D

DisTr'ibuT\e{i\Deadlock

detection

CS 451 offering - 2003-2004

Prof. R.K. Joshi
Dept of Computer Science and Engineering
IIT Bombay 7

Central coordinator
based

coordinator

N

\

v

()
Site B

v

N\
SiiteOA

Si ocal info to
1nator
(nator runs deadlock d

tecton

Si\ﬁ C

The Alternatives

- What info should be sent?
- When?
- Who initiates?

Aea‘

Event Echo

* What: Every event echoed to coordinator
- Request
- Allocation
- release

- When: when event arises

+ Who initiates: participants/sites
- Request: sender
- Allocation: resource site
- Release: resource user

Release first and then
echo

» Coordinator may see 2 allocations of
a resource

- Allocation echoed before release echo is
recd by coordinator

- Coordinator can tolerate boundary error
(based no. of instances of each
resource)

"\

Aea‘

\

Our model -1

« Resource site communicates to
coordinator:

- Request edge (blocked)
- Allocation edge
* Process site communicates to
coordinator
- Release before sending it to the resource

Our model - 2

« Resource site communicates to
coordinator:

- Request edge (blocked)
- Allocation edge
- Release

"\

Aea‘

\

False
deadlock

™

dinator

Model 3

» Processes echo
- Allocated edge
- Release edge
- Requesting edge
* Resources echo
- Allocated edge
- Release edge
- Blocked request

Model 4

* Resources echo
- Allocated edge
- Release edge
- Blocked request

- Processes echo: release
- And wait for an ack from coordinator

Aea‘

\

2 Phase model
- Model 2 + Model 2

- On request of coordinator

A@‘

\

2 Phase model with
sequence ids
- Model 2 + Model 2

- On request of coordinator

» Every site keeps a sequence number
associated with every event

- - associate with events
- Keep a event count on the site

Aea‘

\

2 Phase model with event

count

» If events occurred in phase 2 and
phasel reports a deadlock --> no
deadlock in phase 1

» Take only those processes on which

no hew events are reported in phase
2

;‘ea‘

\

mOdel 2. Coordinator asks R1

qj\: 1 6. Coordinator asks R2
:p . — /. received
4 3 +
5 qzﬁ
8. Deadlock

reported

Withdraw, and

Every thing repeats all gver - false deadlock

. coordinator
Sites

A coordinated detection
algorithm

. Reglource sites communicate local resource status
table

. Pr'glcess sites communicate local process status
Table

» Coordinator asks for local grpahs

+ Considers an entry if it's present in both
resource table and corresponding process table

» Inconsistency is eliminated
» Use unique sequence number stamps for edges

Any other ideas? x

Fully Distributed
deadlock detection

- If there is a deadlock, at least one
site sees a cycle in its local graph

Aea‘

- Each site has one additional node Pe

* Pi > Pex exists if Pi is waiting for
data in another site held by any
other process

* Pex > Pj exists if there exists a
process at another site that is
waiting to acquire a resource held by

PJ

;‘ea‘

\

Collapse the externadl
world

Collapse the externadl
world - another example

+ If you see a local deadlock (cycle/knot)

involving only local nodes > system
deadlock

» Can you report a deadlock on a locally
visible cycle/knot involving external nodes?

- Yes provided that external resources are
single instance resources

Deadlock if p4 and p8 are single
instances

Multiple instance model
No deadlock

single instance model
:deadlock

Can reds declare deadlock?
Initiator: yellows
Red recs. From yellows

single instance mode
:deadlock

Can reds declare deadlock?
Initiator : yellows
Red receives from yellows

single instance model

Can reds declare deadlock? - no
Initiator : yellows

Red receives from yellows

Do reds report a possibility of deadlock? - yes; what ne

N

single instance model

yellows initiate
oranges report 'no deadlock’
Reds see a possibility

single instance model

yellows initiate’

single instance model
yellows initiate’

single instance mode
:deadlock

Can reds declare deadlock?
Initiator : yellows
Red receives from yellows

If local cycle does not involve Pex, deadlock is detected

If Pex is involved = deadlock is possible
- Invoke distributed deadlock detection algorithm

Example: Pex>Px1>Px2->....->Pxn > Pex

Site si sends its WFG to site sj on which Si is blocked
On receiving the WFG, Sj updates its WFG

If sj finds a deadlock in its new WFG, not involving its Pex,
deadlock is reported

Else if a cycle involving its Pex is found, Sj transmits the WFG to
appropriate site Sk

After finite number of rounds, either deadlock is detected or
detection halts (no deadlock).

Obermarck’s Path pushing Algorithm in ACM ToDS 1982

Edge chasing

» If the process is blocked on another
process at another site, chase the
edge by sending probe message

» If probe returns, deadlock is
detected

;‘ea‘

\

Chandy and Mishra ACM ToCS May 83

Site that sends a probe

» If Piis locally dependent on itself
- Deadlock is detected, terminate

» For all Pj and Pk such that
- Pj is local
- Pi depends on Pj
- Pk is non-local
- Pj depends on Pk

Send probe (i, j, k) to site of Pk

;‘ea‘

\

Site that receives a
probe (i, j, k)

27

Site that receives a
probe (i, j, k)

If Pk is blocked, dependent (k<) is false, Pk has
not replied to all requests of Pj

set dependent (k<i) = true
if k=i declare deadlock
else for all Pm and Pn such that
Pk is locally dependent on Pm
Pm is waiting on Pn
Pn is on different site
send probe (i,m,n) to site of Pn

Probe (1,9,1)

Probe (1,3,4)

Probe (1,6,8)

Diffusing computation based algorithm

Deadlock detection is diffused through the global WFG
When there's a deadlock, the diffusing computation terminates

A query (i j k) is sent
- [initiator:i, currently from j, to k]
An active process ignores an incoming query.
A blocked process on receiving a query does the following:
- If this is the first time it receives a query for i (engaging query)
propagate query to all processes in its dependent set
- set count, (i) = no of query messages sent
- If not an engaging query
 If Pk remained blocked since it received the engaging query
- Send reply
+ Else discard message
A blocked process on receiving a reply (i, k, j)

- If Pk remained blocked since it received engaging query
- Decrement count, (i) by 1.
- send response to engaging query for i only after the count reaches O

> card
iator receives all replies > detects a deadlock

Readings

* Knapp: deadlock detection in
distributed databases, ACM
Computing surveys, Dec 1987

- Recommended reading for CS 451

Aea‘

\

