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Process States

� Process undergoes state changes

� Responds to requests based on its 
current state

� What states need to be considered?



Inputs to decide the state 
space

� Is the process in run queue? 
� Queue no.?
� Wait queue?
� On which device? For how much time?
� Is it actually ‘running’? – current time 

slice belongs to the process?
� Is the process exited?
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Trace: p1 kills p2 (bash kills 
1234)

� P1: running
� P2: ready
� P1 executes kill p2 – signal delivered 

in the mailbox of p2
� P1 continues till its time slice
� ….
� Eventually p2 is scheduled – it handles 

the signal or gets terminated



A Unix-like state machine: 
worked out in class 
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Kernel Functionality

System call API

Exceptions generated by processes

Hardware interrupts by devices

System Processes such as page daemon, 
swapper



Bootstrapping

� Initialize memory
� Set up environment for processes
� Create few initial processes which 

further create other processes



System Call

� A wrapper routine
� Push syscall number on user stack
� Invoke a trap instruction
� Syscall() – trap handler in kernel mode



Context and Mode
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Process Address space 
components

� User Address Space 
� Text – executable code
� Initialized data – objects initialized in program
� non-initialized data (OS generates 0 filled 

pages)
� Shared memory
� Shared libraries
� Heap – dynamically allocated memory
� User stack – kernel allocates a stack for all 

processes



Process Address space 
components

� Control information – data structures of 
interest to kernel (proc structure)

� Credentials – uid, gid, ..
� File descriptor table for open files
� Environment variables
� Hardware context – registers, memory 

management registers



Process Table

� Process control block for each process
� A limited number of processes
� Index in PT is pid
� Various queues are superimposed on 

process table


