Concurrency and
Synchronization

CS 447

Monday 3:30-5:00

Tuesday 2:00-3:30
Prof. R K Joshi
CSE, IIT Bombay

Interleaving in a
[multiprogamming environment

Observe the interleaving of execution

Consider the following

processes

PO: v=read(counter);
V=V+1;
write(counter,v);

P1: v=read(counter);
v=V+1;
write(counter,v);

Pn: v=read(counter);
V=V+1;
write(counter,v);

counter is shared among all processes.

Each process updates a counter
at entry and eventually exits

Counter must indicate how many
Of these processes executed in the
system

[An execution trace

Time slice | Statement |PO::v P1:.v counter
executed

0 P0:iread |0 -- 0

1 P1:iread |0 0 0

2 P = 0 7 0

3 P1::write |0 ?

4 P0::= 1 ?

5 P0::write |1 7

[Observation

Value of counter Is incorrect

Concurrent execution through
interleaving

No control over access

Mutual exclusion requirement

[Critical Section

CS = Code that accesses a shared
resource

o This section of code is a critical section

o Critical section needs to be protected
from violation of mutual exclusion

o I.e. CS needs to execute mutually
exclusively over other CSs

o Critical sections operate on one or more
of the same shared resource

[A Critical Section Protocol

PO P1
while (true) { while (true) {
protocol enter CS protocol enter CS
Critical section Critical section
code code

protocol exit CS protocol exit CS

]]

What constitutes the enter and
[exit protocols?

Interrupt based CS

Signaling and messaging
Shared variables + atomic R/W
operations

Semaphores

Monitors

Spin locks

What properties must your critical
section protocols guarantee

Correctness of mutual exclusion
Progressiveness

-reedom from deadlocks
-reedom from livelocks
-reedom from starvation

Shared variables and atomic
[R/W based solutions

Processes use shared variables
They may use local varibles
They perform local computations

They decide locally based on the
shared state (variables) on whether
their entry code is successful

After the CS, they execute CS exit
code

[Taking Turns

Shared variable Turn=0

PO

P1

while (true) {
while (Turn!=0);

Critical section
code

Turn=0:;
}

while (true) {
while (Turn!=1)

Critical section
code

Turn=1;

[Taking Turns

Shared variable Turn=0

PO

P1

while (true) {

}

while (Turn!=0);

Critical section
code

—Turn=0;- Turn=1;

while (true) {
while (Turn!=1)

Critical section
code

—Turn=1: Turn=0;
}

Observations and Problems
faced

Mutual exclusion requirement is guaranteed
The solution violates the progressiveness property

If a process is not interested in CS, there is no
progress

Progressiveness — Uninterested processes must
not hold interested process from entering CS

[An improvisation
S

ared Willing[0]=0;
Shared Willing[1]=0;

PO

P1

while (true) {
Willing[0]=1;

while (Willing[1]);

Critical section
code

Willing[0]=0;
}

while (true) {
Willing[1]=1;
while (Willing[0]);

Critical section
code

Willing[1]=0;
}

Observations and Problems
[faced

= Correctness of ME guaranteed
= |t is progressive
= But possibility of a deadlock

Observations and Problems
[faced

= Correctness of ME guaranteed
= |t is progressive
= But possibility of a deadlock

]
® o
]

Observations and Problems
[faced

= Correctness of ME guaranteed
= |t is progressive
= But possibility of a deadlock

]
o o

Observations and Problems
[faced

= Correctness of ME guaranteed
= |t is progressive
= But possibility of a deadlock

Observations and Problems
[faced

= Correctness of ME guaranteed
= |t is progressive
= But possibility of a deadlock

Observations and Problems
[faced

= Correctness of ME guaranteed
= |t is progressive
= But possibility of a deadlock

Observations and Problems
[faced

= Correctness of ME guaranteed
= |t is progressive
= But possibility of a deadlock

An Attempt

(erroneous: firstly, the entry code does not allow entry to CS)

Snhared Willing[0]=0;
Shared Willing[1]=0;

PO P
while (true) { while (true) {
do Willing[1]=1;
Willing[0]=1; do if I(willing[0] AND willing[1])
if I(willing[0] AND willing[1]) while (Willing[0]);
while (Willing[1]); while (Iwilling[1);
while (Iwilling[0]);
Critical section Critical section
code code
Willing[0]=0; Willing[1]=0;
} }

