CS 101 Computer Programming and Utilization

Lecture 13

Classes

Mar 1, 2011

Prof. R K Joshi
Computer Science and Engineering
IIT Bombay
Email: rkj@cse.iitb.ac.in

Revision

- keywords, identifiers
- variables
- types
- expressions, statements, main
- assignment, equality, comparison, logical operations
- storage allocation
- arrays, index
- dynamic allocation
- functions
- pointers for arrays

- syntax and grammar
- sequential flow
- branching
- iteration and iterative refinement
- recursion
- input output
- separate compilation
- parameter passing
- errors and debugging
- making flowcharts
- lots of examples and actual programming labs with practice

A case of many functions sharing a variable

- We know that a function can use a global variable
 - e.g. in the case of counting no. of calls to Fibonacci
 - sharing between many invocations of one function
- More, we can extend this ability to sharing among many invocations of many functions

sharing between many functions

Example: A vending machine

- insert a coin
- make a choice
- confirm choice
 - when you confirm your choice, if a coin is in, a drink pops out

Design the vending machine

- Identify the set of variables that will represent the State of the machine
- Identify the set of functions that will represent the functions available to the user
- Let's assume infinite supply of drinks from the machine
- Let's also assume that the machine has capacity to hold infinite coins

The State

coinIn

choice

The functions

Who accesses what?

insertCoin() coinIn make a choice () choice confirm ()

The Accesses

The Accesses

The Accesses

But a component is missing, can you identify it?

When you construct a vending machine, you will need to initialize the state: Constructor

Constructor: coin is not in, choice is not made!

Some important observations

- The state is shared between these four functions listed on the previous slide
- It is not really a global state for everyone outside the vending machine
- no other function in the program that uses a vending machine should be able to access this state!
 - not even main!
- How to achieve this?!

Exclusive sharing

- We have so far used files to hold together functions, main, and global variables if any
- So, the main and every function in this file can access every other function and global variables
- But we want a more finer control on sharing
- We don't want every function or even the main to see some variables that are to be exclusively shared by some collaborating functions

Real life components, equipments are designed with these properties

A Class

- The 'class' construct can be used to define the behavior of objects such as vending machines
- A class puts everything that we worked out together
 - functions (members of the class)
 - state (shared by member functions)
 - accesses by member functions to state
 - constructor for initializing

A Class

 A class can make some member functions available for public use

 A class also has the property that the state can be concealed inside to be accessed only by the functions that belong to the class

Private vs. public

We give names to classes

- In our case, we can create a class called
 - class VendingMachine
- It can include the member functions of the vending machine, and the state as identified
- The member functions will access the state
- There has to be a constructor for initialization
- State is private
- Member functions are public

Class vending machine

class VendingMachine {

Class vending machine

```
class VendingMachine {
  private:
    int coin;
    int choice;
```

Class vending machine

```
class VendingMachine {
private:
   int coin;
   int choice;
public:
  VendingMachine(); // constructor!
  void insertCoin ();
   void makeAChoice(unsigned int choice);
   void confirm();
```

And the definitions of member functions

```
VendingMachine::VendingMachine() {
   coin=0;
   choice=0;
void VendingMachine::insertCoin () {
  coin=1;
```

Classes provide definitions and objects are the actual values

- Instance (i.e. objects) are created from a class
- int i,j,k;
- VendingMachine v1,v2stat,v3;
- How to invoke functions?
 - v1.insertCoin();
 - v1.confirm();
 - v2.confirm();
- Each object keeps a separate copy of its state