
Capturing Task and Dependency Aspects in

Agent Oriented Requirement Specifications

Kalyan Chakrawarthy and Rushikesh K Joshi

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Powai, Mumbai 400076, India
{kalyan,rkj}@cse.iitb.ac.in

Abstract. A method of capturing task and dependency aspects in an
agent oriented requirements methodology based on Formal Tropos is
presented. The emphasis is on capturing functional aspects in formal
specifications through aspect extensions. With the help of a few exam-
ples, the benefit of aspect extensions in terms of reducing scattering from
specifications are demonstrated.

1 Introduction

Development of modularity concerns is an important issue in software engi-
neering as the development and evolution of software is closely tied to the in-
herent modularity abstractions. Traditional software decomposition methodolo-
gies based on object orientation are considered as significant improvements over
their procedural counterparts. However, it is known that in some object oriented
paradigms, certain concerns do not get modularized. Examples of such concerns
have been discussed in [3] and [14]. The problems of separation of concerns have
been addressed at programming level by several researchers. Some examples of
such programming techniques are Encapsulators [13], Advices and Pointcuts [12],
Composition Filters [2], Filter Relations [10, 9] and Context Relations [16].

Even at the requirements level, the problems of crosscutting concerns can
arise due to the characteristics of abstractions used in modeling the require-
ments. We address this problem in the context of an agent oriented require-
ments specification methodology. The notion of aspects has earlier been applied
in agent oriented programming systems. A few examples of such aspects are mo-
bility aspects [18], interaction aspects [5], learning aspects [6], autonomy aspects
[7] and collaboration aspects [11]. These solutions however do not address the
problem of identifying and modeling concerns during the requirement phase of
software development. Some examples of early aspects in requirements phase are
the non-functional aspects demonstrated in a matrix based approach of Rashid
et al. [15], and V-graph based approach of Yu et al. [20] for identifying non-
functional aspects. A notion of functional aspects in i

∗ [19] based Agent oriented
requirement modeling was discussed in [1, 8].

In this paper, we propose an aspect extension to Formal Tropos [4], and an
extension to the metamodel of TAOM [17], a visual modeling representation

for Tropos. The proposed model is mainly intended for capturing functional

aspects in agent oriented requirement specifications. The aspects outlined in
this work capture generic concerns at task and dependency level. This method
reduces a scattering caused by distribution of a single concern into multiple
similar tasks or dependencies. Such a concern is captured through an aspect,
which is subsequently translated into specific independent tasks or dependencies
at the lower level. When aspect dependencies and aspect tasks are used, the
size of the specification is reduced and a concern which otherwise is distributed
across multiple tasks or dependencies is captured with in a single aspect.

The next section provides the motivation for the work through an example
case. In Section 3, a method of capturing aspects through a visual model is
outlined. Section 4 develops this model further into a formal description based
on Formal Tropos. Translations from high level task and dependency aspects to
native specification in FT are also described in Section 4.

Water Tank
Controller

PumpPump
Water

Open Pump
Automatical ly

Close Pump
Automatical ly

Desk
Operator

Control Pump
Manually

Close Pump
Manually

Open Pump
Manually

open
Command

Automatical ly

Close
Command

Automatical ly

Switch on
Pump

Switch off
Pump

open
Command
Manually

Close
Command
Manually

Control water
Level

Wait Signal
Low

OR

OR

Water level
Sensor

Provide Sensor
Information

Low Signal

Alert Low Alert High

Wait Signal
High

High Signal

Handle Low
Level

Handle High
Level

Fig. 1. Strategic Rational Model of the WLCP Problem

2 Development of an Aspect

This section illustrates the behavior of crosscutting concerns in an agent-centric
requirement through an example specification of Water Level Controller Program
(WLCP). WLCP is a problem about water level control in a Water Tank in
between certain limits by controlling Pump. The requirements are represented

through an agent modeling method based on i
∗. The i

∗ modeling framework
uses the notions of actors, goals, tasks, resources and dependencies, making
requirement specifications agent-centric as opposed to the traditional object-
centric method. Crosscutting concerns may span across multiple actors, tasks,
goals and dependencies in an agent-centric approach, while they span across
classes in an object-centric approach.

