
CS 329 Principles of
Programming Languages

Slides-- Part I
CS 329 Lecture Series

Rushikesh K. Joshi

Types, Type Constructors,
Subtyping

Types and Values

Types can be considered as sets

The members of the set that represents a
type represent all possible values of the

type

Value Assignment

T var;
var = v1;
var = v2;

A variable of type T can be assigned a
value that is a member of the set

defining type T

Assignment statement can be used to change the
assignment of a value to a variable of given type; only
that the value should be from the set defining the type.

An example

bool = {true, false}

b1 = true;
b2 = false;

...
b1=b2

The type is bool

b1, b2 are the only possible values of this
type

Cardinality of a type

The count of all possible discrete values

bool = {true, false}
#bool = 2

Week = {Mon,Tue,Wed,Thu,Fri,Sat,Sun}
#Week = 7

Primitive Types

Sets of discrete values

To specify a type, simply enumerate all
its values

e.g. int = {-MAX,..,0...,+Max}

e.g. bool, int, float, char, short int,
unsigned int, enumerated data types

etc.

Language definitions provide some standard primitive types from
which composite types such as structures, functions, lists can be

constructed

Composite Types

These are constructible from other types

e.g. struct xyz {
int i;
char c;

}

A structure or a record is thus a
composite formed by taking a cross
product of multiple types

Composite Types: Product
types

Record R1 {
T1 v1;
T2 v2;

}
R1 = T1 X T2
#R1 = #T1 x #T2

Example: if T1=T2=bool, #R1 = 4.
R1 = { (t,t), (t,f), (f,t), (f,f) }

The cardinality again represents the count of all possible values of
the given type.

Composite Types: Function
types
A function T2 f (T1) is a mapping from set T1 to set T2. i.e. f

computes a value of type T2 given a value of type T1 as
input parameter.

f: T1 --> T2

If T1 is boolean, and T2 is also boolean, we have
f={{(t->t),(f->t) },{(t->t) (f->f)},{(t->f),(f->t)},{(t->f),(f-

>f)}}

how many different function bodies can you write against a
function signature T2 f(T1)?

ans: #f = (#T2) (#T1)

Cardinality and values of a
function type

The elements of the set corresponding to
a function type are all possible

mappings for a given function signature.

A function body is merely one of the many
possible values for the function type.

cardinality of a function type is the number of
discrete function bodies (i.e. mappings) for the

function type.

Thus we can represent a function body as a value of a function
type, or in other words, a program is a value and its

specification, a type.

Composite types: Array types
int A[10]

It can be modeled as a function that maps integers from
range 1..10 to int

so type of array A is T1-->int, where T1={1..10}

default initializer is the default mapping.
Cardinality of an array type represents the number of

possible valuations of the array
e.g. 1111111111 is one of the many possible valuations.

Any other mapping can be used as a value of A, if the
mapping is a valid value of the type that defines A.
A function type represents an array more naturally than a product type

since we have the associated operation of indexing. Record elements are
accessed by their names, whereas array elements are accessed by their

indices.

Type Errors

Consider Type
int A[10]

In 'C', if you access element A[10], it
constitutes an error. Since the type is

undefined on index=10, such an access
is called type error, or type violation.

Depending on the design of the programming language, a type
error may get detected at compile time, or at runtime, or go

undetected by the language's runtime environment, and may
eventually get trapped inside the operating system such as

through a segmentation fault.

More Composite Types

Recursive Types: Lists

Some types are defined recursively in order to express the types in
terms of closed expressions even if there are infinitely many

possible values for them.

For example,
a list L of elements of type T:

L = either NULL or T X L
or in other words,

L = NULL + (T X L), where + defines a
disjoint union

The set defining the list type contains all possible lists of type T, but
we have a closed recursive expression for the list type L.

