
About the CCS Approach
The calculus

Semantics
Readings

Architecture modeling in Calculus of
Communicating Systems (CCS)

Structure and Interactions

Rushikesh K Joshi

Department of Computer Science and Engineering
Indian Institute of Technology Bombay



About the CCS Approach
The calculus

Semantics
Readings

Outline

1 About the CCS Approach

2 The calculus

3 Semantics

4 Readings



About the CCS Approach
The calculus

Semantics
Readings

Outline

1 About the CCS Approach

2 The calculus

3 Semantics

4 Readings



About the CCS Approach
The calculus

Semantics
Readings

Components and Connections between them

Components are seen as Agents in CCS
No separate abstraction is provided for connections
If connections need to have behavior of their own, they are
modeled as agents.
A send of an agent and a corresponding receive act
together as an indivisible (Atomic) action.. there is no delay
or separation between them.



About the CCS Approach
The calculus

Semantics
Readings

Abilities of CCS

Agent are expressed through agent expressions
Agents have input and output ports
Agents perform input and output actions on ports
Agent Expressions can be sequences of these actions
Agent Expressions make use of non-determinism
Agents can be composed together to form bigger systems
and so on
Before composing a system with another, some ports can
be hidden
Before composing a system with another, some ports can
be renamed



About the CCS Approach
The calculus

Semantics
Readings

Outline

1 About the CCS Approach

2 The calculus

3 Semantics

4 Readings



About the CCS Approach
The calculus

Semantics
Readings

Agent expressions: actions, sequences and
connections

Client = req.rep.Client
Server = req.rep.Server
System = Client |Server

A non-terminating system of client and server
rep, req are input actions on input ports
rep, req are output actions on output ports
dot operator called prefix combinator makes a
sequences of actions
| operator called composition combinator makes a
composition of two agents, connecting the corresponding
input and output ports



About the CCS Approach
The calculus

Semantics
Readings

Agent expressions: Non-determinism

Client1 = req1.rep1.Client1
Client2 = req2.rep2.Client2
Server = (req1.rep1 + req2.rep2).Server
System = Client1|Client2|Server

A non-terminating system of 2 clients and a server
The server may pick up any of its inputs
+ is the summation combinator which represents a
non-deterministic choice between two agent
sub-expressions. Once a choice is made, the expression
must be completely executed.



About the CCS Approach
The calculus

Semantics
Readings

Outline

1 About the CCS Approach

2 The calculus

3 Semantics

4 Readings



About the CCS Approach
The calculus

Semantics
Readings

The state machine (transition diagram) of the client

Client = req.rep.Client

req → rep → req → rep → ...



About the CCS Approach
The calculus

Semantics
Readings

The state machine of the server

Server = req.rep.Server

req → rep → req → rep → ...



About the CCS Approach
The calculus

Semantics
Readings

The state machine of the composition

Client = req.rep.Client Server = req.rep.Server
System = Client |Server

Client and Server may proceed independently or
communicate via corresponding actions



About the CCS Approach
The calculus

Semantics
Readings

Transitions including τ actions

A = p.A′ A′ = q.A B = q.B′ B′ = r .B
System = (A|B)

We know that A
p→ A′, B

q→ B′, A′ q→ A, and B′ r→ B,

So A|B p→ A′|B. Similarly, A|B q→ A|B′

Also A′|B q→ A|B. Similarly, A′|B q→ A′|B′

We also have a τ action, due to which, A′|B τ→ A|B′

Similarly, work out other possible transitions?



About the CCS Approach
The calculus

Semantics
Readings

τ actions

τ action represents a handshake
It’s a perfect (completed) action
It is not visible like the other actions that are visible
Visible actions can be used in a subsequent composition
with another agent
τ action is also called unobservable action
Whenever a pair of complementary actions (a,a) is
possible in a composite agent, a τ action is possible



About the CCS Approach
The calculus

Semantics
Readings

The Restriction Operator ’\’

Client = req.rep.Client Server = req.rep.Server
System = (Client |Server)\{req, rep}

Independent actions req, req, rep, rep are restricted
(prohibited), only the τ actions occur inside the
composition.
The restricted ports are also not available for further
composition with other agents
Both input and output ports corresponding to names in
restriction set are restricted



About the CCS Approach
The calculus

Semantics
Readings

Exercise

UI = input .rpc_request .rpc_reply .print_result .0

BL = rpc_request .log_request .rpc_reply .0

System = (UI|BL)\{rpc_request , rpc_reply}

Build the transition diagram (state machine) for agent ’System’?



About the CCS Approach
The calculus

Semantics
Readings

Exercise

Build CCS agent expressions which result in the above State
transition diagram. ?



About the CCS Approach
The calculus

Semantics
Readings

Exercise

Build CCS agent expressions which result in the above State
transition diagram. ?



About the CCS Approach
The calculus

Semantics
Readings

Exercises

Build CCS expressions representing the following architectural
patterns: (1) OR split (2) OR join (2) AND split (3) AND join (4)
MVC (5) 3-tiered architecture (6) Semaphore Synchronization



About the CCS Approach
The calculus

Semantics
Readings

Exercise: Semaphore Synchronization- fill in the
blanks?

Sem = ..............??

Client_1 = p.start_print .end_print .v .Client_1

Client_2 = ............??

System = (Client_1|Client_2|Sem)\{.............??}



About the CCS Approach
The calculus

Semantics
Readings

Value passing CCS

Client1 = req(1).rep1.Client1
Client2 = req(2).rep2.Client2
Server = req(v).if (v = 1) rep1.Server else rep2.Server
System = Client1|Client2|Server

we can eliminate some ports



About the CCS Approach
The calculus

Semantics
Readings

Relabeling of Agents

Client1 = req1.rep1.Client1
Client2 = Client1[req2/req1, rep2/rep1]

Server = req1.rep1.Server + req2.rep2.Server
System = Client1|Client2|Server

we can reuse agent expressions



About the CCS Approach
The calculus

Semantics
Readings

Agent that diverts the odds from the evens

Diverter = req(v).if (v%2)req1.Diverter else req2.Diverter



About the CCS Approach
The calculus

Semantics
Readings

Abstracting the Diverter by removing value passing

Diverter = req(v).Diverter ′

Diverter ′ = req1.Diverter + req2.Diverter

In the architectural abstraction, we bring in all possibilities
and remove computation (as much as possible).
Abstract out conditional interactions as possibilities
through non-determinism



About the CCS Approach
The calculus

Semantics
Readings

Outline

1 About the CCS Approach

2 The calculus

3 Semantics

4 Readings



About the CCS Approach
The calculus

Semantics
Readings

Readings

Robin Milner, Communication and Concurrency, Prentice
Hall, 1989.
David Walker, Introduction to Calculus of Communicating
Systems, Technical Report, University of Edinburgh, 1987.


	About the CCS Approach
	The calculus
	Semantics
	Readings

