
Deadlocks

CS 447
Monday 3:30-5:00
Tuesday 2:00-3:30

A deadlock situation

Only one vehicle can use the narrow road!

Approaches to handling
deadlocks

� Prevention better than cure
� Cure is possible after detection
� Avoid just when you think there is a

possibility
� Ignore!

Process wait for graphs

Resource request-allocation
graphs

Necessary conditions for
deadlocks to occur

� Hold and wait
� Cyclic wait
� No preemption
� Mutual exclusion

Deadlock prevention

� Count on necessary conditions!

� A � B

Prevent cyclic wait

� Impose a total order on resources
� Do not allow waiting on a low ranked

resource than the one already held

� E.g. Ricart and Agrawala distributed
mutual exclusion

Prevent mutual exclusion

� Allow unrestricted access
� E.g. basic file system support

� File system semantics in presence of
concurrency:
� Unix semantics: the latest is reflected

� No deadlocks on basic file system calls:
� E.g. as in

Fopen (f1) fopen (f2)
fopen (f2) fopen (f1)

Prevent no-preemption

� On-demand preemption
� Upon request, preempt a resource

� Periodic preemption
� Strict round robin CPU allocator

� Risk of leaving preempted resource in
an inconsistent state must be handled

Prevent Hold and Wait

� Example:
� Customer: delivery first, payment later
� Dealer: pay first, deliver later

� To break the deadlock::
� Do not hold payment while asking for

delivery
� Or

� Do not hold delivery while asking for
payment

Deadlocks with multiple
instance resources

� Example

� Consider each instance separately:

� You will get an OR edge

� All OR edges in a deadlock cycles

Multiple blocked requests

� AND edges

Process in a deadlocked set

� = Processes in a deadlock + all
processes dependent on processes in
a deadlock set

� example

Deadlock Detection

� Data structures:
� M: no. of processes
� N: no. of resources
� bool Req[M][N] (which resources are

requested?)

� int Allocated[M][N] (how many instances are allocated?)

� Boolean Completed [M] (temporary)

� int Free[N] (temporary)

Deadlock Detection: Step 1

� Find in Req[][], all such processes that
have not requested a resource

� If found, mark them completed in
Completed[]

� Find all resources allocated to them
from Allocated[]

� Mark these resources as free in Free[]

Deadlock Detection: Step 2

� Find in Req[][], a a process for which all
requested resources are marked free in
Free[]

� If found, mark the process as completed in
Completed[]

� Find all resources allocated to the process
from Allocated[]

� Mark these resources as free in Free[]
� Repeat step 2 till no such process is found

Deadlock Detection: Step 3

� If array Completed[] indicates true for
all processes, there is no deadlock

� Else the processes which are not
marked as completed in Completed[]
are part of the deadlock set.

� Example Trace

When to invoke deadlock
detection?

� Major deadlock:
� No of processes is high
� But CPU utilization is low

Deadlock Avoidance: Banker’s
algorithm

� Data structures:
� M: no of processes
� N: no of resources
� Int Need [M] [N] (indicates maximum need in future)

� Boolean Allocated [M] [N] (how many instances allocated?)

� Int Available [N] (how many instances are available)

Upon a request Ri[N] by a process Pi::
Banker’s algorithm: step 1

� If Ri[0..N-1] <= Need[i][0.N-1]
� continue with step 2

� Else invalid request error

Upon a request Ri[N] by a process Pi::
Banker’s algorithm: step 2

� Check from Available [0..N-1] whether
the number of requested resources are
available

� If not, the request cannot be
considered at this time, return

� Else continue with step 3

Upon a request Ri[N] by a process Pi::
Banker’s algorithm: step 3

� Find out if a worst requesting situation that
may follow can be taken care of

(i.e. all process asking for their maximum needs – after current
Request from Pi is satisfied)

� i.e in such a case, can you find a safe
sequence of allocations such that deadlock
will not occur?

� If such a safe sequence exists, go ahead
with the request
� Else reject the request

Example

3 1 1

1 2 0

2 2 1

0 1 1

2 1 2

Allocated

0 1 44

1 1 13

4 0 12

7 3 31

0 0 10

NeedProcesses

Available: 2 2 4

Apply banker’s algo for the
above example

� Is it safe to allow
� Request2 [2 0 1]? request from P2
� Request1 [2 2 1]? request from P1
� Request4 [0 1 4]? request from P4