2.1 The WLCP Problem

As shown in Figure 1, the WLCP specification consists of four agents: Wa-
ter Tank Controller, Water Level Sensor, Desk Operator and Pump. The figure
represents the i

∗ strategic rationale model of the specification. Water Tank Con-

troller is an agent which controls the water level in the tank by operating the
pump depending on the level of water in the tank. Water Level Sensors sense
the water level in the tank and alert the controller when water level crosses
specified limits, Water Level Low and Water Level High. Desk Operator can
operate the pump manually by overriding automatic pump operations whenever
needed. Pump provides water to the tank by taking commands from Water Tank

Controller and Desk Operator.
From the figure, it can be observed that if handling of the pump is conceived

as concern Handle Pump, the tasks belonging to this concern come from two
agents Water Tank Controller and Desk Operator. In this case, it may not be
possible to contain the concern in a single entity without losing the naturality
of agent abstractions captured in this model. Now we outline an aspect based
solution to this problem.

2.2 Agents and Aspects

Aspects need to be distinguished from agents. The properties that differentiate
agent with aspects in the proposed model are given below.

– Agents in the system have the knowledge of other agents but not of aspects.
– Aspects may refer to agents without their knowledge and capture common-

alities amongst the agents.
– On top of the commonalities they also capture the refinements.
– Aspects do not have goals to be fulfilled.

Methods such as matrix based analysis or V-graph [19] based analysis may
be used for identification of crosscutting concerns. Once the crosscutting con-
cerns are identified, a crucial problem is to decipher the entities and properties
that are related to the concern, after which, a suitable aspect entity can be
created in the formal description. The formal descriptions for aspect tasks and
aspect dependencies are discussed later in the next section. The main activities
in developing aspect tasks are listed below.

– Creation of an aspect-entity corresponding to the crosscutting concern iden-
tified.

– Relocation of relevant tasks belonging to the crosscutting concern from
agents to the newly created aspect.

– An assessment of common properties and differences of the relocated tasks.

A

B C

D E

G1 H1

I

KJ

G2 H2

Agent A1

Agent A2

Aspect A1A2

(a) Before Aspectization

(b) After Aspectization

G1G2 H1H2

A

B C

D

Agent A1’

E

I

KJ

Agent A2’

apply apply

Fig. 2. A Method of Aspectization

The conceptual description of the approach is captured in Figure 2. An aspect
A1A2 has been extracted to represent the commonality in two agents A1 and
A2. The commonality in this case is among two pairs of tasks G1,G2 and H1,H2.
The original tasks are removed from the agents. Each pair represents a single
aspect task in the aspect. The aspect is applied to the two agents. The decom-
position remains the same as shown. A similar method is applied for developing
dependency aspects.

3 Visual Modeling of Task and Dependency Aspects

The aspectized representation of the concern Operating Pump is presented in
Figure 3. As shown in the figure, an aspect is represented by a dotted circle.
Representation of agents, goals, tasks and resources are as in i

∗ modeling lan-
guage. An apply to relation between aspects and agents is also introduced. This
relation captures the crosscutting linkages between aspects and agents. The re-
lation gets elaborated further in the detailed specification through an extension
on top of formal tropos. The concern Handle Pump which was scattered across
agents Water Tank Controller and Desk Operator has been turned into a single
aspect. The corresponding extensions to the TAOM metamodel are described in

Water Tank
Controller

Desk
Operator

Control Pump
Manually

Control water
Level

Wait Signal
Low

Water level
Sensor

Provide Sensor
Information

Low Signal

Alert Low Alert High

Wait Signal
High

High Signal

Handle Low
Level

Handle High
Level

Open Pump

Aspect
Handle Pump

Close Pump

Close
Commandopen

Command

apply to

apply to

Pump
Pump
Water

Switch on
Pump

Switch off
Pump

Fig. 3. Visual Model for Aspect HandlePump

Figure 4. The figure depicts an aspect as a separate entity which encapsulates
crosscutting tasks and dependencies in a single entity. The goals and tasks of a
crosscutting concern are contained in a single aspect and they contribute to the
fulfillment of the respective agents.

