CS 101 Computer Programming and Utilization

Lecture 3 Variables, Values, Assignment and Types

Jan 14 Friday 11:05-12:30 PCS D2 Jan 14 Friday 2:00-3:30 FCK D4

Prof. R K Joshi
Computer Science and Engineering
IIT Bombay

Email: rkj@cse.iitb.ac.in

Revision: Elements of a Program

- Main Procedure
- Procedure body
- Return statement
- Exit Status
- Statements
- Sequence of statements
- Keywords
- Identifiers

- Operators
- Syntax
- Meaning
- Grammar
- Libraries
- Input and Output (to be continued..)

Cout and cin

- Predefined identifiers
- Defined in <u>library</u> iostream
 - in <u>namespace</u> std
 - namespaces are used to organize entities
 - Cin and cout are names of input and output stream objects
 - These objects are connected to input and output devices
- Operators << and >> can be used to perform input/output operations these objects.
- Reading from cin: cin >> x;
- Writing to cout: cout << x;

A Variable

- Variables hold objects used in the program
- A <u>value</u> can be <u>assigned</u> to a <u>variable</u>
- The assigned values can be changed through reassignment
- Variables occupy specific memory locatons in the running program
- Assignment to a variable changes the content of its corresponding location

Assigning Values to Variables

An example of Integer Values

```
int i;
i = 212;
```

Let's execute this program step by step..

```
int main () {
int x;
   x = 10;
   cout << x * x;
   x = 20;
   cout << x * x;
  return 0;
```

Memory Location for holding the value of x

```
int main () {
int x;
   x = 10;
   cout << x * x;
   x = 20;
   cout << x * x;
  return 0;
```

An assignment has been made

```
int main () {
                                     10
int x;
   x = 10;
   cout << x * x;
   x = 20;
   cout << x * x;
  return 0;
```

Expression evaluated first and then sent to cout

```
int main () {
                                        10
int x;
   x = 10;
   cout << x * x ;
   x = 20;
   cout << x * x;
                                                          Output
                                                       100
   return 0;
```

Another assignment..the object remains but the previous value wiped out ..

```
int main () {
                                        20
int x;
   x = 10;
   cout << x * x ;
   x = 20;
   cout << x * x ;
                                                           Output
                                                        100
   return 0;
```

The expression evaluated again.. latest value of x is picked up.. The result of the expression sent to cout

```
int main () {
                                       20
int x;
   x = 10;
   cout << x * x ;
   x = 20;
   cout << x * x;
                                                         Output
                                                       100400
   return 0;
```

Main procedure is completed.. memory allocated to this procedure is returned back to operating system... you may still see the output on screen.

```
int main () {
int x;
   x = 10;
   cout << x * x ;
   x = 20:
   cout << x * x ;
                                                           Output
                                                        100400
   return 0;
```

Types

In a program, we need values of various kinds

```
- ..-3, -2, -1, 0, 1, 2, 3, ....
- 'A', 'B', 'C', ..., 'a', 'b', 'c', 'd', ...
  '1'.'2'.'3'....
  '!', '@', '<',
- 12.34, 1.234, 3.142, ...
- "Robin Hood"
- { "Robin Hood", 'M', 15, "Mumbai" }
```

Restricting the set of values assignable to a given variable

- Declaring a Type of every variable
- A value of the declared type can be assigned to the variable
- A value not of the declared type cannot be assigned ----> "Typing Error" (demo)

Use of Types

- Types are a means of organization of data
- Types are used to determine storage requirement for variables
- They are also used in "type checking"
 Check the Type of the value being assigned
- Standardized types enable easy exchange and use of stored information

Variable Declarations

```
int main () {
   int x; <---- A variable of type int
   int x, y, z; <----- Many variables of type int
   int x = 10; <-- An initialized variable of type int
```

The Assignment Statement

int x, y;

y; variables x and y of type int are declared

X = 124;

variable x is on the left hand side

y = 100;

variable y is on the left hand side

y = x;

variable x is on the right hand side

Variable y is on the left hand side

Ivalue and rvalue

- Values that occur on the left hand side and on the right hand side of an assignment
- In expression e1 = e2, e1 is Ivalue and e2 is rvalue
- Is 30 a valid Ivalue?
 - Try it outdemo
- Location vs. value contained in the location

Using expressions in assignment statements

•
$$X = X + 1$$
;

•
$$X = X + Y$$
;

•
$$X = 2 * x;$$

•
$$x = (2^*x) + (2^*x);$$

demo

Sizes of variables

- Binary Numbers
- Bit: 0s and 1s
 - Why do computers need to use binary numbers?
- A Byte: 8 bits
 - How many values?
- A variable with 2 Bytes storage:
 - how many values can it hold?
- For encoding all English characters, how many bits do you need?

How much storage for a variable?

Define a new type called Mountain

Given that it has 8 possible values all in all,

How much memory should a variable of type Mountain occupy?

Some Standard Types and their sizes

- char1 byte
- int4 bytes
- short int 2 bytes
- float 4 bytes
- double 8 bytes
- bool 1 byte

Demo

Standard Types Vs. Use Defined Types

- Commonly used types are predefined in the language
- They are added as keywords in the language
- Int, float, char, ...
- New types can be created by the user
 - composites from existing types
 - e.g. a record of a person's details