An example list value

L = abcdec

T = {a,b,c,d,e,f,....}

The above value can be shown to be a valid value of list
type by constructing a terminating recursive expansion
for the value as given below:

L = a X L
 X b X L
 X c X L

 X d X L
 X e X L

X c X L
 X NULL

Disjoint Union Type

Union U {
int i;
char c;

}

U = int + char

i.e.
U = either int or char

A value of type U is either a value of type int or a value of type char.

The union type (either/or) was used in the definition of the list type.

example: A union type defined in C

The Subtype Relation
Subsumption

Firstly, if T1 and T2 are the same types,
there is no problem. For example as in

the below program:: int i; int j; ... i = j;

Further, if T1 and T2 are not the same
types, we may still be able to treat ALL
values of T1 as values of T2 provided

that there is some relation between the
two types. What's that relation?

When can a value of type T1 be
safely treated as a value of type
T2?

Subtype Relation

S <: T

we say that type S is a subtype of type T

For primitive types, a subset can be considered as a subtype.

Exmples:
R1 = {1,2,3,4}
R1 <: Int
R2 = {a,b,c,D,E}
R2 <: Char

What can we do with subtypes?

We can use a value of a subtype wherever a value of the
(super)type is expected. This is stated by the below rule of
subsumption.

Subsumption Rule

t:S, S<:T

t:T

The rule states that:
if value t is of type S and S is given as a

subtype of type T,
then value t is also a value of type T.

Subtype relation for primitive
types

For primitive types, subset is subtype.

e.g. S={1,2,3}, T={1,2,3,4}, S<:T

wherever value of a type is expected, a value from the subtype will
work safely.

i.e. a call to function
f(T val) {.....}

will work correctly with any value of type S sent as a parameter,
since all values of type S happen to be valid values of type T.

However, subtype relation is not symmetric.
For example, the below function will not work correctly for all values

of type T when sent as input parameter to f().

f(S val) { A[3]; return A[val];} For which case does it not work?

Subtype Relation for Product
types: The width rule

R1 = T1 X T2
R2 = T1 X T2 X T3

R2 can be considered as a subtype of R1

why? because a value of type R2 can be easily considered as a
value of R1 by ignoring the T3 component in it.

Example:

R1 = RollNo X Name
R2 = RollNo X Name X Age

Subtype Relation for Product
types: The depth rule

R1 = T1 X T2
R2 = S1 X S2

R2 can be considered as a subtype of R1, when S1 <: T1 and
S2 <: T2

R1 = String X String
R2 = RollNo X Name

Subtype Relation for Product
types: The combined rule

R1 = T1 X T2
R2 = S1 X S2 X S3

R2 can be considered as a subtype of R1, when S1 <: T1 and
S2 <: T2

R1 = String X String
R2 = RollNo X Name X Age

Subtype Relation for Product
types: Record Permutation
Rule

R1 = T1 X T2
R2 = T2 X T1

R2 can be considered as a subtype of R1, and vice versa by
the record permutation rule.

R1 = Name X RollNo
R2 = RollNo X Name

R1 <: R2, and R2<:R1

The rule is at conceptual level, and it's implementation in a programming
language may requires manipulating with the memory layouts for correct
implementation of the rule.

Properties of subtype
relation

Reflexive

 Symmetric

 Anti-symmetric

transitive

Function Subtypes

Function Types

float f (int x) {..} has type
int-->float

int g (int x) { ...} has type
int --> int

When can we say that a function type is a
subtype of another function type?

The Subsumption rule
revisited

v:S, S<:T

 v:T

By the above rule of subsumption associated with
subtype relation <: ,

the values of a subtype can be used safely as values of
the (super)type.

Applying the rule to functions,
if (type of g) <: (type of f), we can use g safely wherever

type of f is expected. Consider the program given
below:

An example
int f (int x) {..}
main () {

int v;
int x;

...
x = f (v);
..

}
In the above program when can we use another function g in place
of int f(int) in a type-safe manner?

Consider g to be one of the following and find out which of these will
be safe replacements for f in the above program?:

int --> int int --> float
float --> int float --> float

An example ..
int f (int x) {..}
main () {

int v;
int x;

...
x = f (v);
..