4 Extensions to Formal Tropos

In this section, extensions to Formal Tropos [4] for specifying task and depen-
dency aspects are presented. The core extensions are outlined below.

specification:= (entity | actor | aspect | int-element | aspect-int-element

| dependency | global - properties)*
aspect := aspect name [attributes] [aspect-creation-properties] [aspect-invar-properties]

[aspect-fulfillment-properties]
aspect-int-element := type name mode aspect name [attributes]

[aspect-creation-properties] [aspect-invar-properties] [aspect-fulfill-properties]
aspect-creation-properties := property-category event-category aspect-temporal-formulae
aspect-temporal-formula := apply to Agent-name-list temporal-formulae

4.1 Task Aspects

The main feature in the aspect task specification is that the temporal formulae
in its properties include pointers to the agents to which they are applied. Every

Aspect Actor
Crosscuts

1

*

*

1..n

1..n

watch state

watch state

*
contains

Goal Aspect

Plan Aspect

Dependency
 Aspect

1 1 1

1..n

1..n

1..n

1

Depends on1..n

1

1..n

Depends on

Fig. 4. The Aspect Metamodel in UML

intentional element that is part of an aspect specifies the name of the aspect
to which it belongs. An example is demonstrated in Figure 5. The left column
in the figure represents a snapshot of the non-aspectized specification based
on Formal Tropos for the WLCP problem discussed in earlier sections. Only
the entities that are aspectized are shown. As we can see from the formal tropos
specification, the closely related and similar tasks close pump automatically, close

pump manually, open pump automatically and open pump manually belonging
to concern Handle pump are scattered in two agents. A specification of an aspect
begins with declaring the aspect as in a declaration given below:

Aspect HandlePump

The next step is to aspectize the tasks that scattered across multiple agents.
In this case, tasks OpenPump and ClosePump are scattered in agents Wa-

ter Tank Controller and Desk Operator. The task OpenPump has two manifesta-
tions Open Pump Automatically and Open Pump Manually, one in each agent.
In the figure, the right column represents the aspectized formulation of the two
tasks into one aspect task OpenPump. The references to crosscutting agents
are provided through a directive apply to in the temporal formulae of creation,
invariant and fulfillment properties.

4.2 Dependency Aspects

In the WLCP specification, the dependencies for two pairs of resources for
opening and closing of the pump are spread across two agents as it can be

Task Open Pump Automatically
Mode achieve
Actor Water Tank Controller
Attribute

constant pump : Pump
constant wsl : Wait Signal Low

Creation condition
(pump.close) & Justcreated(wsl)

Fulfillment condition
!(pump.close)

Task Open Pump Manually
Mode achieve
Actor Desk Operator
Attribute

constant cpm : Control Pump Manually
constant pump : Pump

Creation condition
!fulfilled(cpm) & (pump.close)

Fulfillment condition
!(pump.close)

=⇒

Task OpenPump
Mode achieve
Aspect HandlePump
Attributes

constant pump : Pump
constant wsl : Wait Signal Low
constant cpm : Control Pump Manually

Creation
condition apply to Water Tank Controller

(Justcreated(wsl) & (pump.close))
condition apply to Desk Operator

!fulfilled(cpm) & (pump.close)
Fulfillment

condition !(pump.close)

Fig. 5. Aspectization of Tasks Open Pump Automatically and Open Pump Manually

Dependency Open Command Automatically
Type resource
Mode achieve
Depender Pump Water
Dependee Control water Level
Attribute opa : Open Pump Automatically
Creation condition

