

BPMN - IV

Rushikesh K Joshi
IIT Bombay

Event based Gateways: Use of
intermediate events

Acceptance

Rejection

3 days

only one of the alternatives
is chosen

Event based Gateway

Event based Gateways: Use of
Receive tasks

Receive
acceptance

receive
 rejection

Event based GatewayEvent based Gateway

only one of the alternatives
is chosen

receive
extension req.

Sub-Conversations

Retailer Supplierdelivery
negotiations

Retailer Supplier

discuss
variations

checkpoint request

 confirmation

updated schedle

 sub-conversation

 a higher level
conversation which has
an expansion

(compound
conversation)

 sub-conversation expanded

 a lower level
conversation

(can be further
expanded)

 message flows

Call Conversations

customer Supplier
purchase
negotiations

customer Supplier

ask for quotation

 quotation

 call conversation

 call global conversation

 reusable
 atomic

 call collaboration

 expanded

order

ask for discounts

 discounts

 More Markers

 Service

 Event subprocesses

 Event subprocess expanded

Event subprocesses

 Interrupting subprocess

 parent process is interrupted
 an interrupting start event is used
 boundary of the event is solid

 Non-interrupting subprocesses

 parent process continues after the
completion of the subprocess

 a non-interrupting start event is
used

 boundary of the event is dashed

Use of various types of start
events for event sub-processes

 Interrupting timer start event

 Non-interrupting timer start event

Use of various types of start
events for event sub-processes

 Interrupting timer start event

 Non-interrupting timer start event

Events

 Something that happens during flow

 e.g. start of an activity, end of an activity, a message that
arrives, change in data state

 Event driven processes can be described

 Start events indicate where a process will start

 End events indicate where a process will end

 Intermediate events indicate something happening during a
process execution

Events

 Catching Events
 Some events catch a trigger
 all start events, some intermediate events

 Throwing Events
 Some events throw a result
 all end events, some intermediate events throw a

result
 a thrown result may be caught by another event

 trigger carries the information from throwing
scope into catching scope

Start Events

Start Events for top level
processes

 None Event

 does not have a defined trigger
 only such a process can be

called from a call activity
 processes using other types of

start event cannot be called by
call activities

 Message Event

 arrives from a participant and
triggers the start of a process

Start Events for top level
processes

 Timer Event

 a specific time, or period can be set to
trigger the start of a process

 Conditional

 based on conditions such as “arrival rate
crosses 120/min threshold”

 to trigger the event once again, the
condition must become false and then true
again.

 it cannot use instance context variables
since process instance is not created yet

 can refer to static attributes in processes, or
states of environment entities (how?: not
defined in the standard)

Start Events for top level
processes

 Signal Event

 arrival of a signal event that is broadcast from another
process

 signal is not a message

 multiple processes can use the same signal as start
event

 Multiple Start Event

 multiple ways of triggering the Process

 only one is required

 Multiple Parallel Start Event

 multiple events are required to trigger the start

 all events must be triggered

Start Events for sub-processes

 only one type of start event can be
used for sub-processes, which is the
None Event.

 this is the case for both embedded and
called sub-processes

 even if a sub-process has other types
of start event along with a none event,
the other events will not trigger the
subprocess (they may however trigger
it as a top level process)

back to event subprocesses..
Start events for event sub-processes

 interrupting and non-interrupting
Message event

 interrupting and non-interrupting
timer event

 interrupting and non-interrupting
escalation event

 escalation sub-process
expedites an activity for
which an execution
constraint (e.g. deadline) is
not satisfied.

 Error start event: interrupting

 compensation start event:
interrupting

Start events for event subprocesses..

 interrupting and non-
interrupting conditional
event

 interrupting and non-
interrupting signal event

 interrupting and non-
interrupting multiple
event

 interrupting and non-
interrupting parallel
multiple event

End Events

End Events: they generate end
event results

 none

 no defined result

 message

 message sent to a participant at the end of flow

 show the participant through a connection

 error

 named error is generated

 all active threads in the subprocess are terminated

 error gets caught by a catch error intermediate event (if it is
specified) on the boundary of the nearest enclosing parent activity
of this subprocess

End Events: they generate end
event results

 escalation

 triggers an escalation

 other active threads continue

 escalation event is caught by an catch escalation intermediate
event on the boundary of the surrounding parent

 cancel

 used in transaction sub-processes

 it triggers cancel intermediate event attached to the transaction
boundary

 compensation

 indicates that a comensation is necessary

 signal

 a signal event is broadcasted which can be received by any
process that can receive the signal

