
Critical Regions

CS 447
Monday 3:30-5:00
Tuesday 2:00-3:30



What are the drawbacks of the 
algorithmic solutions? 

� i.e. solutions with shared variables and 
atomic read and write?
� Scalability: No of processes is to be known 

statically
� Busy wait
� Responsibility of implementation is with user

� Pointers to OS-supported solution?



Care to be taken with 
Semaphores (drawbacks)

� User programs must still use P and V 
correctly

� A for
� gotten P, or a misplaced V
� Possibility of deadlocks-

P(S1) P(S2)
P(S2) P(S1)



Better Higher level 
synchronization primitives?

� Critical Regions
� Conditional Critical Regions 
� Monitors

� These were supported in concurrent 
programming languages

� Today’s semaphore system calls allow monitor 
type synchronization as well



Critical Regions

Shared variable v

region v do …. done region v do …. done



Producer-consumer code with 
CRs

� Producer:
� While (true) region buff if (!full) produce 

done

� Consumer
� While (true) region buff if (!empty) 

consume done



Conditional Critical Regions

Region v when C
Do……done

Region v when C
Do……done

Try the Producers and Consumers problem 
With conditional critical regions



Producer-consumer code with 
CCRs

� Producer:
� While (true) region buff when (!full) do 

produce done

� Consumer
� While (true) region buff when (!empty) do 

consume done



Readings

� Hoare: Towards a theory of parallel 
programming, 1971

� Hansen: Structured multiprogramming, 
1993


