
Concurrency and
Synchronization

CS 447
Monday 3:30-5:00
Tuesday 2:00-3:30

Prof. R K Joshi
CSE, IIT Bombay

Interleaving in a
multiprogamming environment

� A scenario
� Observe the interleaving of execution

Consider the following
processes

P0: v=read(counter);
v=v+1;
write(counter,v);

P1: v=read(counter);
v=v+1;
write(counter,v);
...

Pn: v=read(counter);
v=v+1;
write(counter,v);

��������	
�
����
����������������

�
�

����������

���
���
�����������
�����������
��������������	�

����������
��	�
	��������������
������
�������

�
��������
�	������

�
���

An execution trace

0--0P0::read0

counterP1::v P0::vStatement
executed

Time slice

111P0::write5

111P0::=4

110P1::write3

010P1::=2

000P1::read1

Observation

Value of counter is incorrect
Concurrent execution through
interleaving

No control over access

Mutual exclusion requirement

Critical Section

� CS = Code that accesses a shared
resource
� This section of code is a critical section
� Critical section needs to be protected

from violation of mutual exclusion
� i.e. CS needs to execute mutually

exclusively over other CSs
� Critical sections operate on one or more

of the same shared resource

A Critical Section Protocol

while (true) {
protocol enter CS

Critical section
code

protocol exit CS
}

while (true) {
protocol enter CS

Critical section
code

protocol exit CS
}

P1P0

What constitutes the enter and
exit protocols?

� Interrupt based CS
� Signaling and messaging
� Shared variables + atomic R/W

operations
� Semaphores
� Monitors
� Spin locks

What properties must your critical
section protocols guarantee

� Correctness of mutual exclusion
� Progressiveness
� Freedom from deadlocks
� Freedom from livelocks
� Freedom from starvation

Shared variables and atomic
R/W based solutions

� Processes use shared variables
� They may use local varibles
� They perform local computations
� They decide locally based on the

shared state (variables) on whether
their entry code is successful

� After the CS, they execute CS exit
code

Taking Turns

while (true) {
while (Turn!=1)

Critical section
code

Turn=1;
}

while (true) {
while (Turn!=0);

Critical section
code

Turn=0;
}

P1P0

Shared variable Turn=0

Taking Turns

while (true) {
while (Turn!=1)

Critical section
code

Turn=1; Turn=0;
}

while (true) {
while (Turn!=0);

Critical section
code

Turn=0; Turn=1;
}

P1P0

Shared variable Turn=0

Observations and Problems
faced

� Mutual exclusion requirement is guaranteed

� The solution violates the progressiveness property

� If a process is not interested in CS, there is no
progress

� Progressiveness – Uninterested processes must
not hold interested process from entering CS

An improvisation

while (true) {
Willing[1]=1;
while (Willing[0]);

Critical section
code

Willing[1]=0;
}

while (true) {
Willing[0]=1;
while (Willing[1]);

Critical section
code

Willing[0]=0;
}

P1P0

Shared Willing[0]=0;
Shared Willing[1]=0;

Observations and Problems
faced

� Correctness of ME guaranteed
� It is progressive
� But possibility of a deadlock

Observations and Problems
faced

� Correctness of ME guaranteed
� It is progressive
� But possibility of a deadlock

Observations and Problems
faced

� Correctness of ME guaranteed
� It is progressive
� But possibility of a deadlock

Observations and Problems
faced

� Correctness of ME guaranteed
� It is progressive
� But possibility of a deadlock

Observations and Problems
faced

� Correctness of ME guaranteed
� It is progressive
� But possibility of a deadlock

Observations and Problems
faced

� Correctness of ME guaranteed
� It is progressive
� But possibility of a deadlock

P0 P1

Observations and Problems
faced

� Correctness of ME guaranteed
� It is progressive
� But possibility of a deadlock

Willing[0]

Willing[1]

P0 P1

An Attempt
(erroneous: firstly, the entry code does not allow entry to CS)

while (true) {
Willing[1]=1;
do if !(willing[0] AND willing[1])

while (Willing[0]);
while (!willing[1);

Critical section
code

Willing[1]=0;
}

while (true) {
do

Willing[0]=1;
if !(willing[0] AND willing[1])

while (Willing[1]);
while (!willing[0]);

Critical section
code

Willing[0]=0;
}

P1P0

Shared Willing[0]=0;
Shared Willing[1]=0;

