
Concept Analysis for Class Cohesion

Padmaja Joshi∗ and Rushikesh K. Joshi
Department of Computer Science and Engineering

Indian Institute of Technology Bombay
Powai, Mumbai-400076, India.

Email: padmaja@cse.iitb.ac.in, rkj@cse.iitb.ac.in

Abstract

A concept lattice based approach for analysis of class
cohesion is presented. The approach facilitates rapid iden-
tification of less cohesive classes. It also helps identify less
cohesive methods, attributes and classes in one go. Fur-
ther, the approach guides refactorings such as extract class,
move method, localize attributes and remove unused at-
tributes. The effectiveness of the technique is demonstrated
through examples.

1 Introduction

Development-time cohesion analysis of individual
classes can give an early indication of design flaws in
classes. The approaches available to cohesion analysis are
primarily metric based and concept lattice based. A num-
ber of object oriented cohesion metrics can be found in the
literature. However, the metric based approach has a few
drawbacks. Most cohesion metrics compute a single value
for the entire class. Though the metrics may detect a less co-
hesive class, they do not help identify individual members
contributing to lack of cohesion.

The proposed work bridges these gaps through a concept
based approach. A developer can obtain an early feedback
on the goodness of a class through visualization of a con-
cept. The concept lattices generated with this approach are
named as Cohesion lattices as they capture cohesiveness of
a class and its members.

The rest of the paper is organized as follows. The next
section discusses related work. Section 3 formulates the co-
hesion concept used in the lattice-based approach. Section
4 demonstrates applicability and validity of this technique
with the help of examples and a case study.

∗Presently with Center for Development of Advanced Computing,
Mumbai, India.

2 Related Work

The notion of microscopic metrics for refactoring was
brought out in our earlier work on coupling [7], in which,
refactorings Move method and Move field were guided by
two new microscopic metrics RMC and RIC. Distance [11]
and Structural cohesion [9] are two examples of micro-
scopic cohesion metrics that guide refactoring. Lucia et al.
also take a metric based approach for guiding Extract class
refactoring. However, metric based analysis may be cum-
bersome and complex as compared to the concept based vi-
sual approach demonstrated in this paper. Concept based
cohesion analysis is aimed at providing cohesion informa-
tion about a class at a single glance.

A few examples of the concept based approach for co-
hesion analysis can be found in the literature. Lindig and
Snelting [8] use methods accessing attributes as a concept
to find modular structures in legacy procedural code. The
technique also identifies horizontally decomposable units in
the code. Siff and Reps [10] use the same concept to iden-
tify modules from the C code. Their approach also consid-
ers attributes that are not accessed by functions to identify
the modules.

The above concept that was used to identify modules in
procedural code has later been used by Dekel [2, 3] to ana-
lyze understandability of classes in object oriented systems.
He uses the concept of attributes defined and accessed by
methods in a class. In this approach, the concept analysis
is used to suggest a method sequence to be followed while
reading a class for better understanding. Similar concept is
also used by Sutton and Maletic [14] to extract UML mod-
els from C++ code.

Our approach uses the same concept as that of Dekel
with the focus now on class cohesion and refactoring. Our
approach helps identify class members contributing to lack
of cohesion. Further, the approach suggests refactorings for
the less cohesive classes and members. The resulting im-
provement in the cohesiveness of such classes is demon-
strated with the help of examples and a case study.

2009 European Conference on Software Maintenance and Reengineering

1534-5351/09 $25.00 © 2009 IEEE

DOI 10.1109/CSMR.2009.54

233

European Conference on Software Maintenance and Reengineering

1534-5351/09 $25.00 © 2009 IEEE

DOI 10.1109/CSMR.2009.54

237

3 The Approach

The terminology followed in this paper is from Ganter et
al. [6]. The context and the concept on which the cohesion
lattices for classes are formulated are outlined below.

Let Dc be the attributes defined in class c, Ic be the inher-
ited attributes that are referred in class c, Mc be the methods
defined in class c, and Ac be the attribute set Dc∪Ic. A rela-
tion Access between sets Ac and Mc is defined as Access =
{< a, m > |a ∈ Ac, m ∈ Mc, m refers to a directly or
indirectly}. The triple (Ac, Mc, Access) is the formal con-
text of the cohesion lattice for class c with attribute set Ac

as the extent set and method set Mc as the intent set. Pair
(Ai ⊆ Ac, Mi ⊆ Mc) is considered as a formal concept of
the context (Ac, Mc, Access) iff Ai

′ = Mi and Mi
′ = Ai,

where, Ai
′ = {m ∈ Mc|(a, m) ∈ Access ∀a ∈ Ac}

and, Mi
′ = {a ∈ Ac|(a, m) ∈ Access ∀m ∈ Mc}. The

cohesion lattices are formulated in terms of these formal
concepts.