}

 We can see that if g defines its input parameter to be float or int,
there will be no problem in accepting an input parameter v which is
defined as int in the program.

However, if g returns a float type, it will result in loss of information
when the return value gets assigned to variable x which has type
int.

An example ..
int f (int x) {..}
main () {

int v;
int x;

...
x = f (v);
..

}
Both the below functions will be type-safe substitutions for
int f(int).

int g (int)
int g (float)

you can see that as long as there is no assignment of a value of a supertype to a
variable of subtype, the usage is type safe. This safety condition can be observed in
the case of types of input parameters and return results in the above two functions
when they are used in place of int f(int).

Type-subtype relations
among four functions

int-->float

float-->float float-->int

int-->int

subtype of

The function subtyping rule

input parameters contravariant
output result covariant

T2 f (T1)

S2 g (S1)

Overloading, coercion

Overloading

10 + 2.3
10+ 2

2.3 + 10
2.3 + 2.4

Operator '+' is a function
+: T1 X T2 --> T3

The implementation of operator + is internally provided by the
language environment.

Considering the above four possible usages, what can we say about
the Type of this internal function '+'. In other words, what should

be the signature of this internal function '+'?

What's overloading?

The multiple apparent definitions of a function results in overloading
of the function.

The name of the function is the same, but the same name can work
with multiple signatures. That is to say that the function name is

overloaded.

In the above case, + is overloaded with four possible signatures.
However, the language may resolve overloading by using one of

the plans discussed below.

Resolving overloading, Plan A
The language may use a single function

float + float --> float
and implicitly type-cast integers to floats and back if needed

The process of implicit type casting is called 'coercion'

Note that this function is not really a super-type of all other functions.
Its

working relies on implicit coercion, and on correct use of types in the
program for coercion to work correctly.

int i = 10 + 2 will work correctly as
int i = (int) ((float) 10 + (float) 2) with the typecasts implicitly done.

but int i = 10 + 2.3 will result in loss of accuracy since the lvalue type
has been chosen incorrectly as int.

Thus, overloading of 4 signatures can be completely eliminated with the
help of just one signature and the use of coercion wherever required.

Resolving overloading, Plan B

use two overloaded functions

float + float --> float
int + int --> int

and implicitly type-cast (coerce) integers
to floats and back if needed, if one of the

parameters is an int value

Thus, in this case, overloading of 4 signatures is resolved into
overloading of 2 signatures with the help of coercion

Resolving overloading, Plan C

use four different functions

float + float --> float
int + int --> int

int + float --> float
float + int --> float

and select the one with exact matching
signature.

Thus, in this case, there is no coercion, and full overloading is
carried forward into implementation

Top type, Bottom Type

Top Type

The type of which every other type is a
subtype

example: Object type in Java

A value of any type can be used wherever
a value of the Top type is expected

Bottom Type

A type of which the values can also be
used as values of all other types.

e.g. Type NULLT having a single value
NULL.

Inheritance, Subtyping,
Dynamic Binding in OOPLs

Revisiting the function subtyping rule

g: S1-->S2, T1<:S1, S2 <: T2

g: T1-->T2

or in other words,

g:S1-->S2, (S1-->S2) <: (T1-->T2)

g:T1-->T2

ok, what is the relation of g with 'f' then,
 with signature of f as T2 f(T1)?

Note that f does not appear in the above formula. Why?
The answer is that f is just a value of type T1-->T2,

and g a value of type S1-->S2. By applying the above rule, we can say that
where a value f having type T1-->T2 is expected, value g can be given,

as type of g is a subtype of T1-->T2.

Subtyping induced by Subclassing

A obj;
obj = new A(); // a correct assignment

obj = new B(); // this will be correct if B is a subclass of A

We can use an instance of B where a type A is expected.
variable obj has type A, but the instance of B is being used.

Subclass defines a subtype.

Now we will address the problem of relating member functions in
classes which are related through the subclass relationship.

