
Architecture of the Object Oriented Anonymous Remote

Computing Framework for C# over .NET∗

T. Vamsi Kalyan, R.K. Joshi
Department of Computer Science and Engineering

Indian Institute of Technology, Bombay

Abstract

Anonymous Remote Computing (ARC) for C# over .NET is a service oriented framework
to support development of parallel and distributed programs in presence of mobility. The paper
provides an introduction to the framework and discusses the architecture from use cases, services
and components point of views. The application development process is also discussed. The
basic design features of this framework are services for parallelism and distribution at object
level. These include distribution of ARC objects, support for dynamic load measurement,
fault tolerance and dynamic leave and join services for participating machines. In addition to
these basic services, the framework is extended to support multiple object hoppings and object
accessibility in presence of mobility. The design and implementation of ARC kernel are both
based on object-oriented technology.

1 Introduction

Anonymous Remote Computing(ARC) [4] is a framework to support development of parallel pro-
grams over a cluster of workstations in presence of heterogeneity, load and failures. In an ARC
environment, participating nodes may join and leave the system dynamically. In [1], a design and
implementation of a service-oriented ARC kernel over a LINUX cluster has been discussed. Services
are modeled through RPC based protocols. Though the modeling of this kernel was done through
object modeling techniques, the implementation is procedural. Interfaces identified during modeling
are translated into C-based RPC services during implementation.

In this paper, an ARC framework for C# over .NET is presented. In addition to the above ser-
vices, support for object level mobility and retraction services is provided. The framework is modeled
using object oriented analysis and design techniques, and also uses object oriented implementations.
Object orientation at implementation level provides interesting solutions such as automatic-proxy
switching for object mobility, implementation of multiple interfaces for services and factories for
object creation.

Mobile objects introduced in the C# ARC framework are self-contained autonomous objects
which can move from machine to machine, performing assigned task. While object move and perform
tasks on remote machines, they remain addressible for the originator through connection, and also
to the current context where the object moves. A migrated object may decide to hop to another
∗This work is sponsored by Microsoft Inc. under an R&D grant at Department of Computer Science and Engi-

neering, IIT Bombay.

1

machine or the originator application may retract the object, or the object may be pushed onto
another machine in its next hop by the originator or by its current context.

2 Framework Capabilities

Various features of the ARC framework are discussed in this section. First the features are introduced
and then the architecture is discussed in next section. Figure 1 shows a use-case diagram [2] bringing
out the functional view of the ARC framework. Two kinds of actors namely Parallel/Distributed Ap-
plication and Node Administrator can be noted. Parallel or distributed applications use constructs
provided by ARC system to develop programs involving more than one machine. Node adminis-
trator deals with join and leave services. The functionalities identified in the use case diagram are
elaborated below.

 Parallel/
Distributed
Application

getHPFVector

Push

Sync

Join

AutoExecution

Leave

Register
FTSService

GracefulRetract

Node
Administrator

connect

Create

Figure 1: Use-Case Diagram for ARC

• Specifying an ARC object: An object is specified as an ARC object through inheritance. An
ARC object obtains all the capabilities provided by the ARC system.

• Anonymity in Node selection: An application may select a machine by its Horse Power Fac-
tor (HPF) value, while the machine remains anonymous for the application. HPFs may be
obtained via a call to getHPFVector() to a local HPF server. An HPF value is an instance of
a class. An HPF server communicates with other HPF servers in the network.

2

• Explicit node selection: An application may also select a machine explicitly for migration
through a call to getHPFValue() on local HPF server.

• Migration Assurance: When an application obtains an HPF value of a machine, or a vec-
tor corresponding to a set of machines, each value represents an assured slot for receiving a
migrating object. The slots are unlocked through a call to release() on the local HPF server.

• Migration: Migration of an ARC object to an anonymous machine. An ARC object may
be migrated by calling a method push() on the object. The method requires an HPF value
corresponding to an anonymous machine as its parameter.

• Trigger: A method body to be executed after the object moves to remote machine is imple-
mented as an overridden implementation of method trigger() by an arc-object.

• Parallelism: While an application migrates an ARC-object to an anonymous remote machine
due to a call to push, it may continue in a non-blocking fashion. A result of remote execution
available as migrated object’s state.

• Auto-retraction: Asynchronous return of an object after completing the task at remote machine
is a default retraction mechanism. After the object retracts, all invocations on the object are
performed locally. The application remains unaware of the location of the object due to an
internal automatic proxy switching mechanism.

• Wait till retraction: An application may wait on an ARC object till it is retracted through
a call to sync() on the ARC object. If the object is already retracted, the call is unblocked
immediately.

• Explicit Retraction: An object may be called back to originator when required through a call
to GracefulRetract() on the ARC object. The remote ARC object is intimated via a flag which
may be checked through a method isRetractionSet(). The trigger method in an ARC object
may be implemented to handle an incoming graceful retract request.

