
CPU Scheduling

CS 447
Monday 3:30-5:00
Tuesday 2:00-3:30

Requirements of CPU
Scheduling

� CPU and IO cycles
� Short vs. long tasks
� Real Time vs. non-real time tasks
� Preemption vs. no preemption
� Priorities of tasks
� Utilization of idle cycles

Performance measures

� Per process:
� Waiting time
� Turnaround time
� Penalty ratio (1/Response ratio)

� System measures
� Throughput
� Average waiting time
� Average Turnaround time
� Average penalty ratio (Response ratio)

Required time

Performance measures

� Per process:
� Required time 20 seconds
� Waiting time 20 seconds
� Turnaround time 40 seconds
� Penalty ratio (1/Response ratio) 40/20 = 2

� System measures
� Throughput k processes per min.
� Average waiting time
� Average Turnaround time
� Average penalty ratio (Response ratio)

Scheduling Policies

� Non-preemptive policies

� Once a process is scheduled, it remains
scheduled till completion

� Preemptive policies
� A scheduled process may be preempted

and another may be scheduled

When is a scheduler invoked?

� Creation
� Completion
� Voluntary withdrawal
� Wait for a slower device
� Device Ready
� Policy dependent events

First come first served (FCFS)

5P4

10P3

5P2

25P1

CPU
requirement

Pid
Schedule based on arrival time
Process executes till completion

FCFS Performance

945405p4

40

30

25

Turnaround
time

23.75

30

25

0

Waiting
time

10

5

25

Reqd.
time

5

4

6

1

Penalty
Ratio =
1/Respons
e ratio

averages

P3

P2

P1

Pid

Throughput = 4/45 processes per unit time

FCFS on interactive processes

� When a process waits or blocks, it is
removed from the queue and it queues
up again in FCFS queue when it gets
ready

� Ordering in queue may be different in
second serve

Suitability and Drawbacks

� Simple to implement
� Starvation free
� Examples: printer queues, mail queues

� Response time
� Suffers from Convoy Effect

Shortest Job First (SJF)

5P4

10P3

5P2

25P1

CPU
requirement

Pid
Schedule based on job size

Process executes till completion

SJF Performance

21055p4

20

5

45

Turnaround
time

8.75

10

0

20

Waiting
time

10

5

25

Reqd.
time

1.7

2

1

1.8

Penalty
ratio

averages

P3

P2

P1

Pid

Throughput = 4/45

Suitability and Drawbacks

� Optimal for average waiting time
� Favors shorter jobs against long jobs
� If newly arrived process are

considered at every schedule point,
starvation may occur

� May not be possible to know the exact
size of a job before execution

Round Robin (RR)

5P4

10P3

5P2

25P1

CPU
requirement

Pid
Schedule based on time slicing

RR Performance

420155p4

30

10

45

Turnaround
time

15

20

5

20

Waiting
time

10

5

25

Reqd.
time

2.7

3

2

1.8

penalty
ratio

averages

P3

P2

P1

Pid

Throughput =

Suitability and Drawbacks

� Somewhere between FCFS and SJF
� Guarantees response time
� But it involves context switching

� Attempt must be made to minimize
context switch time

� Process needing immediate responses
have to wait for T*n-1 time units in
worst case (calculate for 100
processes, 10 ms)

Preemptive Shortest Job First
(SJF)

16

8

4

0

Arrival
Time

4P4

12P3

4P2

10P1

CPU
requirement

Pid
Schedule based on job size

considering arrivals at arbitrary
points

Preemptive SJF Performance

p4

Turnaround
time

Waiting
time

Reqd.
time

Response
ratio

averages

P3

P2

P1

Pid

Throughput =

Suitability and Drawbacks

� SJF extended strictly considering
arrivals at any point of time

� Optimal average waiting time in
presence of dynamically arriving jobs

� The policy suffers from Starvation
� May not be possible to know the job

size in advance � use prediction

Priority scheduling

4

12

4

10

CPU
requirement

12

14

12

10

Priority

12

8

4

0

Arrival
Time

P4

P3

P2

P1

Pid

Schedule based on
priority

Suitability and Drawbacks

� One can combine several parameters in one
priority value

� Computing priority is a challenging task :
fairness must be guaranteed to various
kinds of processes

� Tunable priorities: also from user space
� Deadlocks may occur in certain situations
� Priority Inversion problem!

Construct a deadlock case?

� P1 (pri=10) arrives
� P1 executes
� P2 (pri=12) arrives
� P1 is stopped and P2 executes
� Busy wait for P1

Priority Inversion

1. Local
computation

2. Wait till R is
locked

3. Operations on R
4. Release R
5. Local

computation

1. Local
computation

2. Wait till R is
locked

3. Operations on R
4. Release R
5. Local

computation

P2 (pri=12)P1 (pri=10)

Consider following case:

� P3 arrives with priority=11
� P3 does not need resource R

Point out Case of priority
inversion in above example?

Solution?

Solution: Priority inheritance

� Raise the priority of P1 to that of P2 till
it finishes with the resource needed by
P2

Predictive SJF

� Traditional UNIX scheduler uses:
� Priority = seed priority + (Estimate/4) + 2*nice

priority

� Lower the value, higher the priority
� Seed priority: fixed at say 50
� Every 10 ms: estimate of running process is

incremented by 1
� Estimate is reduced by a decay factor after

every second (df of say 0.5)

For a process P1:

96.87
5

93.7587.575500Estimate

74..73..71…68..62.550priority

5004003002001000System
clock
ticks

543210Real
time
(sec)

Estimate

� Estimate = ½ (CPU usage over last 1
second+Last estimate)

� En = ½ (Un+En-1)
� E1 = ½ (U1+E0)
� E2 = ½ (U2+E1)
� E2 = ½ U2 + ¼ U1 + ¼ E0
� E3 = ½ U3 + ¼ U2 + 1/8 U1 + 1/8 E0

Predictive SJF

Tn+1 = x Tn + (1-x) Tn-1
0<=x<=1

The data structure

Multilevel feedback queues of
unix

4.4 BSD

� Decay factor = 2 * load / (2 * load +1)
� 0-127 priority levels
� 50-127 user mode
� 32 run queues
� Queue no = priority /4

4.4 BSD

� Sleeping process:

� P_sleeptime is set to 0
� Incremented every second
� Estimate =

� decay factor p_sleeptime * estimate
� Ignore nice priority

4.4 BSD

� Recompute priorities per second
� Round robin time slice 10 times per

second
� Process in highest priority queue runs
� Hardclock() : 10ms