!Fulfilled(opa)
Fulfillment condition

Exists sonp : Switch On Pump
(Fulfilled(sonp))

Dependency Open Command Manually
Type resource
Mode achieve
Depender Pump Water
Dependee Desk Operator
Attribute opm : Open Pump Manually
Creation condition

!Fulfilled(opm)
Fulfillment condition

Exists sonp : Switch On Pump
(Fulfilled(sonp))

⇒

Dependency Open Command
Aspect HandlePump
Type resource
Mode achieve
Depender Pump
Attribute op : OpenPump
Creation condition provided by

(Water Tank Controller OR Desk Operator)
!Fulfilled(op)

Fulfillment condition
Exists sonp : Switch On Pump (Fulfilled(sonp))

Fig. 6. Aspectizing Open Command Automatically and Open Command Manually

seen in Figure 1. There is similarity between the two dependencies within each
pair. The four resources are collapsed into two aspects Open Command and
Close Command. Figure 6 shows a snapshot of the aspectization of dependen-
cies, left column representing the non-aspectized resource dependencies Open

Command Automatically and Open Command Manually, and right column rep-
resenting the dependency aspect Open Command. Dependency aspects do not
need to specify the Dependee clause as there are multiple dependees with which
it is concerned. The dependees are referenced using the directive provided by.
The specific combinatorial formulae for the dependencies are also captured in-
dependently for every agent.

– Goals of Pump

Goal Pump Water
Mode achieve
Actor Pump

Task Switch On Pump
Mode achieve
Actor Pump
Attribute

constant pump : Pump
Creation condition

(Forall ocm : Open Command Manually
(!Fulfilled(ocm))) |

(Forall oca : Open Command Automatically
(!Fulfilled(oca)))

(pump.close)
Fulfillment condition

!(pump.close)

=⇒

Goal Pump Water
Mode achieve
Actor Pump

Task Switch On Pump
Mode achieve
Actor Pump
Attribute

constant pump : Pump
Creation condition

(Forall oc : Open Command (!Fulfilled(oc)))
& (pump.close)

Fulfillment condition
!(pump.close)

Fig. 7. Tasks References Before and After Aspectization

After the creation of task aspects and dependency aspects, all references to
the original tasks and dependencies are redirected to the newly created task
aspects and dependency aspects. In Figure 7 the left column represents the
snapshot of pre-aspectized agent Pump, and the right column represents the
post-aspectized specification. For example, all the references to dependencies
Open Pump Automatically and Open Pump Manually are replaced by a single
dependency aspect Open Pump.

A scheme for translating the aspectized specification into a low level specifica-
tion in Formal Tropos is captured through an example in Figure 11. A numbering
scheme is used to generate multiple tasks as dictated by the aspect specifications.
If there are m aspect tasks that crosscut with k agents, the total number of dif-
ferent low level tasks generated are m ∗ k. The temporal formulas for respective
agents are replicated for the specific low level tasks. Similarly the desired low
level dependencies are established.

procedure task generator
input A[1..m]: set of aspect tasks
output n, T[1..n]: set to represent generated tasks
precondition A 6= φ, T = φ
postcondition A = φ, T 6= φ
begin

i ⇐ 0
for each t in A

at[] ⇐get crosscutting agents(t)
for each a in at

T [i] ⇐create task(t, a)
i ⇐ i + 1

end

end

end

procedure create task
input t: aspect task, a: agent
output ga

t : task
precondition ga

t = φ
postcondition ga

t 6= φ
begin

ga
t ⇐ declare task(t, a)

gcp ⇐ set creation properties(t, a)
gip ⇐ set invariant properties(t, a)
gfp ⇐ set fulfillment properties(t, a)
gat ⇐ set attributes(gcp, gip, gfp)
ga

t ⇐ ga
t + gat + gcp + gip + gfp

end

Fig. 8. Translating Aspectized Tasks

– get crosscutting agents(t): returns the agents referred in aspecttask(t)

– declare task(t, a): defines a task of type t in agent a.