Towards removing deadlock
possibility

while (true) {
Willing[1]=1;
while (Willing[0])
Do Something!;

Critical section
code

Willing[1]=0;
}

while (true) {
Willing[0]=1;
while (Willing[1])

Do Something!;

Critical section
code

Willing[0]=0;
}

P1P0

Shared Willing[0]=0;
Shared Willing[1]=0;

Improvisation

while (true) {
Willing[1]=1;
while (willing [0]) {

Willing[1]=0;
sleep for some time
Willing [1]=1;

}
Critical section code

Willing[1]=0;
}

while (true) {
Willing[0]=1;
while (willing [1]) {

Willing[0]=0;
sleep for some time
Willing [0]=1;

}
Critical section code

Willing[0]=0;
}

P1P0

Shared Willing[0]=0;
Shared Willing[1]=0;

Observations and problems
faced

� Solves the deadlock problem

� But a livelock may occur

� Processes may get locked forever in a
cycle of release-wait-hold

How to remove the livelock
possibility?

� Why make both processes retract?

� Let only one process retract if it
senses that livelock is possible

Solution that is deadlockfree,
progressive, but livelock-prone

while (true) {
Willing[1]=1;
while (willing [0]) {

Willing[1]=0;
sleep for some time
Willing [1]=0;

}
Critical section code

Willing[1]=0;
}

while (true) {
Willing[0]=1;
while (willing [1]) {

Willing[0]=0;
sleep for some time
Willing [0]=1;

}
Critical section code

Willing[0]=0;
}

P1P0

Shared Willing[0]=0;
Shared Willing[1]=0;

Possibility of Livelock is removed

while (true) {
Willing[1]=1;
while (willing [0]);

Critical section code

Willing[1]=0;
}

while (true) {
Willing[0]=1;
while (willing [1]) {

Willing[0]=0;
sleep for some time
Willing [0]=1;

}
Critical section code

Willing[0]=0;
}

P1P0

Shared Willing[0]=0;
Shared Willing[1]=0;

Possibility of Livelock is removed

while (true) {
Willing[1]=1;
while (willing [0]);

Critical section code

Willing[1]=0;
}

while (true) {
Willing[0]=1;
while (willing [1]) {

Willing[0]=0;
sleep for some time
if (!Willing[1]) Willing [0]=1;

}
Critical section code

Willing[0]=0;
}

P1P0

Shared Willing[0]=0;
Shared Willing[1]=0;

It’s unfair to P0!

� Why should it be P0 to withdraw all
thetime!

And

� P0 may have to withdraw its
willingness forever in a specific
interleaving sequence � Starvation

Dekker’s Algorithm (1965)

� Starvation free
� Livelock free
� Deadlock free
� Progressive

Attempt to remove starvation

while (true) {
Willing[1]=1;
if (turn=1)

while (willing [0]) {
Willing[1]=0;
while (Willing[0]);
Willing[1]=1;

}
Else while (Willing[0]);

Critical section code

Willing[1]=0;
turn=0;
}

while (true) {
Willing[0]=1;
if (turn=0)

while (willing [1]) {
Willing[0]=0;
while (Willing[1]);
Willing[0]=1;

}
Else while (Willing[1]);

Critical section code

Willing[0]=0;
turn=1;
}

P1P0

Shared Willing[0]=0; Shared turn=0;
Shared Willing[1]=0;

Attempt to remove starvation - II

while (true) {
Willing[1]=1;
if (turn=1)

while (willing [0]) {
Willing[1]=0;
while (Willing[0]);
Willing[1]=1;

}
Else while (Willing[0]);

Critical section code

Willing[1]=0;
turn=1;
}

while (true) {
Willing[0]=1;
if (turn=0)

while (willing [1]) {
Willing[0]=0;
while (Willing[1]);
Willing[0]=1;

}
Else while (Willing[1]);

Critical section code

Willing[0]=0;
turn=0;
}

P1P0

Shared Willing[0]=0; Shared turn=0;
Shared Willing[1]=0;

Attempt to remove starvation - III

while (true) {
Willing[1]=1;

while (willing [0])
if (turn=1) {
Willing[1]=0;
while (Willing[0]);
Willing[1]=1;
}
else while (Willing[0]);

