puter Programming
Utilization

ecture 15

5| by constant value, aliases,

assi by reference [Pass by constant reference,
Pointers again: dynamic allocation

Pointer dereferencing, obtaining addresses of variables,

arguments to main

Mar 8,9- 2011

Prof. R K Joshi
Computer Science and Engineering

IIT Bombay
Email: rkj@cse.iitb.ac.in

Revision

Pure functions vs. procedures
Classes vs. primitive types
Objects vs. primitive values

Each instance has its own copy
of the state

Messages to objects are
member function invocations

- Parameters go in,
results come out, and
the member functions
can access and
modify the object's
state

Files as secondary storage: data
can stay (persist) even after the
program terminates

Read, write operations

- Sequential operations: the
file position is moved
automatically after each
operation

Sensing end of file
Sensing unavailability of files

Files as stream objects: we can
use operators << and >>

Operations open(), close(), eof(),
Is_open() as member function
iInvocations on file stream objects

onstants

defined as a constant of

igned in the declaration

* A constant value cannot be changed later

Constant Value

eter cannot be made inside

- // changes p

]

void (const int p) {

p=10; // not allowed!

Pass by reference

» Unlike pass by copy in which a copy of the actual
parameter Is sent into a function invocation, here we don't

make a copy of the actual
e All accesses inside the body refer to the actual parameter
location.
- void f (int &p) { return p*p;}
* IS just fine
- void f (int &p) { p=10; }

» changes to p are changes to actual, since p
refers to the actual due to pass by reference.

Pass by constant reference

Pass by reference with a restriction

All accesses inside the body do refer to the actual parameter location
itself.

But the body is prevented from making externally visible changes to
the location of the actual parameter space

- void f (const int &p) { return p*p;}
* IS just fine
- void f (const int &p) { p=10; }

* cannot change p since p refers to the
actual!

» Guess the output?

Allases

» X and y refer to the same location

» changes to x are visible through y

» changes to y are visible through x

- Just as two names paddy and padmanabhan may be used to
refer to the same person, names x and y refer to the same
location in this case

Inters again
ddresses

Inter variable for dynamic allocation,
variables is allocated during execution

= new int [10];

- We can also use a pointer for making one variable point
to different locations at different times

« int *A, "B, *C;
 B=newint [10];
* C =new int [20];

Dereferencing

=P,
— dereferencing operator "' is used for
dereferencing a pointer

- here, p is a pointer
- *p refers to the integer value
- *p can be used as lvalue, and also as rvalue

Obtaining a pointer

* A reference (an address) of a variable can be
obtained

- use referencing operator '&'
- int x; /[an integer
- int *p; // a pointer to an integer

- p=&%; // p points to location of x

* this Is not pass by reference! though the operator
IS the same

* In pass by reference, the &operator occurs in
formal parameter declarations

* In referencing, it is applied on actual variables

Il pointers

LL can be used to indicate that the
oint to any location. This value can
given below.

char *q = NULL;

If (p!=NULL) cout << *p;

r pointers

0 you do\n”;

r pointers

0 you do\n”;

ents to main

r=argv]]) {

IS an integer: no. of parameters
 argv is an array of char” strings

- It has argc no. of elements, i.e.,
e argv|[0] ...to.. argv[argc-1]
e all are char* strings

d values from argv []

verting arguments..

r=argv]]) {

= atof (argv[2]);

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