– set creation properties(t, a), set invariant properties(t, a), set fulfillment properties(t, a):
determine creation, invariant, fulfillment properties of aspect task t referring agent
a.

– set attributes(gcp, gip, gfp): create attributes for task(t, a) using the creation, in-
variant and fulfillment conditions belonging to task t in agent a.

Task OpenPump
Mode achieve
Aspect HandlePump
Attributes

constant pump : Pump
constant wsl : Wait Signal Low
constant cpm : Control Pump Manually

Creation
condition apply to Water Tank Controller

(Justcreated(wsl) & (pump.close))
condition apply to Desk Operator

!fulfilled(cpm) & (pump.close)
Fulfillment

condition !(pump.close)

⇒

Task OpenPump 000
Mode achieve
Actor Water Tank Controller
Attributes

constant pump : Pump
constant wsl : Wait Signal Low

Creation
condition (Justcreated(wsl)) & (pump.close)

Fulfillment
condition !(pump.close)

Task OpenPump 001
Mode achieve
Actor Desk Operator
Attributes

constant cpm : Control Pump Manually
constant pump : Pump

Creation
condition !Fulfilled(cpm) & (pump.close)

Fulfillment
condition !(pump.close)

Fig. 9. Translating Aspectized Tasks: An Example

procedure dependency generator
input ad[]: dependency aspects
output da

t []: dependencies
precondition ad 6= φ
postcondition ad = φ
begin

for each t in ad
at[] ⇐ get dependees(t)
for each n in at

da
t [] ⇐ create dependency(t, n)

done

done

done

Fig. 10. Translating Aspectized Dependencies

– get dependees(t): returns the agents the dependency aspect t crosscuts.
– create dependency(t, n): creates dependency between depender specified in t and

dependee n

Dependency Open Command
Aspect HandlePump
Type resource
Mode achieve
Depender Pump
Attribute op : OpenPump
Creation condition provided by

(Water Tank Controller OR Desk Operator)
!Fulfilled(op)

Fulfillment condition
Exists sonp : Switch On Pump (Fulfilled(sonp))

⇒

Dependency Open Command 000
Type resource
Mode achieve
Depender Pump
Dependee Water Tank Controller
Attribute 000 : OpenPump 000
Creation condition

!Fulfilled(000)
Fulfillment condition

Exists sonp : Switch On Pump (Fulfilled(sonp))

Dependency Open Command 001
Type resource
Mode achieve
Depender Pump
Dependee Desk Operator
Attribute 001 : OpenPump 001
Creation condition

!Fulfilled(001)
Fulfillment condition

Exists sonp : Switch On Pump (Fulfilled(sonp))

Fig. 11. Translating Aspectized Dependencies: An Example

5 Conclusions

An approach to capturing of early-aspects in an agent oriented specification
methodology based on i

∗ and Formal Tropos was proposed. The proposed ex-
tensions include representation of aspects as separate entities. Aspects are col-
lections of aspect tasks and aspect dependencies that crosscut with multiple ac-
tors. Each aspect task captures some commonality and some difference amongst

a group of tasks that it aspectizes. The approach was demonstrated through
an example formal specification. It was found that if the specification can cap-
ture the commonalities effectively, it can cause reduction in the number of tasks
that otherwise are quite similar to each other. Through the temporal formulae,
the aspects note the differences between the behaviors when applied to different
agents.

References

1. Satyashil Awadhare. Extensions to tropos for requirements engineering. Mas-
ter’s thesis, Department of Computer Science & Engineering, Indian Institute of
Technology Bombay, 2004.

2. L. Bergmans and M. Akşit. Composing crosscutting concerns using composition
filters. Comm. ACM, 44(10):51–57, October 2001.