Critical section code

Willing[1]=0;
turn=0;
}

while (true) {
Willing[0]=1;

while (willing [1])
if (turn=0) {
Willing[0]=0;
while (Willing[1]);
Willing[0]=1;
}
else while (Willing[1]);
Critical section code

Willing[0]=0;
turn=1;
}

P1P0

Shared Willing[0]=0; Shared turn=0;
Shared Willing[1]=0;

Possibility of Livelock is removed

while (true) {
Willing[1]=1;
while (willing [0]);

Critical section code

Willing[1]=0;
}

while (true) {
Willing[0]=1;
while (willing [1]) {

Willing[0]=0;
while (Willing[1]);
Willing[0]=1;

}
Critical section code

Willing[0]=0;
}

P1P0

Shared Willing[0]=0;
Shared Willing[1]=0;

Dekker’s Algorithm

while (true) {
Willing[1]=1;
while (willing [0]) {

if (arbitrator=0) Willing[1]=1;
while (arbitrator=0);
Willing [1]=1;

}
Critical section code

Willing[1]=0; arbitrator=0;
}

while (true) {
Willing[0]=1;
while (willing [1]) {

if (arbitrator=1) Willing[0]=0;
while (arbitrator=1);
Willing [0]=1;

}
Critical section code

Willing[0]=0; arbitrator=1;
}

P1P0

Shared Willing[0]=0; Shared arbitrator=0;
Shared Willing[1]=0;

Hammer in place of a screw
driver?

� Can we design something simpler?
� After all we need freedom from

� Non-progressive blockages!
� Deadlocks!
� Livelocks!
� Starvation!

Peterson’s Algorithm (around 1986)

while (true) {
Willing[1]=1;
arbitrator=0;
while (willing [0]) AND (arbitrator=0);

Critical section code

Willing[1]=0;
}

while (true) {
Willing[0]=1;
arbitrator=1;
while (willing [1]) && (arbitrator=1);

Critical section code

Willing[0]=0;
}

P1P0

Shared Willing[0]=0; Shared arbitrator=0;
Shared Willing[1]=0;

N process solution

� Lamport’s Bakery Algorithm

� A process picks up a token number

� They all go with their critical sections according
to the order defined by the token numbers

� …..

Towards Lamport’s Bakery
Algorithm

Pickup a sequence number for itself;
Wait for some condition;

CS

Reset to old state

Pi

Shared what’s shared?

Towards Lamport’s Bakery
Algorithm

Myseqno = current + 1
Wait for some condition;

CS

Reset to old state

Pi

Shared current;

Towards Lamport’s Bakery
Algorithm

Willing [i] = 1
while (current!=i);

CS

Willing[i]=0
Current= min (I, willing[i]=1 over i=0..N-1)

Pi

Shared current=0;
Shared willing [0..N-1];

Towards Lamport’s Bakery
Algorithm

seqno [i] = current
Current = current + 1
For j=0; j<I; j++

While (seqno [j] < = seqno [i]) ;
For (j=i+1; j<N; j++)

while (seqno[j] < seqno [i]);
CS

Seqno [i] = MAX

Pi

Shared seqno[0..N-1] = MAX
Shared current = 0

Towards Lamport’s Bakery
Algorithm

Myseqno = max (seqno [0..N-1]) + 1

For (j=0; j<N; j++) while (seqno [j]!=0) AND ((seqno [j] < seqno[i]) OR
((j<i) AND (seqno[i]=seqno[j])) ;

CS

Reset to old state

Pi

Shared seqno [0..N-1] =0
Shared scanning [0..N-1]=0

Lamport’s Bakery Algorithm

choosing[i]=true;
sequenceNo [i] = max (sequenceNo[0]...sequenceNo[N-1])+1;
choosing[i]=false;
For j=0 to n-1

while (choosing[j]);
while (sequenceNo[j] !=0) AND ((sequenceNo [i] > sequenceNo[j]) OR (sequenceNo[i]=sequenceNo[j] AND i>j));

CS
sequenceNo[i]=0;

Pi

Shared sequenceNo[0..N-1]=0;
Shared choosing [0..N-1] =0

What are the drawbacks of the
algorithmic solutions?

� i.e. solutions with shared variables and
atomic read and write?
� Scalability: No of processes is to be known

statically
� Busy wait
� Responsibility of implementation is with user

� Pointers to OS-supported solution?

