Asynchronous result
receive primitives can be provided to solve this problem.

The code for the tool is available on request.

REFERENCES

1. Agha G.H. (1986), “ACTORS: a model of concurrent computation
in distributed systems”, MIT Press, Cambridge, Mass.

2. Andrews G.R. et al. (1988), “An overview of the SR language and
implementation”, ACM TOPLAS, Vol. 10.

3. Caromel D. (1993), “Towards a method of object oriented concur-
rent programming”, Communications of ACM, Vol. 36/9.

4. Gamma E. et al. (1994), ”Design Patterns”, Addison-Wesley.

5. Lea R., Jacquemot C., Pellevesse E. (1993), “COOL: System Sup-
port For Distributed Programming”, Communications of ACM, Vol.
36/9.

6. Joshi R. K., Ongole R., Janaki Ram D. (1998), “A programming
model for control replication in object oriented distributed systems”,
Communicated for publication.

7

7. Karaorman M. (1992), “Introducing concurrency to a sequential lan-
guage”, Communications of ACM, Vol 36/9.

8. Neirstrasz O.M. (1987), “Active Objects in Hybrid”, ACM SIG-
PLAN Notices, Vol 22.

9. Stroustrup B. (1995), “C++ programming language, 3rd Ed.”,
Addison-Wesley.

8

