

BPMN - IV

Rushikesh K Joshi
IIT Bombay

Event based Gateways: Use of
intermediate events

Acceptance

Rejection

3 days

only one of the alternatives
is chosen

Event based Gateway

Event based Gateways: Use of
Receive tasks

Receive
acceptance

receive
 rejection

Event based GatewayEvent based Gateway

only one of the alternatives
is chosen

receive
extension req.

Sub-Conversations

Retailer Supplierdelivery
negotiations

Retailer Supplier

discuss
variations

checkpoint request

 confirmation

updated schedle

 sub-conversation

 a higher level
conversation which has
an expansion

(compound
conversation)

 sub-conversation expanded

 a lower level
conversation

(can be further
expanded)

 message flows

Call Conversations

customer Supplier
purchase
negotiations

customer Supplier

ask for quotation

 quotation

 call conversation

 call global conversation

 reusable
 atomic

 call collaboration

 expanded

order

ask for discounts

 discounts

 More Markers

 Service

 Event subprocesses

 Event subprocess expanded

Event subprocesses

 Interrupting subprocess

 parent process is interrupted
 an interrupting start event is used
 boundary of the event is solid

 Non-interrupting subprocesses

 parent process continues after the
completion of the subprocess

 a non-interrupting start event is
used

 boundary of the event is dashed

Use of various types of start
events for event sub-processes

 Interrupting timer start event

 Non-interrupting timer start event

Use of various types of start
events for event sub-processes

 Interrupting timer start event

 Non-interrupting timer start event

Events

 Something that happens during flow

 e.g. start of an activity, end of an activity, a message that
arrives, change in data state

 Event driven processes can be described

 Start events indicate where a process will start

 End events indicate where a process will end

 Intermediate events indicate something happening during a
process execution

Events

 Catching Events
 Some events catch a trigger
 all start events, some intermediate events

 Throwing Events
 Some events throw a result
 all end events, some intermediate events throw a

result
 a thrown result may be caught by another event

 trigger carries the information from throwing
scope into catching scope

Start Events

Start Events for top level
processes

 None Event

 does not have a defined trigger
 only such a process can be

called from a call activity
 processes using other types of

start event cannot be called by
call activities

 Message Event

 arrives from a participant and
triggers the start of a process

Start Events for top level
processes

 Timer Event

 a specific time, or period can be set to
trigger the start of a process

 Conditional

 based on conditions such as “arrival rate
crosses 120/min threshold”

 to trigger the event once again, the
condition must become false and then true
again.

 it cannot use instance context variables
since process instance is not created yet

 can refer to static attributes in processes, or
states of environment entities (how?: not
defined in the standard)

Start Events for top level
processes

 Signal Event

 arrival of a signal event that is broadcast from another
process

 signal is not a message

 multiple processes can use the same signal as start
event

 Multiple Start Event

 multiple ways of triggering the Process

 only one is required

 Multiple Parallel Start Event

 multiple events are required to trigger the start

 all events must be triggered

Start Events for sub-processes

 only one type of start event can be
used for sub-processes, which is the
None Event.

 this is the case for both embedded and
called sub-processes

 even if a sub-process has other types
of start event along with a none event,
the other events will not trigger the
subprocess (they may however trigger
it as a top level process)

back to event subprocesses..
Start events for event sub-processes

 interrupting and non-interrupting
Message event

 interrupting and non-interrupting
timer event

 interrupting and non-interrupting
escalation event

 escalation sub-process
expedites an activity for
which an execution
constraint (e.g. deadline) is
not satisfied.

 Error start event: interrupting

 compensation start event:
interrupting

Start events for event subprocesses..

 interrupting and non-
interrupting conditional
event

 interrupting and non-
interrupting signal event

 interrupting and non-
interrupting multiple
event

 interrupting and non-
interrupting parallel
multiple event

End Events

End Events: they generate end
event results

 none

 no defined result

 message

 message sent to a participant at the end of flow

 show the participant through a connection

 error

 named error is generated

 all active threads in the subprocess are terminated

 error gets caught by a catch error intermediate event (if it is
specified) on the boundary of the nearest enclosing parent activity
of this subprocess

End Events: they generate end
event results

 escalation

 triggers an escalation

 other active threads continue

 escalation event is caught by an catch escalation intermediate
event on the boundary of the surrounding parent

 cancel

 used in transaction sub-processes

 it triggers cancel intermediate event attached to the transaction
boundary

 compensation

 indicates that a comensation is necessary

 signal

 a signal event is broadcasted which can be received by any
process that can receive the signal

