
Implementation of Filter Configurations using
Method Call Pointcuts in AspectJ

Naval Vaidya 1

Computer Science and Engineering Department

Indian Institute of Technology Bombay

Mumbai, India

R.K. Joshi 2

Computer Science and Engineering Department

Indian Institute of Technology Bombay

Mumbai, India

Abstract

Filter configurations are interaction patterns based on transparency primitives. The
paper discusses implementations of filter configurations on top of AspectJ. Imple-
mentations of six patterns namely Replacer, Router, Repeater, Value Transformer,
Message Transformer and Logger are provided. Implementations in terms of method
call pointcuts and advices are provided. The implementations are also compared
with those in Filter Objects.

Key words: Filter configurations, Filter Objects, Replacer,
Router, Repeater, Value Transformer, Message Transformer,
Logger, AspectJ, pointcut, advice, join point.

1 Introduction

Filter configurations are dynamic interaction patterns based on transparency
primitives [3]. Transparency primitives can be applied to capture common
aspects in transparent objects. In [3], six filter configurations with implemen-
tations based on filter objects were discussed. In this paper, the implemen-
tations in AspectJ [6] are provided. The configurations identified in [3] as
replacer, router, repeater, value transformer, message transformer and logger
are discussed.

1 Email: naval@cse.iitb.ac.in
2 Email: rkj@cse.iitb.ac.in

http://www.math.tulane.edu/~entcs


In a related work of Hanneman and Kiczales [1], design pattern implemen-
tations in aspect way may be found. Similar implementation of Decorator
pattern on filter objects was discussed in [2]. The key difference between the
former and the AspectJ implementations is that the filter object based im-
plementations use execution time transparent objects, whereas AspectJ based
implementation rely on weaving at compile time. However, it may be noted
that difference does not manifest at source code level.

Filter configurations capture dynamics on messages as opposed to design
patterns which cover structural configurations among collaborating objects.
The focus of filter configurations is on messages. In below sections, the im-
plementations are discussed with its related issues.

2 Replacer

A replacer may be used to replace a corresponding service partially or fully.
Replacer acting on a message returns results to the caller without the inter-
vention of the callee. In filter objects paradigm, a replacer is implemented
via a filter member function that uses a bounce primitive to return the result
back to the caller. Whereas, in AspectJ, a replacer may be implemented in
terms of a method call join point and around advice.

In an implementation below, the replacer aspect definition for a corre-
sponding application class is shown. The aspect captures the call for foo()
from the client and call a method newfoo() on its own. Pointcut for the
method call is defined. When the application’s member function is dispatched,
the replacer’s member function is executed.

package replacer;

public class Application{

public static void main(String args[]){

Application app = new Application();

String retstr = app.foo();

System.out.println(retstr);

}

public String foo(){

String str = "I am in foo";

return str;

}

}

package replacer;

import org.aspectj.lang.JoinPoint;

import org.aspectj.lang.reflect.CodeSignature;

aspect replacerAspect {

pointcut replace(): call(String foo());



Object around(): replace() {

Object result = newfoo();

return result;

}

private String newfoo(){

String str = "I am in newfoo";

return str;

}

}

3 Router

A router is used to redirect requests to other objects. Transparent routers
may be programmed in filter objects by means of a filter member function that
invokes an outgoing call on the new destination and bounces its return result
to the caller. In AspectJ, a router may be implemented in terms of a method
call join point and an around advice. In an implementation below, a router
aspect definition for a corresponding application class is shown. The aspect
captures the call for destfoo() from the client and calls a method Newdestfoo()
on the NewDest object. Pointcut for the method call is defined. When the
application’s member function is dispatched, the NewDest’s member function
is executed. Router is seen as a replacer that replaces the callee by an alternate
server. The response to the call is sent by the alternate server and not by
the aspect code itself. A replacer is responsible to process the message and
generate a reply on behalf of the caller.

package router;

public class Application{

public static void main(String args[]){

Dest dt = new Dest();

String retstr = dt.destfoo();

System.out.println(retstr);

}

}

package router;

public class Dest {

public String destfoo(){

String str = " I am in destfoo ";

return str;

}

}

package router;



public class NewDest {

public String newDestfoo(){

String str = " I am in NewDestfoo ";

return str;

}

}

package router;

import org.aspectj.lang.JoinPoint;

import org.aspectj.lang.reflect.CodeSignature;

aspect routerAspect {

pointcut route(): call(String destfoo());

Object around(): route() {

NewDest ndt = new NewDest();

Object result = ndt.newDestfoo();

return result;

