Architecture modeling in Calculus of
Communicating Systems (CCS)
Structure and Interactions

Rushikesh K Joshi

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Outline

0 About the CCS Approach
e The calculus

e Semantics

0 Readings

About the CCS Approach

Outline

0 About the CCS Approach

About the CCS Approach

Components and Connections between them

@ Components are seen as Agents in CCS
@ No separate abstraction is provided for connections

@ If connections need to have behavior of their own, they are
modeled as agents.

@ A send of an agent and a corresponding receive act
together as an indivisible (Atomic) action.. there is no delay
or separation between them.

I req rel
I'Ep _.

rep

About the CCS Approach

Abilities of CCS

@ Agent are expressed through agent expressions

@ Agents have input and output ports

@ Agents perform input and output actions on ports

@ Agent Expressions can be sequences of these actions
@ Agent Expressions make use of non-determinism

@ Agents can be composed together to form bigger systems
and so on

@ Before composing a system with another, some ports can
be hidden

@ Before composing a system with another, some ports can
be renamed

The calculus

Outline

e The calculus

The calculus

Agent expressions: actions, sequences and
connections

Client = req.rep.Client

Server = req.rep.Server

System = Client|Server
@ A non-terminating system of client and server
@ rep, req are input actions on input ports
@ Tep, req are output actions on output ports

@ dot operator called prefix combinator makes a
sequences of actions

@ | operator called composition combinator makes a
composition of two agents, connecting the corresponding
input and output ports

The calculus

Agent expressions: Non-determinism

Client; = req;.repy.Client

Client, = req,.repo.Client,

Server = (reqy.repy + reqo.reps).Server
System = Clienty|Client,|Server

@ A non-terminating system of 2 clients and a server

@ The server may pick up any of its inputs

@ +is the summation combinator which represents a
non-deterministic choice between two agent
sub-expressions. Once a choice is made, the expression
must be completely executed.

SEINEnS

Outline

e Semantics

SEINEnS

The state machine (transition diagram) of the client

Client = req.rep.Client

rep

req — rep — req — rep — ...

SEINEnS

The state machine of the server

Server = req.rep.Server

req

rep

req — rep — req — reép — ...

SEINEnS

The state machine of the composition

Client = req.rep.Client Server = req.rep.Server
System = Client|Server

@ Client and Server may proceed independently or
communicate via corresponding actions

Semantics

Transitions including = actions

A=pA A=qA B=q.B B =rB
System = (A|B)

pE qr

o Weknowthat A2 A, B4 B, A% A andB 5 B,
e So AIB2 A|B. Similarly, AB % AlB’

@ Also A'|B KA A|B. Similarly, A'|B RN A|B

@ We also have a action, due to which, A'|B = A|B'
@ Similarly, work out other possible transitions?

Semantics

T actions

@ 7 action represents a handshake
@ It's a perfect (completed) action
@ ltis not visible like the other actions that are visible

@ Visible actions can be used in a subsequent composition
with another agent

@ 7 action is also called unobservable action

@ Whenever a pair of complementary actions (a, a) is
possible in a composite agent, a 7 action is possible

Semantics

The Restriction Operator '\’

Client = req.rep.Client Server = req.rep.Server
System = (Client|Server)\{req, rep}

tau

@ Independent actions req, req, rep, rep are restricted
(prohibited), only the 7 actions occur inside the
composition.

@ The restricted ports are also not available for further
composition with other agents

@ Both input and output ports corresponding to names in
restriction set are restricted

Semantics

Exercise

Ul = input.rpc_request.roc_reply .print_result.0

BL = rpc_request.log_request.rpc_reply.0

System = (UI|BL)\{rpc_request, rpc_reply}

Build the transition diagram (state machine) for agent 'System’?

SEINEnS

Exercise

Build CCS agent expressions which result in the above State
transition diagram. ?

SEINEnS

Exercise

Build CCS agent expressions which result in the above State
transition diagram. ?

Semantics

Exercises

Build CCS expressions representing the following architectural
patterns: (1) OR split (2) OR join (2) AND split (3) AND join (4)
MVC (5) 3-tiered architecture (6) Semaphore Synchronization

Semantics

Exercise: Semaphore Synchronization- fill in the
blanks?

Sem=........ 77

Client_1 = p.start_print.end_print.v.Client_1

Client 2 = 7

System = (Client_1|Client_2|Sem)\{............. 77}

Semantics

Value passing CCS

Client; = req(1).reps.Client;

Client, = req(2).rep,.Client,

Server = req(v).if(v = 1) repy.Server else rep,.Server
System = Clienty|Client,|Server

@ we can eliminate some ports

Semantics

Relabeling of Agents

Client; = req;.repy.Client

Client, = Client;[req./req, reps/rep]

Server = reqy.rep;.Server + req.rep..Server
System = Clienty|Client,|Server

@ we can reuse agent expressions

SEINEnS

Agent that diverts the odds from the evens

Diverter = req(v).if (v%Z2)reqs.Diverter else req,.Diverter

Semantics

Abstracting the Diverter by removing value passing

Diverter = req(v).Diverter’
Diverter’ = reqy.Diverter + reqe.Diverter

@ In the architectural abstraction, we bring in all possibilities
and remove computation (as much as possible).

@ Abstract out conditional interactions as possibilities
through non-determinism

Readings

Outline

e Readings

Readings

Readings

@ Robin Milner, Communication and Concurrency, Prentice
Hall, 1989.

@ David Walker, Introduction to Calculus of Communicating
Systems, Technical Report, University of Edinburgh, 1987.

	About the CCS Approach
	The calculus
	Semantics
	Readings

