
The process state machine

CS 447
Monday 3:30-5:00
Tuesday 2:00-3:30



Process States

� Process undergoes state changes

� Responds to requests based on its 
current state

� What states need to be considered?



Inputs to decide the state 
space

� Is the process in run queue? 
� Queue no.?
� Wait queue?
� On which device? For how much time?
� Is it actually ‘running’? – current time 

slice belongs to the process?
� Is the process exited?



3-state machine

running

blocked

ready

create

exit

scheduled

Time sliced

Blocking call

Device ready/wait ends



Trace: p1 kills p2 (bash kills 
1234)

� P1: running
� P2: ready
� P1 executes kill p2 – signal delivered 

in the mailbox of p2
� P1 continues till its time slice
� ….
� Eventually p2 is scheduled – it handles 

the signal or gets terminated



A Unix-like state machine: 
worked out in class 

Kernel running

Blocked in main mem

Ready in main mem

create

any system call like exit
scheduled

Time sliced

Device ready/wait ends

User running

terminated

On exit (after cleanup)

Time sliced

Ret
, sched

uledsyscall

Blocked and swapped ready and swapped

Swapped in
Swapped out

Swapped inSwapped out



Kernel Functionality

System call API

Exceptions generated by processes

Hardware interrupts by devices

System Processes such as page daemon, 
swapper



Bootstrapping

� Initialize memory
� Set up environment for processes
� Create few initial processes which 

further create other processes



System Call

� A wrapper routine
� Push syscall number on user stack
� Invoke a trap instruction
� Syscall() – trap handler in kernel mode



Context and Mode

v() on a 
semaphore –
increment s

Not possible

Return syscall
value

Pick syscall args

i=i+1

Syscall wrapper –
i.e. invoke a system 
call

Process
context

kernel
context

User 
mode

Kernel 
mode



Process Address space 
components

� User Address Space 
� Text – executable code
� Initialized data – objects initialized in program
� non-initialized data (OS generates 0 filled 

pages)
� Shared memory
� Shared libraries
� Heap – dynamically allocated memory
� User stack – kernel allocates a stack for all 

processes



Process Address space 
components

� Control information – data structures of 
interest to kernel (proc structure)

� Credentials – uid, gid, ..
� File descriptor table for open files
� Environment variables
� Hardware context – registers, memory 

management registers



Process Table

� Process control block for each process
� A limited number of processes
� Index in PT is pid
� Various queues are superimposed on 

process table