Let T be the set of all concepts in concept lattice
L. Concepts Infimum and Supremum are identified
as InfimumL = (

⋂
t∈T At, Mc), and SupremumL =

(Ac,
⋂

t∈T Mt). A concept (Ai, Mi) ∈ L is called as
a filled concept when its extent and intent are non-empty
i.e.(Ai �= ∅) ∧ (Mi �= ∅). For some classes, infimum and
supremum concepts may not form filled concepts. Two con-
cepts are cohesive when there is a path between them that
traverses only through filled concepts.

3.1 Cohesiveness and Cohesion Lattices

Cohesion lattices provide a lot of information not only
about the class cohesion but also about the contribution
of class members to class cohesion. Elements associated
with the same concept show very high cohesion with each
other as all the methods associated with the concept use
all the attributes associated with it. Elements associated
with two concepts are cohesive if the two concepts satisfy
subconcept-superconcept relationship. Width of the lattice
depicts reduction in cohesion as at least two concept are
there which do not share all its properties with the other
concept.

Unconnected nodes in a lattice signify the elements that
are not related with each other. When a class follows such
lattice, the class is uncohesive. The least cohesive attributes
are accumulated at the filled supremum. If only a single
method is associated with this node, then the attributes can
be moved to that method. Pure functions are associated only
with the unfilled infimum (infimum with ∅ objects). These
methods may be extracted as a separate class, as these meth-
ods do not use any of the instance variables and hence are
not very cohesive with the remaining elements. Similar to
pure functions, unused attributes are associated with the un-

(a) Dot (b) Chain (c) Diamond (d) Partitions

(e) Umbrella (f) Inverted Umbrella (g) Mountain Range

Figure 1. Some Cohesion Lattice Structures

filled supremum. These attributes need to be justified else
can be removed.

Commonly observed cohesion lattice structures are iden-
tified in Figure 1. The detailed formal characterization of
these structures is omitted due to lack of space.

A Dot lattice is the one in which the supremum is the
same as that of the infimum. It represents a most cohesive
classes. A Chain lattice is a highly cohesive lattice in which
the concepts form a chain structure. A Diamond lattice
shows some reduction in cohesion as some of the concepts
are spread out widthwise. However, it represents a cohesive
class. An Umbrella lattice has unfilled infimum and filled
supremum. This structure stands cohesive mainly due to
the methods in the supremum. An Inverted Umbrella lattice
has filled infimum and unfilled supremum. It is a cohesive
lattice since all its methods share at least one attribute. A
Mountain Range lattice has both infimum and supremum
unfilled, but all its concepts stay connected. It represents a
less cohesive class that needs inspection. A mountain range
with disconnected components represents a Partitions lat-
tice that attracts Extract class refactoring.

4 Applying the Technique to Refactoring

The concept based technique can be applied to classes
irrespective of their sizes. Though for big classes, the
lattice may become complex, the identification of less
cohesive instance variables and methods can be easily done
as lattice drawing tools such as Concept Explorer [12] can
provide features such as highlighting of connectivity.

Example 1: A Java-based spell-checker for Marathi, an
Indian Language [4] is taken as a case. It consists of 15

234238

Figure 2. Umbrella Lattice for class spc

Java classes including three derived classes and about 135
methods. Cohesion lattice for class spc from this appli-
cation is shown in Figure 2. The lattice shows Umbrella
structure with the constructor in its supremum. The struc-
ture suggests the following refactorings: (A) A bunch of
instance variables in the supremum can be localized to the
sole method spc in the supremum. (B) Method main() at the
infimum does not use any of the instance variables and con-
tains only testing code, which can be extracted as a separate
class. (C) Removal of the constructor at supremum converts
Umbrella into partitions and hence subsequently method
createMenuItem() can be extracted in a separate class. This
extraction improves the re-usability of the method and the
class cohesion.

Example-2: Figure 3 shows a Mountain Range for class
TempoDial from the Java sound demo classes [13]. It can be
seen from the figure that the class is a well designed class.
However, it contains two methods Data and main in the un-
filled infimum. Extraction of this testing code as a separate
class makes TempoDial a good cohesive class.

The above application contains all lattice structures ex-
cept Diamond and Partitions. Eight classes were refactored
based on the technique proposed. Table 1 shows the refac-
torings applied to the application. The refactorings were
further validated with the help of various cohesion and cou-
pling metrics. Improvement was observed with both kinds
of metrics.