End Events: they generate end
event results

 terminate

 all activities must be ended immediately

 no compensation etc.

 multiple

 means multiple consequences of ending

 all of them will occur

Intermediate Events

Intermediate Events

 Event happens somewhere in between start
and end of a process

 It does not directly end or start a process
 Purposes:

 To show where messages are expected
 To show where messages are sent
 To show delays
 Generate exceptions and disrupt normal flow
 Compensation: place an intermediate event on the

boundary of a task/subprocess, and use an
outgoing flow from there

Placement of Intermediate events

 In the flow
 To catch event trigger

 Token stays at event till the trigger occurs (e.g.
Message recd.) and then the token moves
down the outgoing sequence flow

 To throw event trigger
 The trigger of event immediately happens (e.g.

message gets sent) and then the token moves
down the outgoing sequence flow

 On the boundary
 To catch the event trigger

 Circles are drown using double thin line

Intermediate Events in normal flow

 None

 No specific trigger, indicates a point in flow

 Cannot be used on boundary

 message

 Catch, Throw messages

 With catch, process flow continues

 With throw, the exception handling path is followed

 error” Not used as intermediate event

 Timer Catch

 Acts as delay

 Escalation

throws an escalation

Catch throw

Intermediate Events in normal flow
 compensation

 Throws compensation

 if the activity is identified, and it successfully completed, it

will be compensated. The activity must be visible from compensation event

 compensation intermediate event is contained in normal flow at
the same level of subprocess

 compensation intermediate event is contained in a compensation
event subprocess which is contained in subprocess containing
the activity.

 if no activity is identified, all successfully completed activities visible to the
compnesation event will be compensated in reverse flow direction

 those which occur in the same subprocess as that of the
compensation event

 those that occur in the same subprocess that contains the event
subprocess in which the compensation event occurs

 to be compensated, an activity must have

 a boundary compensation OR
 a compensation event sub-process

Intermediate Events in normal flow

 signal

 Communication across pools, diagrams

 Catch and throw type

 Received by an activity only when

attached to boundary

 Conditional

 Catch event when a condition becomes true

Throw catch

catch

 Intermediate Events in normal
flow

 Multiple

 Catch and throw

 Catch when attached to boundary

 Only one of the assigned

 triggers is required
 When used for throwing, all assigned triggers are thrown

 Parallel Multiple

 It can only catch the triggers

 All assigned triggers are required for it to trigger

 Link

 Mechanism for connecting two sections

 of a process

 Valid in normal flow only

(not used on the boundary)

Throw catch

Throw catch

catch

Intermediate events on the
boundaries

 On the boundary of an activity, an intermediate
event can only catch a trigger

 Interrupting event interrupts the flow, and
exception path is followed

 Non-interrupting event resumes the flow
 Both interrupting and non-interrupting

 Message, timer, escalation, conditional, signal,
multiple, parallel multiple

 Only interrupting
 Error, cancel, compensation

intermediate events on actvity
boundaries

 compensation
 catches compensation
 the event will be triggered by a thrown

compensation targeting this activity
 when event is triggered, the associated

compensation activity is performed
 compensation is triggered only after the activity is

completed, thus they donot interrupt an activity.. so
the aspect of interruption vs. non-interruption is not
applicable. (they cannot interrupt the activity)

intermediate events on actvity
boundaries

 Message
 arrives from a participant and triggers the event
 after the trigger, the flow changes to exception flow
 can be interrupting the activity or it can also be non-

interrupting

intermediate events on actvity
boundaries

 Timer

 Escalation: assumed not to abort the activity,
but an interrupting version exists

 Error

 always interrupts the activity
 Cancel

 used with a transaction subprocess
 triggered when a cancel end event is

reached within the transaction subprocess
 it always interrupts the activity

intermediate events on actvity
boundaries

 Conditional
 based on a conditional expression

 Signal
 non-error condition

 Multiple
 only one of the assigned triggers is

required

 Parallel Multiple
 all the assigned triggers are

required

Examples

Credit card
payment

Book Hotel Room

An example

Cancel hotel

booking

Notify the failure
To customer

Linking events

link source

link target

L1

L1

 Markers

Strategies to forward thrown result from throwing
events into catching events

 Publication
 Direct resolution
 Propogation
 Cancellation
 Compensation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