3. Robert E. Filman and Daniel P. Friedman. Aspect-oriented programming is quan-
tification and obliviousness. In Mehmet Akşit, Siobhan Clarke, Tzilla Elrad,
and Robert E. Filman, editors, Aspect-Oriented Software Development. Addison-
Wesley, Reading, MA, 2004.

4. Ariel Fuxman, Lin Liu, John Mylopoulos, Marco Roveri, and Paolo Traverso. Spec-
ifying and analyzing early requirements in tropos. Requir. Eng, 9(2):132–150, 2004.

5. Alessandro F. Garcia and Carlos J. P. de Lucena. An aspect-based object-oriented
model for multi-agent systems. In Peri Tarr and Harold Ossher, editors, Workshop
on Advanced Separation of Concerns in Software Engineering (ICSE 2001), May
2001.

6. Raj P. Gopalan, Tariq Nuruddin, and Yudho Giri Sucahyo. A seamless integration
of association rule mining with database systems. CoRR, cs.DB/0106055, 2001.

7. Zahia Guessoum and Jean-Pierre Briot. From active objects to autonomous agents.
IEEE Concurrency, 7(3):68–76, 1999.

8. Rushikesh K. Joshi. Early aspects in agent oriented modeling. ITPAR Work-
shop on Knowledge and Logic Oriented Software Engineering, Tata Institute of
Fundamental Research, Mumbai, 19-21 January 2005, 2005.

9. Rushikesh K. Joshi, Maureen Mascarenhas, and Yogesh Murarka. Filter objects
for java. Softw, Pract. Exper, 33(6):509–522, 2003.

10. Rushikesh K. Joshi, N. Vivekananda, and D. Janaki Ram. Message filters for
object-oriented systems. Softw. Pract. Exper., 27(6):677–699, 1997.

11. Elizabeth A. Kendall. Role model designs and implementations with aspect-
oriented programming. In OOPSLA, pages 353–369, 1999.

12. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of AspectJ. In J. Lindskov Knudsen, editor,
ECOOP 2001 — Object-Oriented Programming 15th European Conference, vol-
ume 2072 of Lecture Notes in Computer Science, pages 327–353. Springer-Verlag,
Budapest, Hungary, June 2001.

13. Geoffrey A. Pascoe. Encapsulators: A new software paradigm in smalltalk-80.
21(11):341–346, November 1986. OOPSLA ’86 Conference Proceedings, Norman
Meyrowitz (editor), September 1986, Portland, Oregon.

14. Awais Rashid and Lynne Blair. Aspect-oriented programming and separation of
crosscutting concerns. The Computer Journal, 46(5):527–528, September 2003.

15. Awais Rashid, Ana M. D. Moreira, and João Araújo. Modularisation and compo-
sition of aspectual requirements. In AOSD, pages 11–20, 2003.

16. Linda M. Seiter, Jens Palsberg, and Karl J. Lieberherr. Evolution of object be-
havior using context relations. IEEE Trans. Software Eng., 24(1):79–92, 1998.

17. Angelo Susi, anna Perini, and John Mylopoulos. The tropos metamodel and its
use. Technical report, May 09 2005.

18. Naoyasu Ubayashi and Tetsuo Tamai. Separation of concerns in mobile agent
applications. In A. Yonezawa and S. Matsuoka, editors, Metalevel Architectures
and Separation of Crosscutting Concerns 3rd Int’l Conf. (Reflection 2001), LNCS
2192, pages 89–109. Springer-Verlag, September 2001.

19. E. S. K. Yu. Towards modelling and reasoning support for early-phase requirements
engineering. In Proceedings: 3rd IEEE International Symposium on Requirements
Engineering, pages 226–235. IEEE Computer Society Press, 1997.

20. Yijun Yu, Julio Cesar Sampaio do Prado Leite, and John Mylopoulos. From goals
to aspects: Discovering aspects from requirements goal models. In RE, pages 38–47.
IEEE Computer Society, 2004.