Should the overriding function defined in subclass be a subtype of
the corresponding function defined in the superclass, or should it
be the other way?

Types in Inheritance

main () {
A obj;
J v;
K x;

read choice from the user;
if (choice==0) obj = new A();

else obj = new B();

x = obj --> f (v);

}

Problem 1

what rules should be applied to
ensure type safety of invocation
obj--> f (v) in the main program?

class A {
public T2 f (T1 x) {....}

}

class B extends A {
public L2 f(L1 x) {....}

}

Problem 2

What rules should be applied to
permit B::f() the status as an
overriden function that overrides
A::f()?

Towards Type Rules for (1) Member Function
Invocation, and for (2) Member Function Definition

Problem 1 in the earlier slide relates to
type safety of a member function

invocation

Whereas Problem 2 relates to typing
restrictions on member function
definitions in order to establish

overriding

But What's the benefit of overriding?

main () {
A obj;
J v;
K x;

read choice from the user;
if (choice==0) obj = new A();

else obj = new B();

x = obj --> f (v);

}

The benefit is
dynamic binding.

In the program on the left, an
invocation to obj->f() gets
bound to either A::f() or to
B::f() depending on the class
that is instantiated against
variable obj. In this program,
this user choice occurs at
runtime, but that is fine for
the invocation. The binding to
the actual member function
to be called also happens at
runtime if overriding is used.

Dynamic Binding of member functions

A member function invocation statement is
checked against the static type signatures, but
the member function implementation that gets

actually invoked is decided at runtime.

The function that is defined in the creation class of
the object that is being used is picked up.

Solving Problem 1: Type checking of the invocation
statement

main () {
A obj;
J v;
K x;

read choice from the user;
if (choice==0) obj = new A();

else obj = new B();

x = obj --> f (v);
}

Problem 1

what rules should be applied to ensure type safety of invocation
obj--> f (v) in the main program?

We can see that f is being invoked through instance variable obj.
Variable obj has static type A. Depending on the choice, obj may contain an instance of
either A or B. However, the call to obj-->f() can be type-checked wrt the static type of obj
variable, which is A.

So we need to only ensure that v: T1 AND x:T2 by asserting J<:T1 AND K<:T2J<:T1 AND K<:T2

And answer to question 2 (next slide) will ensure that this type-checking wrt the static signatures will be enough for
the invocation statement to work correctly for all overloadings of f in all possible subclasses of A.

class A {
public T2 f (T1 x) {....}

}

class B extends A {
public L2 f(L1 x) {....}

}

Solving Problem 2: Ensuring type safety during
dynamic binding, which is a property associated with
overriden functions

main () {
A obj;
J v;
K x;

read choice from the user;
if (choice==0) obj = new A();

else obj = new B();

x = obj --> f (v);
}

Problem 2

What rules should be applied to permit B::f() the status as an overriden function that
overrides A::f()?

As seen from the program on the left, we are looking forward to correct working of
overriden functions where a signature from the superclass is expected. This is
achieved if we simply apply the function subtyping rule making f::B <: f::A, i.e.

T1 <: L1 AND L2 <: T2

class A {
public T2 f (T1 x) {....}

}

class B extends A {
public L2 f(L1 x) {....}

}

Example of correct overriding

main () {
A obj;
int v;
int x;

read choice from the user;
if (choice==0) obj = new A();

else obj = new B();

x = obj --> f (v);
}

v: int, x: int
=> Acceptable for invocation obj->f() =>Acceptable for B::f() to

 be overriding A::f()

The above program is type-safe

class A {
public int f (int x) {....}

}

class B extends A {
public int f(float x) {....}

}

 int A::f (int) <: int B::f(float)

Another Example of correct overriding

main () {
A obj;
nonnegativeint v;
float x;

read choice from the user;
if (choice==0) obj = new A();

else obj = new B();

x = obj --> f (v);
}

v: nonnegativeint, x: float
nonnegativeint <: int
float <: int
=> Acceptable for invocation obj->f()

We have nonnegativeint <: int <: float
so v will work correctly as parameter to B::f
Also, value returned from B::f will get assigned correctly (i.e. safely) to x, a value of
type float.