Figure 3. Mountain Ranges for class TempoDial

Table 1. Summary of Refactoring Applied
Refactoring Applied No.of Classes
Uncohesive attributes (Delete or localize) 2
Uncohesive Methods (Extract as a class) 5
Extract class due to partition 1
No refactoring needed 7

4.1 Metric Based Validation

The approach was validated with the help of many cou-
pling and cohesion metrics. TCC [1] and SCOM [5] based
validation is reported ahead. TCC [1] captures cohesion in
terms of the ratio of the number TCC [1] captures cohesion
in terms of the ratio of the number of connected method
pairs to the total number of method pairs. Pure function
extraction reduces total number of pairs, improving TCC.
Similarly, when a partition is extracted as a separate class,
a considerable improvement is seen. TCC values for six
classes from the case study are given in Figure 4.

SCOM [5] captures the negative contribution of uncohe-
sive attributes. In SCOM, the relatedness between method
pairs is averaged over the total number of attributes and the
total number of method pairs. The improvements due to
refactorings such as localization of attributes, removal of
unused attributes, extraction of pure functions as a separate
class and extract class get captured through SCOM due to
reduction in the denominator of SCOM ratio. The results
for five classes are shown in Table 2. Improvement in class
cohesion is clearly visible in Figure 4 and Table 2.

Lattice formation needs almost the same information that
a typical metric computation needs. In metric based ap-

235239

Figure 4. TCC based Validation

Table 2. SCOM based Validation
Refactoring Number DictionarY d-node scn naamRootFinder

Before 0.167 0.04 0.4 0.02 0.03
After 1.0 0.07 0.56 0.05 0.043

proach, various metric values for every class member need
to be checked against certain thresholds to identify mem-
bers for refactoring. Whereas, the concept based approach
provides rapid visual identification of uncohesive classes
and members.

5 Conclusions

A concept based technique was introduced for class co-
hesion analysis and refactoring. With this approach, the
cohesiveness of a class can be visualized from the cohe-
sion lattice structure of the class. Seven cohesion lattice
structures of varying degree of cohesiveness are identified.
A cohesion lattice also brings out the contribution of each
member to class cohesion. Identification of least cohesive
attributes and pure functions gets simplified with the con-
cept based approach as the least cohesive attributes are al-
ways present in the supremum, and the pure functions can
be found at the infimum. Such attributes can be localized
or can be deleted and the pure functions can be extracted
as a separate class. Unconnected members also should be
extracted as a separate class. The concept based cohesion
analysis gives a quick visual overview of class cohesion and
helps guiding refactorings such as localization of attributes,
removal of instance variables and class extraction.

References

[1] J. M. Bieman and B.-K. Kang. Cohesion and reuse in an
object-oriented system. In Proceedings of ACM symposium
for software reusability, pages 259–262, 1995.

[2] U. Dekel. Application of concept lattices to code inspec-
tion and review. In The Insreli Workshop on Programming
Languages and developmeny Environment, July 2002.

[3] U. Dekel and Y. Gil. Revealing class structure with concept
lattices. In IEEE Proceedings of 10th Working Conference
on Reverse Engineering (WCRE), November 2003.

[4] V. Dixit, S. Dethe, and R. K. Joshi. Morphology-based
spellchecking for marathi, an indian language. In Pro-
ceedings of Language and Technology Conference, Poznan,
Poland, April 2005.

[5] L. Fernández and R. Pena. A sensitive metric of class cohe-
sion. International Journal Information Theories and Appli-
cations, 13:82–91, 2006.

[6] B. Ganter, G. Stumme, and R. Wille. Formal Concept Anal-
ysis Foundations and Applications. Springer, 1998.

[7] P. Joshi and R. K. Joshi. Microscopic coupling metrics for
refactoring. In IEEE Proceedings of 10th European confer-
ence on software maintenance and reengineering (CSMR),
pages 145–152, Bari, Italy, March 2006.

[8] C. Lindig and G. Snelting. Accessing modular structure of
legacy code based on mathematical concept analysis. In Pro-
ceedings of the 19th International Conference on Software
Engineering (ICSE), pages 349–359, May 1997.

[9] A. D. Lucia, R. Oliveto, and L. Vorraro. Using structural
and semantic metrics to improve class cohesion. In Proceed-
ings of International Conference on Software Maintenance
(ICSM), pages 27–36, 2008.

[10] M. Siff and T. Reps. Identifying modules via concept anal-
ysis. IEEE Transactions on Software Engineering, 25:749–
766, NOv/Dec 1999.

[11] F. Simon, F. Steinbruckner, and C. Lewerentz. Metrics based
refactoring. In International Proceedings of Fifth European
Conference on Software Maintenance and Reengineering
(CSMR), pages 30–38, 2001.

[12] SourceForge. Concept explorer. Website, 1999-2009.
http://sourceforge.net/projects/conexp/.

[13] Sun Microsystems. Java sound api: Java sound demo.
website, 1994-2009. http://java.sun.com/products/java-
media/sound/samples/JavaSoundDemo//.

[14] A. Sutton and J. Maletic. Recovering UML class models
from c++: A detailed explanation. Information and Software
Technology, 49:212–229, March 2007.

236240