End Events: they generate end
event results

 terminate

 all activities must be ended immediately

 no compensation etc.

 multiple

 means multiple consequences of ending

 all of them will occur

Intermediate Events

Intermediate Events

 Event happens somewhere in between start
and end of a process

 It does not directly end or start a process
 Purposes:

 To show where messages are expected
 To show where messages are sent
 To show delays
 Generate exceptions and disrupt normal flow
 Compensation: place an intermediate event on the

boundary of a task/subprocess, and use an
outgoing flow from there

Placement of Intermediate events

 In the flow
 To catch event trigger

 Token stays at event till the trigger occurs (e.g.
Message recd.) and then the token moves
down the outgoing sequence flow

 To throw event trigger
 The trigger of event immediately happens (e.g.

message gets sent) and then the token moves
down the outgoing sequence flow

 On the boundary
 To catch the event trigger

 Circles are drown using double thin line

Intermediate Events in normal flow

 None

 No specific trigger, indicates a point in flow

 Cannot be used on boundary

 message

 Catch, Throw messages

 With catch, process flow continues

 With throw, the exception handling path is followed

 error” Not used as intermediate event

 Timer Catch

 Acts as delay

 Escalation

throws an escalation

Catch throw

Intermediate Events in normal flow
 compensation

 Throws compensation

 if the activity is identified, and it successfully completed, it

will be compensated. The activity must be visible from compensation event

 compensation intermediate event is contained in normal flow at
the same level of subprocess

 compensation intermediate event is contained in a compensation
event subprocess which is contained in subprocess containing
the activity.

 if no activity is identified, all successfully completed activities visible to the
compnesation event will be compensated in reverse flow direction

 those which occur in the same subprocess as that of the
compensation event

 those that occur in the same subprocess that contains the event
subprocess in which the compensation event occurs

 to be compensated, an activity must have

 a boundary compensation OR
 a compensation event sub-process

Intermediate Events in normal flow

 signal

 Communication across pools, diagrams

 Catch and throw type

 Received by an activity only when

attached to boundary

 Conditional

 Catch event when a condition becomes true

Throw catch

catch

 Intermediate Events in normal
flow

 Multiple

 Catch and throw

 Catch when attached to boundary

 Only one of the assigned

 triggers is required
 When used for throwing, all assigned triggers are thrown

 Parallel Multiple

 It can only catch the triggers

 All assigned triggers are required for it to trigger

 Link

 Mechanism for connecting two sections

 of a process

 Valid in normal flow only

(not used on the boundary)

Throw catch

Throw catch

catch

Intermediate events on the
boundaries

 On the boundary of an activity, an intermediate
event can only catch a trigger

 Interrupting event interrupts the flow, and
exception path is followed

 Non-interrupting event resumes the flow
 Both interrupting and non-interrupting

 Message, timer, escalation, conditional, signal,
multiple, parallel multiple

 Only interrupting
 Error, cancel, compensation

intermediate events on actvity
boundaries

 compensation
 catches compensation
 the event will be triggered by a thrown

compensation targeting this activity
 when event is triggered, the associated

compensation activity is performed
 compensation is triggered only after the activity is

completed, thus they donot interrupt an activity.. so
the aspect of interruption vs. non-interruption is not
applicable. (they cannot interrupt the activity)

intermediate events on actvity
boundaries

 Message
 arrives from a participant and triggers the event
 after the trigger, the flow changes to exception flow
 can be interrupting the activity or it can also be non-

interrupting

intermediate events on actvity
boundaries

 Timer

 Escalation: assumed not to abort the activity,
but an interrupting version exists

 Error

 always interrupts the activity
 Cancel

 used with a transaction subprocess
 triggered when a cancel end event is

reached within the transaction subprocess
 it always interrupts the activity

intermediate events on actvity
boundaries

 Conditional
 based on a conditional expression

 Signal
 non-error condition

 Multiple
 only one of the assigned triggers is

required

 Parallel Multiple
 all the assigned triggers are

required

Examples

Credit card
payment

Book Hotel Room

An example

Cancel hotel

booking

Notify the failure
To customer

Linking events

link source

link target

L1

L1

 Markers

Strategies to forward thrown result from throwing
events into catching events

 Publication
 Direct resolution
 Propogation
 Cancellation
 Compensation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