• Roaming: An object may re-hop over a network of machines by means of a call to push() on the
object. This call can be made by the originator, by its current context or by the object itself.
The protocol followed by push is the same as that followed on its originating machine. For the
originating application code, the object’s location need not be known for call invocations on
the roaming object. To establish this communication, the originating application needs to call
a connect() invocation on its local ARC object handle. Proxy switching is performed internally
in response to connect.

• Fault Tolerance: A desired fault tolerant behavior for an ARC object may be specified. Before
an ARC object is migrated, to access a failure recovery service, the object is registered with a
fault tolerance service (FTS) through a call to register() specifying the desired fault tolerance
semantics for a given ARC object. An FTS server communicates with remote FTS servers
for failure detection. Upon a failure detection, the FTS carries out resend operations through
local ARC system interface.

• Communicating Mobile Objects: Roaming objects may exchange messages between each other.
If the location of an object is known, an explicit proxy to the object may be obtained. For
communication among roaming objects their locations have to be known to each other. An
explicit proxy is required for all contexts other than the originating code for communication
with a roaming object.

3

• Dynamic join and leave: Machines may join or leave an ARC system dynamically through a
Join service and a Leave program. Every active participant exports a copy of the Join server.
The list of currently active nodes is updated by join service on every machine.

3 Architecture

Figure 2 depicts the architecture of ARC framework. The ARC system is organized in the four
layers which are described below.

3.1 ARC User Upper Layer

This layer consists of user programs running on the ARC system. These programs are distributed
and parallel applications or node administrators. Distributed and parallel applications use services
meant for user applications. Node administrators are responsible for joining a machine into the ARC
network as well as disconnecting the machine from ARC network.

3.2 ARC User Lower Layer

Classes in this level include proxies for the ARC services and classes which may be generated through
a preprocessor operating on interface descriptions. The inheritance structure of these classes is shown
subsequently. Class RealObj is at the lowest level of inheritance and user implements the interface
in this class. This layer also consists of proxies to services provided in ARC kernel level. These are
obtained using .NET remoting infrastructure.

3.3 ARC Kernel Layer

This layer provides services to the layers above it. Depending on the user of the services, these
services are classified into 3 sub parts.

• ARC Object Services: It allows registration of newly created ARC objects, Migration (send
and receive) of code and state, and activation and execution of trigger on a newly arrived remote
ARC object. When a migrated ARC object returns asynchronously, the object is inserted into
its original location by proxy switching through ARC object proxy layer. ARC object proxy
layer consists of proxies to locally registered ARC objects. The proxy layer is essential since
the ARC object services are located in a different address space than that of the user programs.

• Developer Services: Distributed or parallel programs uses these services through proxies,
which can be obtained using .NET remoting framework. These services can also be used
from ARC user lower layer. Services supported in this category are fault tolerance and auto
execution, Horse Power Factor and remote slot locking and unlocking, and asynchronous object
arrival intimation services.

• Node Administrator Services: Node administrator can join a machine into the ARC
network and also can unsubscribe a machine from the ARC network. Node administrator
services include join and leave services. An active ARC computation uses actively participating
nodes at a given time.

4

UserProgram

IMyObj

Factory

Container ARCObject

NodeAdmin Program

UserLevel

.NET Remoting Infrastructure

C
a
ll

 S
e
rv

ic
e
s

C
a
ll

 S
e
rv

ic
e
s

C
a
ll

 S
e
rv

ic
e
s

A
sy

n
c
h

ro
n

o
u

s
N

o
ti

fy

ARCObject Proxy Layer

A
R

C
 K

e
rn

e
l

L
a
y

e
r

C
o

m
m

u
n

ic
a
ti

o
n

Kernel ServicesARC

Proxy LayerARC Services

NodeAdmin ServicesServicesARC Object

Join ServiceRegistration
Service

Migration
Service

HPF Service

ObjectArrival
Intimation Service

Developer Services

Translated UserInterface

A
c
q

u
ir

e
 P

ro
x

y

RealObj

A
R

C
 U

se
r

U
p

p
e
r

L
a
y

e
r

A
R

C
 U

se
r

L
o

w
e
r

L
a
y

e
r

L
a
y

e
r

Service
Auto Execution
Fault Tolerance &

Leave Service
Activation &
Trigger Service

Figure 2: ARC Framework Architecture

5

3.4 Communication Layer

.NET provides remoting infrastructure which allows method invocation on a remote machine. Com-
munication between any two machines takes place through this level. The .NET services accessed
in this layer consists of registration of services and creation of proxies.

4 Application Development Process

An ARC application may be classified into broad categories of distributed, parallel and mobility
based applications. An application may also combine one or more of these features. Applications may
involve autonomous objects migrating over the network and exchanging messages. These distributed
objects carry unique identities and may work co-operatively to serve a common purpose.