The above program is type-safe

class A {
public int f (int x) {....}

}

class B extends A {
public int f(float x) {....}

}

So here are the rules

main () {
A obj;
J v;
K x;

read choice from the user;
if (choice==0) obj = new A();

else obj = new B();

x = obj --> f (v);
}

The rule for type safe invocation The rule for type safe overriding
We make sure that J <: T1 AND T2 <: K Here we make sure that T1 <: L1 AND

 L2 <: T2

How do these two rules together make sure that all Js and Ks following the rule for type
safe invocation will work correctly with all possible L1s and L2s following the rule for type
safe overriding?

Fortunately Subtyping is Transitive. So we get J <: T1 <: L1, and L2 <: T2 <: K
This makes it possible for v:J to work safely as parameter into B::f(), and value
returned by B::f() gets assigned safely to variable x:K.

class A {
public T2 f (T1 x) {....}

}

class B extends A {
public L2 f (L1 x) {....}

}

What if the rule of type safe invocation is not followed?

main () {
A obj;
int v;
char x;

read choice from the user;
if (choice==0) obj = new A();

else obj = new B();

x = obj --> f (v);
}

Check the rule for type safe invocation Check the rule for type safe overriding
The rule fails! Here it's fine!

float, the return type of A::f is not a subtype
of char

● The compiler which guarantees static type checking can refuse to compile such a
program, as it cannot guarantee type safety at compile time for all possible object value
assignments to variable obj.

class A {
public float f (int x) {....}

}

class B extends A {
public int f (float x) {....}

}

What if the rule of overriding is not followed?
Carefully observe all the types

main () {
A obj;
int v;
float x;

read choice from the user;
if (choice==0) obj = new A();

else obj = new B();

x = obj --> f (v);
}

Check the rule for type safe invocation Check the rule for type safe overriding
The rule is followed! Here it's not!

In this case, B::f can be permitted to exist as an independent function that has no
subtyping relation with A::f

But since they both happen to use the same name 'f', they form a set of overloaded
functions.

class A {
public float f (int x) {....}

}

class B extends A {
public char f (float x) {....}

}

What if the rule of type safe invocation is not followed,
but there exists an overloaded function somewhere
down the chain?

main () {
A obj;
int v;
char x;

read choice from the user;
if (choice==0) obj = new A();

else obj = new B();

x = obj --> f (v);
}

Check the rule for type safe invocation Check the rule for type safe overriding
 The rule is not followed! Here also the rule is not followed!

 The two functions are considered overloaded

In this case, though there is an overloading available in the subclass B, the type safety of
x=obj-->f() cannot be guaranteed at compile time since the instance can be created
either from A or from B. So a compile time type error can be generated.

class A {
public float f (int x) {....}

}

class B extends A {
public char f (float x) {....}

}

What if the rule of type safe invocation is not followed,
but there exists an overloaded function in the static
type of the variable through which the invocation is
being made?

main () {
A obj;
int v;
char x;

read choice from the user;
if (choice==0) obj = new A();

else obj = new B();

x = obj --> f (v);
}

Check the rule for type safe invocation Check the rule for type safe overriding
 The rule is not followed! Here also the rule is followed for one pairing,

 and there is also one overloaded definition in A

Solve it.

 Do Java, C++ implement really these rules? Find out by writing programs.

class A {
public float f (int x) {....}
public char f (float x) {....}

}

class B extends A {
public float f (int x) {....}

}

Dynamic Binding in presence of multiple
overridings within a single inheritance chain

The search for the implementation starts from the
creation class of the object, and it continues up
the inheritance chain. The first function that is

found to be the subtype of the static type
signature expected is picked up for dispatch. This

binding happens during runtime.

what additional problem can occur with multiple inheritance?

