
File Systems

CS 447
Monday 3:30-5:00
Tuesday 2:00-3:30

- Prof. RK Joshi, CSE, IIT
Bombay

What is a file?

• Abstraction:
– An ordered collection of data
– May be realized by a physical mapping to disk blocks

• Attributes
– (other than data itself) Name, type, location, size,

protection, time identification, ownerships
• Operations

– Create, write, read, reposition (seek), delete, truncate

Open-close (Session) Model

• Obtains an iterator (file pointer) on a file

• Identifies an active session with a file
– Used for reference counting

File Access Methods

• Sequential Access
– Read only in sequential order
– Early OSs
– May be acceptable for slow devices – backup tapes

• Random (Direct) Access
– Without having to go through all previous

records/data, access a specific location directly
• Indexed (key-based) access: can be built over

direct access

Allocation of Disk Blocks to
Files

• Contiguous Allocation
• Linked Allocation
• Indexed Allocation

Contiguous Allocation

• Access faster
• Simple to implement
• Max file size needs to be known
• Fragmentation possible

– Compaction from time to time

• Best fit/worst fit/first fit
• Good for one time write media

Contiguous Allocation

File Start Size

A
B

9
70

25
12

Linked Allocation

• Each block knows the next

• No fragmentation

• But performance may be a problem

Linked Allocation

File Start End

A
B

9
10

25
12

16 17 X

Microsoft FAT

• Linked block list is kept in the FAT rather
than keeping the indices in actual blocks

• Once you read FAT in main memory, you
have all the allocation information
available – needed for fast access

FAT

Filename Start Block Other MD

afile 10 …

Directory Linkage Table
O
.
.
.

10
11
12
.
.

25
.

30
.
.
.

10000

.

.

.

.
12
25
11
.
.

30
.

-1
.
.
.

Indexed Allocation

• In linked allocation, direct accesses are
not supported (if FAT is not used)

• In FAT, if one block gets corrupted, the
subsequent blocks become unreachable

• � Index block can be used to solve these
problems

Index Block

• For a given file, store all its block numbers
in order

• Each file has an index block available

• Unix uses this scheme
– Inode

Index block

Filename Index Block Other MD

afile 200 …

Directory

Index block of afile
.10
12
11
25
30

What if index block is not
sufficient?

• Link index blocks as in linked allocation

• Have multilevel links

The Unix solution for large sized
files

• A few entries in the index block
• The remaining entries in indirect index

blocks

The Unix Inode

Mode
Owner
Time
Size
Count
DIB: K Direct entries
Single indirect block pointer
Double indirect block pointer
Tripple indirect block pointer

Index blocks

T
o

12
 d

at
a

bl
oc

ks

T
o

da
ta

 b
lo

ck
s

System V file system S5FS

• Disk map

Boot area Superblock
(metadata) Inode blocks Data blocks

System V file system S5FS

• An entry in directory

2 bytes
Inode number

14 bytes
Name of a file

System V file system S5FS

• Superblock
– Size of the FS in blocks
– Size of the inode list in blocks
– No of free blocks
– No of free inodes
– Free block list – has to be complete
– Free inode list – can be partially complete

S5FS

• Free data block list

0

a

b

c

Block a

superblock

Block b

Block c

S5FS (System V file system)
Inode

• Inode size = 64 Bytes
• Mode: 2
• Hardlinks: 2
• Uid: 2
• Gid: 2
• Size: 4
• Address block: 3*13 entries: 39
• Genno: incremented each time the inode is used for a

new file: 1
• Atime: last access time: 4
• Mtime: last modification time: 4
• Ctime: last change time: 4

Address block on s5fs

• 13*3 bytes
• 10 direct blocks
• 1 single indirect block
• 1 double indirect block
• 1 tripple indirect block

• Block size 1KB, 4 bytes per entry

2 bytes of Mode

• Type: if regular file/directory/block
device/character device: 4

• suid, sgid: 2
• Perms: owner, group, other: 3*3 (rwx): 9
• Sticky bit: 1

– directories can have sticky bit turned on so
that

• files created by other users cannot be deleted from
the directory;

• but any one with write permissions can write

Pathname translation

0

1

2

…

…

…

Inode list
Start from / i.e. node no. 2 (root directory)

If directory: search directory entries and
locate next inode

If file: return inode

Pathname translation: example

• /home/fac/rkj/.bashrc

• Lookup (path p)

currentinode = inode (car (p););

case (currentinode.type == FILE) and (cdr (p)!=NULL): error, exit

case (currentinode.type == FILE) and (cdr (p)==NULL): return
currentinode;

case (currentinode.type == DIR) and (cdr (p)!=NULL): return lookup (CDR
(p));

case (currentinode.type == DIR) and (cdr (p)==NULL): return
currentinode;

Pathname translation: example

• /home/fac/rkj/.bashrc

• Lookup (path p, inode ref)

currentinode =getinode (car (p); ref);

case (currentinode.type == FILE) and (cdr (p)!=NULL): error, exit

case (currentinode.type == FILE) and (cdr (p)==NULL): return
currentinode;

case (currentinode.type == DIR) and (cdr (p)!=NULL): return lookup (CDR
(p), currentinode);

case (currentinode.type == DIR) and (cdr (p)==NULL): return
currentinode;

/home/rkj/.bashrc /:2, home:10,
rkj:15, .bashrc:20

• / � inode 2
• Lookup (home/.., 2)
• Getinode (home, 2) � 10
• Lookup (rkj/.bashrc, 10)
• Getinode (rkj, 10) � 15
• Lookup (.bashrc, 15)
• Getinode (.bashrc, 15) -> 20
• Return 20

