
CPU  Scheduling

CS 447
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Requirements of CPU 
Scheduling

� CPU and IO cycles
� Short vs. long tasks
� Real Time vs. non-real time tasks
� Preemption vs. no preemption
� Priorities of tasks
� Utilization of idle cycles



Performance measures

� Per process:
� Waiting time
� Turnaround time
� Penalty ratio (1/Response ratio)

� System measures
� Throughput
� Average waiting time
� Average Turnaround time
� Average penalty ratio (Response ratio)

Required time



Performance measures

� Per process:
� Required time 20 seconds
� Waiting time 20 seconds
� Turnaround time 40 seconds
� Penalty ratio (1/Response ratio) 40/20 = 2  

� System measures
� Throughput k processes per min.
� Average waiting time
� Average Turnaround time
� Average penalty ratio (Response ratio)



Scheduling Policies

� Non-preemptive policies

� Once a process is scheduled, it remains 
scheduled till completion

� Preemptive policies
� A scheduled process may be preempted 

and another may be scheduled 



When is a scheduler invoked?

� Creation
� Completion
� Voluntary withdrawal
� Wait for a slower device
� Device Ready
� Policy dependent events



First come first served (FCFS)
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FCFS Performance
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FCFS on interactive processes

� When a process waits or blocks, it is 
removed from the queue and it queues 
up again in FCFS queue when it gets 
ready

� Ordering in queue may be different in 
second serve



Suitability and Drawbacks

� Simple to implement
� Starvation free
� Examples: printer queues, mail queues

� Response time
� Suffers from Convoy Effect



Shortest Job First (SJF)
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SJF Performance
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Suitability and Drawbacks

� Optimal for average waiting time
� Favors shorter jobs against long jobs
� If newly arrived process are 

considered at every schedule point, 
starvation may occur

� May not be possible to know the exact 
size of a job before execution



Round Robin (RR)
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RR Performance
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Suitability and Drawbacks

� Somewhere between FCFS and SJF
� Guarantees response time
� But it involves context switching

� Attempt must be made to minimize 
context switch time

� Process needing immediate responses 
have to wait for T*n-1 time units in 
worst case (calculate for 100 
processes, 10 ms)



Preemptive Shortest Job First 
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Preemptive SJF Performance
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Suitability and Drawbacks

� SJF extended strictly considering 
arrivals at any point of time

� Optimal average waiting time in 
presence of dynamically arriving jobs

� The policy suffers from Starvation 
� May not be possible to know the job 

size in advance � use prediction



Priority scheduling
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Suitability and Drawbacks

� One can combine several parameters in one 
priority value

� Computing priority is a challenging task : 
fairness must be guaranteed to various 
kinds of processes

� Tunable priorities: also from user space
� Deadlocks may occur in certain situations
� Priority Inversion problem!



Construct a deadlock case?

� P1 (pri=10) arrives
� P1 executes
� P2 (pri=12) arrives
� P1 is stopped and P2 executes
� Busy wait for P1



Priority Inversion

1. Local 
computation

2. Wait till R is 
locked

3. Operations on R
4. Release R
5. Local 

computation

1. Local 
computation

2. Wait till R is 
locked

3. Operations on R
4. Release R
5. Local 

computation

P2 (pri=12)P1 (pri=10)



Consider following case:

� P3 arrives with priority=11
� P3 does not need resource R



Point out Case of priority 
inversion in above example?



Solution?



Solution: Priority inheritance

� Raise the priority of P1 to that of P2 till 
it finishes with the resource needed by 
P2



Predictive SJF

� Traditional UNIX scheduler uses:
� Priority = seed priority + (Estimate/4) + 2*nice 

priority

� Lower the value, higher the priority
� Seed priority: fixed at say 50
� Every 10 ms: estimate of running process is 

incremented by 1 
� Estimate is reduced by a decay factor after 

every second (df of say 0.5)
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Estimate

� Estimate = ½ (CPU usage over last 1 
second+Last estimate)

� En = ½ (Un+En-1)
� E1 = ½ (U1+E0)
� E2 = ½ (U2+E1)
� E2 = ½ U2 + ¼ U1 + ¼ E0
� E3 = ½ U3 + ¼ U2 + 1/8 U1 + 1/8 E0



Predictive SJF

Tn+1 = x Tn + (1-x) Tn-1
0<=x<=1



The data structure

Multilevel feedback queues of 
unix



4.4 BSD

� Decay factor = 2 * load  / (2 * load +1)
� 0-127 priority levels
� 50-127 user mode
� 32 run queues
� Queue no = priority /4



4.4 BSD

� Sleeping process:

� P_sleeptime is set to 0
� Incremented every second
� Estimate = 

� decay factor p_sleeptime * estimate
� Ignore nice priority



4.4 BSD

� Recompute priorities per second
� Round robin time slice 10 times per 

second
� Process in highest priority queue runs
� Hardclock() : 10ms