In an application involving parallelism, a large computation may be divided into small individual
subcomputations expressed as ARC objects. Using ARC constructs, these subcomputations may
be executed on remote machines in parallel. Results of remote executions arrived at the originator
asynchronously as ARC objects retract. Earlier work on parallelism on an ARC platform is discussed
in [4]. An application may also employ multiple hoppings of an ARC object to complete its work-flow.
ARC system allows ARC objects to be migrated over a specific path.

This section highlights a development process of ARC programs through an example. In the
example discussed, an ARC object is migrated to a remote anonymous machine, where a specified
task is triggered on arrival. The object retracts asynchronously to originator context after completion
of the triggered task.

Interface Specification

The development process begins with a specification of an ARC object interface as shown below.
The interface consists of public member functions that the ARC object exports. These member
functions are exported in addition to default ARC object members such as a trigger executor. In
the interface specification below, the ARC object interface inherits a library interface IRefCount
to add reference counting feature to ARC objects of type IMyObject.

public interface IMyObject : IRefCount { // User specified interface

void task(); // a public member of the ARC object

}

Implementation of ARC Object

Implementation of the interface is done in class Real in the namespace corresponding to user specified
ARC interface. Skeleton of this class is generated from the ARC object interface. The architecture
of the generated classes is discussed in next section.

6

namespace NSIMyObject{

[Serializable]

public class Real: PReal{

public override void Trigger(){

Console.WriteLine(‘‘This Message is Expected

to be Displayed at Remote Node’’);

this.task(); //method to print Hello World!

}

public override void OnReturn(){ }

public override void OnRetract(){ }

public override void task(){

Console.WriteLine(‘‘Hello World!’’);

}

}

}

During implementation of Real, definitions of member functions need to be stuffed in by the
programmer. Method Trigger() is automatically executed after the object migrates. In this example,
method task() is called from within Trigger(). The code for class Real, which implements interface
IMyObject is shown below. Notice that methods Trigger(), OnReturn() and OnRetract() are due to
inheritance from interface ITrigger. The methods in interfaces ITrigger and IMyObject are to be
implemented class Real.

Originator Application

Below is an example originator code. The originator program invokes a creation request on the
factory class available under the generated namespace corresponding to the ARC object interface.
After creation, the program sends instance of class Real to an anonymous remote machine and
executes a local method in parallel. Finally the program blocks through a call to method Sync() till
the migrated ARC object retracts.

7

namespace testHello{

public class HelloClass{

public static void Main(){

// 1. Connect to local HPFServer

UserInterface_HPFVector.IUser hpfvector;

UserInterface_HPFServer.IUser hpfserver =

(UserInterface_HPFServer.IUser)Activator.GetObject(

typeof(UserInterface_HPFServer.IUser),

"tcp://localhost:8105/HPFServerClass");

// 2. get HPFVector

hpfvector = hpfserver.getHPFVector(1);

int i = hpfvector.SizeOfHPFVector();

UserInterface_HPFValue.IUser hpf1=null;

hpf1 = hpfvector.getHPFValue(0);

// 3. Instantiate an ARCObject

NSIMyObject.IContainer arcobject = NSIMyObject.Factory.New();

// 4. send created object to remote machine

arcobject.push(hpf1);

// 5. do any work in parallel

Console.WriteLine(‘‘to be executed in parallel’’);

// 6. wait for object to come back

arcobject.sync();

// 7. end of program

Console.WriteLine(‘‘the end’’);

}

}

}

Note that the HPF value obtained through the HPF service represent a machine on which
the ARC object migrates. The remote machine remains anonymous to the originator application
program. After executing a predefined task in its trigger specification the object retracts. In the
meanwhile the originator performs an activity in parallel.

5 Summary

Architecture of a framework for Anonymous Remote Computing for C# over .NET was discussed
with an emphasis on higher layers of the framework. The framework itself is designed using object
oriented methodology. It supports the three features of parallelism, distribution and mobility in-
cluding multiple hopping and connectivity in presence of mobility. The paper also highlighted the
mechanisms for application development and implementation of the higher layer of the ARC .NET
framework. A method of application development was also discussed.

References

[1] Rushikesh K. Joshi Aruna. L, Yamini Sharma. Object-centric Design of an ARC Kernel. In
Proceedings of HPCN, volume LNCS 2110, pages 251–262, 2001.

[2] Grady Booch James Rumbaugh, Ivar Jacobson. The Unified Modeling Language Reference Man-
ual. Addison Wesley, 1999.

8

[3] Dale Rogerson. Inside COM. Microsoft Press, 1997.

[4] D. Janaki Ram Rushikesh K Joshi. Anonymous Remote Computing, A paradigm for Parallel
Programming on interconnected Workstations. IEEE Transactions on Software Engineering,
pages 75–90, Jan/Feb 1999.

9