Towards removing deadlock
possibility

Snhared Willing[0]=0;
Shared Willing[1]=0;

PO P
while (true) { while (true) {
Willing[0]=1; Willing[1]=1;
while (Willing[1]) while (Willing[0])
Do Something!; Do Something!;
Critical section Critical section
code code
Willing[0]=0; Willing[1]=0;
} }

Improvisation

Snhared Willing[0]=0;
Shared Willing[1]=0;

PO P
while (true) { while (true) {
Willing[0]=1; Willing[1]=1;
while (willing [1]) { while (willing [0]) {
Willing[0]=0; Willing[1]=0;
sleep for some time sleep for some time
Willing [0]=1; Willing [1]=1;
} }
Critical section code Critical section code
Willing[0]=0; Willing[1]=0;
) }

Observations and problems
[faced

Solves the deadlock problem
But a livelock may occur

Processes may get locked forever in a
cycle of release-wait-hold

How to remove the livelock
possibility?

Why make both processes retract?

Let only one process retract if it
senses that livelock is possible

Solution that is deadlockfree,
progressive, but livelock-prone

Shared Willing[0]=0;
Shared Willing[1]=0;

PO P
while (true) { while (true) {
Willing[0]=1; Willing[1]=1;
while (willing [1]) { while (willing [0]) {
Willing[0]=0; Willing[1]=0;
sleep for some time sleep for some time
Willing [0]=1; Willing [1]=0;
} }
Critical section code Critical section code
Willing[0]=0; Willing[1]=0;
) }

Possibility of Livelock is removed

Shared Willing[0]=0;
Shared Willing[1]=0;

PO P1
while (true) { while (true) {

Willing[0]=1; Willing[1]=1;
while (willing [1]) { while (willing [0]);

Willing[0]=0;

sleep for some time

Willing [0]=1;
}

Critical section code

Willing[0]=0;
}

Critical section code

Willing[1]=0;
}

Possibility of Livelock is removed

Shared Willing[0]=0;
Shared Willing[1]=0;

PO P
while (true) { while (true) {
Willing[0]=1; Willing[1]=1;
while (willing [1]) { while (willing [0]);
Willing[0]=0;

sleep for some time

if ('Willing[1]) Willing [0]=1;

}

Critical section code

Willing[0]=0;
}

Critical section code

Willing[1]=0;
}

[It’s unfair to PO!

Why should it be PO to withdraw all
thetime!

And

PO may have to withdraw its
willingness forever in a specific
interleaving sequence - Starvation

[Dekker’s Algorithm (1965)

Starvation free
Livelock free
Deadlock free
Progressive

Attempt to remove starvation

Shared Willing[0]=0; Shared turn=0;

Shared Willing[1]=0;

PO

P1

while (true) {
Willing[0]=1;
if (turn=0)
while (willing [1]) {
Willing[0]=0;
while (Willing[1]);
Willing[0]=1;
}
Else while (Willing[1]);
Critical section code

Willing[0]=0;
turn=1;

}

while (true) {
Willing[1]=1;
if (turn=1)
while (willing [0]) {
Willing[1]=0;
while (Willing[0]);
Willing[1]=1;
}
Else while (Willing[0]);
Critical section code

Willing[1]=0;
turn=0;

}

Attempt to remove starvation - |l

Shared Willing[0]=0; Shared turn=0;

Shared Willing[1]=0;

PO

P1

while (true) {
Willing[0]=1;
if (turn=0)
while (willing [1]) {
Willing[0]=0;
while (Willing[1]);
Willing[0]=1;
}
Else while (Willing[1]);
Critical section code

Willing[0]=0;
turn=0;

}

while (true) {
Willing[1]=1;
if (turn=1)
while (willing [0]) {
Willing[1]=0;
while (Willing[0]);
Willing[1]=1;
}
Else while (Willing[0]);
Critical section code

Willing[1]=0;
turn=1;

}

Attempt to remove starvation - Il

Shared Willing[0]=0; Shared turn=0;

Shared Willing[1]=0;

PO P
while (true) { while (true) {
Willing[0]=1; Willing[1]=1;
while (willing [1]) while (willing [0])
if (turn=0) { if (turn=1) {
Willing[0]=0; Willing[1]=0;
while (Willing[1]); while (Willing[0]);
Willing[0]=1; Willing[1]=1;
} }

else while (Willing[1]);