}

}

4 Repeater

A repeater is used to dispatch the message to multiple destinations in ad-
dition to the original intended callee. Filter object based repeater may be
implemented in terms of explicit outgoing calls to a group of additional sub-
scribers and a pass message event to the original callee. One of the return
results may be returned back to the caller. It is also possible that a return
result is a function of the set of results obtained from the group. In AspectJ,
the repeater may be implemented in terms of a method call join point and an
and either a before advice or an after advice. In an implementation below, the
repeater aspect definition for a corresponding application class with an after
advice is shown. The aspect captures the call for enroll() from the client and
after the call returns, it calls the same method on two additional application
objects.

package repeater;

public class Application{

public static void main(String args[]){

Application app = new Application();

app.enroll();

}



public String enroll(){

String str = " I am in routerApp enroll ";

System.out.println(str);

}

}

package repeater;

public class application1 {

public void enroll(){

String str = " I am in application1 enroll ";

System.out.println(str);

}

}

package repeater;

public class application2 {

public void enroll(){

String str = " I am in application2 enroll ";

System.out.println(str);

}

}

package repeater;

import org.aspectj.lang.JoinPoint;

import org.aspectj.lang.reflect.CodeSignature;

aspect repeaterAspect {

pointcut repeat(): execution(String enroll());

after() returning: repeat() {

application1 app1= new application1();

app1.enroll();

application2 app2= new application2();

app2.enroll();

}

}

5 Value Transformer

A value transformer may be used to change the contents of a message. The
type of the message is not changed. In an object oriented programming lan-
guage, a value transformer changes the parameters to a function call before



the call is dispatched. Typical applications of value transformer are found in
encryption/decryption aspects which do not change the name of the service
requested, but apply encryption/decryption on the content of the message.
In filter object based solutions, value transformers are implemented by means
of filter member functions that change the parameters, which are passed by
reference. The filter member function subsequently passes on the message to
the intended callee. Return values may be transformed similarly.

In AspectJ based implementation, a value transformer may be imple-
mented in terms of a method call join point and an around advice. In an imple-
mentation below, the value transformer aspect definition for a corresponding
application class is shown. The aspect captures the call for process msg()
from the client. After the information about the message is captured, we can
transform the arguments of the message. After the message is transformed, a
proceed() call is invoked to transfer control back to callee. The return result
from proceed() may be transformed in the around advice before control is
passed back to the caller.

package valTrans;

public class Application{

public static void main(String[] args){

application1 app = new application1();

Object result = app.process_msg("encrypted message");

// use result

}

}

package valTrans;

public class application1{

public Object process_msg (String decrypted_msg){

//...

}

}

package valTrans;

import org.aspectj.lang.JoinPoint;

import org.aspectj.lang.reflect.CodeSignature;

aspect valTransAspect {

pointcut valtrans(): within(Application)

&& call(void process_msg(String));

Object around(): valtrans() {

System.out.println(" Decrypting message");



//here get the args from thisJoinPoint and change them.

Object result = proceed();

//code to encrypt message

return result;

}

}

6 Message Transformer

A message transformer may be used to transform the type of the message.
The new message is either passed to the intended destination or sent to a new
destination. In filter object based message transformer, the filter member
function calls the new message onto the intended callee through a pseudo
handle which gives access to intended callee. If the new message is to be sent
to a new destination, it is handled as in the case of router except that the call
is not the same as the call intended by the client.

In AspectJ, a message transformer may be implemented in terms of a
method call join point and around advice to change the destination and the
message. In an implementation below, the message transformer aspect def-
inition for a corresponding application class is shown. The aspect captures
the call for destfoo() from the client and call a method Newdestfoo() on the
NewDest object. When the application’s member function is dispatched, the
new destination’s desired member function is executed. If the new destination
for the changed message is the same as the old destination, around advice may
be used to extract the object’s id, which may be used to call the new message.

package msgTrans;

public class Application{

public static void main(String args[]){

Dest dt = new Dest();

String retstr = dt.destfoo();

System.out.println(retstr);

}

}

package router;

public class NewDest {

public String NewDestfoo(){

String str = " I am in NewDestfoo ";

return str;

}

}

package router;

public class Dest {



public String destfoo(){

String str = " I am in destfoo ";

return str;

}

}

package msgTrans;

import org.aspectj.lang.JoinPoint;

import org.aspectj.lang.reflect.CodeSignature;

aspect msgTransAspect {

pointcut msgtran(): call(String destfoo());

Object around(): msgtran() {

NewDest ndt = new NewDest();

Object result = ndt.NewDestfoo();

return result;

}

}

7 Logger

A Logger may be used to log information related to a message before or after
dispatches to service implementation. A logger may be implemented in terms
of a call to an external logger service in a filter member function before the call
is passed on to the intended destination. After the call returns, the downfilter
may be used to log the return values before it is returned back to the caller.

