
Semaphores

CS 447
Monday 3:30-5:00
Tuesday 2:00-3:30



What are the drawbacks of the 
algorithmic solutions? 

� i.e. solutions with shared variables and 
atomic read and write?
� Scalability: No of processes is to be known 

statically
� Busy wait
� Responsibility of implementation is with user

� Pointers to OS-supported solution?



P(S);
CS

V(S);

Dijkstra’s Semaphores

� Semaphore S is a variable
� 2 operations:  P(S) and V(S)
� P – proberen/wait/down
� V – verogen/signal/up

P(S);
CS

V(S);

P(S);
CS

V(S);



Original Implementation

S=K;  //initial value
P()::

While (S= 0);
S=S-1;

V()::
S=S+1;

Atomicity of primitives is to be Atomicity of primitives is to be 
guaranteed (somehow)!guaranteed (somehow)!



How to realize a semaphore 
implementation that is free from busy-
wait?

If (wait queue associated with S is 
not empty)

wake up one process from the 
queue

S = S + 1;
return

If (S>0) S = S - 1;
Else

insert  calling process in wait queue
associated with semaphore S, 

block the process

return

VP

S=K



How to realize a semaphore 
implementation that is free from busy-
wait?

If (wait queue associated with S is 
not empty)

wake up one process from the 
queue

else S = S + 1;

If (S=0) 
insert  calling process in wait queue
associated with semaphore S, 

block the process

else S = S - 1;

VP

S=K



Binary Semaphores

If (wait queue associated with S is 
not empty)

wake up one process from the 
queue

else S = true;

If (!S) 
insert  calling process in wait queue
associated with semaphore S, 

block the process

else S = false;

VP

S=true



Exercise

� Implement a counting semaphore in 
terms of a binary semaphore:

� Pc(S) ::
� Use Pb(S1)…Pb(Sk) and V(S1)…V(Sk)

� Similarly implement Vc(S)

� S is a shared integer – protect it 
through binary semaphores!



Semaphore based solutions to benchmark 
synchronization problems

� Producers and Consumers
� Dining Philosophers
� Readers and Writers

They have richer synchronization constraints than They have richer synchronization constraints than 
mere critical sectionsmere critical sections



Producers and Consumers

� Common bounded buffer
� Producers keep producing items in this 

bounded buffer
� Consumers keep pulling them out of 

the buffer
� Buffer state must be consistent in 

presence of concurrency



Producers and Consumers: 
Additional constraints

� If buffer is full:
� Let the producer wait

� If buffer is empty:
� Let the consumer wait

� When the triggering event occurs, wait 
must be terminated



Try a semaphore based solution 
to producers and consumers

Producer Logic Consumer Logic

Bounded buffer
Shared …

P1….Pm C1….Cm



Producer : Attempt I

S1=size of buffer
S2=0; S3=0 or size
P(S1)

If (buffer is not full) insert item;  V(S3)
else P(S2)



Producers and Consumers : 
Attempt II � solution

Shared Buffer
Sp=size of buffer
Sc=0; Smutex=1;

Producer
P(Sp)

P(Smutex)  do the insertion V(Smutex)
V(Sc)

Consumer
P(Sc) 

P(Smutex) fetch V(Smutex)
V(Sp)



Dining Philosophers

P0

P1

P2
P3

P4



Attempt a solution

Shared forks[N], Semaphore S[N]
----------------------------------------------
Pi::
while (true) {

P(S[i])
P(S[i+1 % N])
eat
V (S[i])
V(S[i+1 %N])
think

}



Deadlock-free solution?

Let’s try one 



Dining Philosophers without a 
deadlock

P0

P1

P2
P3

P4



Implementation

Shared forks[N], Semaphore S[N] = {1,..1}, Table=N-1
----------------------------------------------
Pi::
while (true) {

P(Table)
P(S[i])
P(S[i+1 % N])
eat
V (S[i])
V(S[i+1 %N])
V(Table)
think

}



Dining Philosophers
without a deadlock

P0

P1

P2
P3

P4

P0 picks up right fork before left,
While others pick up left before right

Prove that a hold and wait 
cycle cannot occur, and hence no

deadlock



Implementation

Shared forks[N], Semaphore S[N]
----------------------------------------------
Pi::
while (true) {

if (i==0) P(S[i+1%N]) else P(S[i])
if (i=0) P(S[i]) else P(S[i+1 % N])
eat
V (S[i])
V(S[i+1 %N])
think

}



Readers and Writers 
Synchronization



Attempt I

Semaphore W=1  R=1
Reader: P(W) read V(W)
Writer: P(W) P(R) write V( W) V( R)

Semaphore S=1 
Reader: P(S) read V(S)
Writer: P(S) write V( S)

Semaphore R is not being us  used, and
Each reader and each writer simply takes

An independent CS on the shared file.
We want more than this. 



Attempt II
Semaphore W=1  mutex-r=1
Shared int r=0;

Reader: 
P(Mutex-r) 
r=r+1 
if (r==1) P(W) 
V(Mutex-r)
read
P(Mutex-r)
r=r-1
if (r=0) V(W)
V(Mutex-r)

Writer: 
P(Mutex-r) 
P(W)
V(Mutex-r)
write
V(W)



A solution

� Readers
P (Mutex)
r=r+1;
if (r=1) P(Writer);

V(Mutex)

Read

P(Mutex)
r=r-1;
if (r=0) V(Writer)

V(Mutex)

� Writers

P (Writer)

Write

V (Writer)



Care to be taken with 
Semaphores (drawbacks)

� User programs must still use P and V 
correctly

� A forgotten P, or a misplaced V
� Possibility of deadlocks-

P(S1) P(S2)
P(S2) P(S1)



Better Higher level 
synchronization primitives?

� Critical Regions
� Conditional Critical Regions 
� Monitors

� These were supported in concurrent 
programming languages

� Today’s semaphore system calls allow monitor 
type synchronization as well