Critical section code

Willing[0]=0;
turn=1;

}

else while (Willing[0]);
Critical section code

Willing[1]=0;
turn=0;

}

Possibility of Livelock is removed

Shared Willing[0]=0;
Shared Willing[1]=0;

PO P
while (true) { while (true) {

Willing[0]=1; Willing[1]=1;
while (willing [1]) { while (willing [0]);

Willing[0]=0;

while (Willing[1]);

Willing[0]=1;
}

Critical section code

Willing[0]=0;
}

Critical section code

Willing[1]=0;
}

Dekker's Algorithm

Snhared Willing[0]=0; Shared arbitrator=0;
Shared Willing[1]=0;

PO P
while (true) { while (true) {
Willing[0]=1; Willing[1]=1;
while (willing [1]) { while (willing [0]) {
iIf (arbitrator=1) Willing[0]=0; If (arbitrator=0) Willing[1]=1;
while (arbitrator=1); while (arbitrator=0);
Willing [0]=1; Willing [1]=1;
} }
Critical section code Critical section code
Willing[0]=0; arbitrator=1; Willing[1]=0; arbitrator=0;
})

Hammer in place of a screw
driver?

Can we design something simpler?

After all we need freedom from
o Non-progressive blockages!

o Deadlocks!

o Livelocks!

o Starvation!

Peterson’s Algorithm (around 1986)

Snhared Willing[0]=0; Shared arbitrator=0;

Shared Willing[1]=0;

PO

P

while (true) {
Willing[0]=1;
arbitrator=1;
while (willing [1]) && (arbitrator=1);

Critical section code

Willing[0]=0;
}

while (true) {
Willing[1]=1;
arbitrator=0;
while (willing [0]) AND (arbitrator=0);

Critical section code

Willing[1]=0;
}

[N process solution

Lamport’'s Bakery Algorithm
o A process picks up a token number

o They all go with their critical sections according
to the order defined by the token numbers

Towards Lamport's Bakery
[Algorithm

Shared what’s shared?

Pi

Pickup a sequence number for itself;
Wait for some condition;

CS

Reset to old state

Towards Lamport's Bakery
[Algorithm

Shared current;

Pi

Myseqgno = current + 1
Wait for some condition;

CS

Reset to old state Hm@@m@@ﬁg

Algorithm

Shared current=0;
Shared willing [0..N-1];

[Towards Lamport’s Bakery]

Pi

Willing [i] = 1
while (current!=i);

CS

» 1K
Willingfi]=0 W
Current= min (I, willing[i]=1 over i=0..N-1)

Towards Lamport's Bakery

[Algorithm

Shared seqno[0..N-1] = MAX
Shared current = 0

Pi

seqgno [i] = current
Current = current + 1
For |=0; j<I; j++

While (seqgno [j] < = segno [i]) ;

For (j=i+1; j<N; j++)
while (seqgnolj] < seqno [i]);
CS

Seqgno [i] = MAX

Incorrect!

Algorithm

Shared segno [0..N-1] =0
Shared scanning [0..N-1]=0

[Towards Lamport’'s Bakery

Pi

Myseqgno = max (segno [0..N-1]) + 1

For (j=0; j<N; j++) while (segno [j]!=0) AND ((segno [j] < segnoli]) OR
((J<i) AND (seqnoli]=seqnolj])) ;

CS

Reset to old state

Lamport’'s Bakery Algorithm

Shared sequenceNo[0..N-1]=0;
Shared choosing [0..N-1] =0

Pi

choosingli]=true;
sequenceNo [i] = max (sequenceNo[0]...sequenceNo[N-1])+1;
choosingli]=false;
For j=0 to n-1

while (choosing[j]);

while (sequenceNo[j] !=0) AND ((sequenceNo [i] > sequenceNo[j]) OR (sequenceNo[i]=sequenceNo[j] AND i>j));
CS
sequenceNoJi]=0;

What are the drawbacks of the
[algorithmic solutions?

l.e. solutions with shared variables and
atomic read and write?

Scalability: No of processes is to be known
statically

Busy walit
Responsibility of implementation is with user

Pointers to OS-supported solution?