In AspectJ, a logger may be implemented in terms of a method call join
point and an around advice. However it is possible to use after or before advice
also. Around advice is used for convenience of carrying out logging activity
in both directions in a single advice. In an implementation below, the logger
aspect definition for a corresponding application class is shown. The aspect
captures the call for go() from the client and logs the information about the
call. It then proceeds with the execution of the callee.

package logger;

public class Application {

public static void main(String[] args){

Application d = new Application();

d.go();

}

void go(){

System.out.println("Executing go");

}



}

package logger;

import org.aspectj.lang.JoinPoint;

import org.aspectj.lang.reflect.CodeSignature;

aspect loggerAspect {

pointcut goCut(): execution(void go());

Object around(): goCut() {

System.out.println("Intercepted method: " +

thisJoinPointStaticPart.getSignature().getName());

System.out.println("in class: " +

thisJoinPointStaticPart.getSignature().

getDeclaringType().getName());

System.out.println("Running original method: " );

Object result = proceed();

// logging of return results may be performed here

return result;

}

}

8 Comparing AspectJ with Filter Objects

In this paper we have used method call pointcuts in AspectJ to implement
filter configurations. These filter configurations can also be implemented us-
ing Filter Objects [5]. AspectJ implementation uses join points as a basic
filtering abstraction. Pointcut definition is used to select a particular join
point. Filter Objects are server specific, whereas AspectJ implementation is
method call specific. Since it is method call specific, we can weave the aspect
with any application using those method calls. Whereas, Filter Objects can
only be used with the application for which it was developed. Re-usability is
one of the biggest advantage of AspectJ implementation. Filter objects can
be plugged and unplugged dynamically, whereas aspects need to be weaved
with the application at compile time. Filter Objects provide the capability of
filtering incoming messages and outgoing results using upfilter and downfilter
respectively. But, They are not capable of filtering outgoing messages and
incoming results. In AspectJ, the capability of filtering incoming messages
and outgoing results is provided using before advice and after advice respec-
tively, at method call reception. They also provide the capability of filtering
outgoing messages and incoming results using before advice and after advice
respectively, at method call. In Filter Objects, if we want to use multiple
filters then we need to plug multiple filters, whereas in AspectJ, we can define
multiple advice on the same join point.



9 Related Works

In this section we briefly provide some work done in this area.

• [4] discuss implementation of filter object using AspectJ. It discuss filter
object constructs and gives an implementation of the same using AspectJ.
It provides an example implementation of the repeater filter configuration.
This implementation scheme just models the filter object attachment capa-
bility as aspect.

• [5] discuss an implementation of filter objects in terms of TJF, a filter object
implementation for Java. It provides the design and implementation of a
model for first-class dynamically pluggable filters for the Java programming
language. It provides the implementation of Visitor design pattern.

• [2] discuss the modeling capabilities of a first class filter object model in the
context of distributed systems. It provides the implementation of Decorator
design pattern using filter objects.

• [1] discuss the implementation of design patterns using AspectJ. Also pro-
vides a brief discussion on the desirable properties of their AspectJ imple-
mentation.

10 Conclusion

Implementations of six filter configuration in AspectJ were provided. The
filter configurations may be implemented in terms of method call join points
and around advices. Filter member functions in filter objects are similar
in capabilities to around advice and method call join points, except that the
former relies on a weaving technique with static transformations. Filter objects
being first class objects, they are useful in maintaining the first-class nature
of the aspects at runtime. AspectJ on the other hand modularize concerns.
AspectJ gives the capability of filtering messages and results transparently,
without the knowledge of client or server.

References

[1] Jan Hannemann and Gregor Kiczales. Design Pattern Implementation in Java
and AspectJ. In Proceedings of the 17th ACM conference on Object-oriented

programming, systems, languages, and applications, pages 161–173. ACM Press,
2002.

[2] R.K. Joshi. Modeling with filter objects in distributed systems. In Proceedings

of the 2nd Workshop on Engineering Distributed Objects, pages 182–187. LNCS
1999, 1999.

[3] Rushikesh K. Joshi. Dynamic modeling techniques/patterns using filter objects.
Journal on Object Oriented Programming, 14(2):10–16, 2001.



[4] Rushikesh K. Joshi and Neeraj Agrawal. Aspectj implementation of
dynamically pluggable filter objects in distributed environment.

[5] Rushikesh K. Joshi, Maureen Mascarenhas, and Yogesh Murarka. Filter objects
for java. Softw. Pract. Exper., 33(6):509–522, 2003.

[6] The AspectJ Team. The AspectJ Programming Guide. Xerox Corporation,
2001.


	Introduction
	Replacer
	Router
	Repeater
	Value Transformer
	Message Transformer
	Logger
	Comparing AspectJ with Filter Objects
	Related Works
	Conclusion
	References

