
Distributed File Systems

CS 451 Lecture 2003

Prof. RK Joshi, CSE, IIT Bombay

What’s a DFS?

• A distributed implementation of the
classical file system

• To its clients, DFS should look like a
conventional FS
– Dispersion of servers and multiplicity of

storage devices should be transparent
(Ideally) to clients

What’s a DFS?

• A distributed implementation of the
classical file system

• To its clients, DFS should look like a
conventional FS
– Dispersion of servers and multiplicity of

storage should be transparent (Ideally) to
clients

Network transparency

• Implies that client uses the same set of FS
abstractions –

– No distinction is made between a remote and
a local file

– All internal handling is done by the DFS

User Mobility

• Example:
– User can login from any machine

– Home directory is made available at that
machine at the same path

Performance Overheads

• Should be compatible to that of local file
system

• User should not ‘see’ the difference

Fault Tolerance

• Communication failures, failures of servers, delays in
storage media etc. should be tolerated to extent possible

• Graceful degradation – continue to function in a
degraded form instead of crashing the service
– Degradation could be of performance, functionality or both

– i.e. not to halt the whole system when one or two
components fail

Scalability

• Scalable system reacts more gracefully to
increased load than a non-scalable system (A
relative property)

– i.e. reaches saturation later than a non-scalable
system

– Also performance degrades more moderately than a
non-scalable system

Scalability Problems

• Adding new resources
– May generate indirect load on existing

resources

• Additions may need design modifications

• Related to fault tolerance

Naming & Transparency
• Naming = mapping between logical and physical objects

• Location transparency
– The name of the file does not reveal the physical location

(Locus, NFS, Sprite)

• Location independence
– The name of the file need not be changed when the physical

allocation changes (Andrews)
– (file mobility/migration) –

– stronger than location transparency

– Dynamic mapping

Naming Scheme I

• Name by host name and local name
– Host:local-name

– Guarantees unique names

• The above is not location transparent

• It’s not location independent

• But is network transparent (same set of calls for
local and remote files)

Naming Scheme II
• Mount remote directories to local name spaces

• Once mounted, location transparent

• Shared namespace may not be identical on all machines
(user mobility)

• If machine goes offline, directories become unavailable

• Control on permissions for attach/mount operation

Naming Scheme III

• A single global logical name structure

• Same namespace is visible to all clients

• But local files (/dev, /proc, /tmp) make this
goal difficult to attain

Pathname Translation

• Given path: /a/b/c

• How does a conventional fs translate this path to
the actual location of the file?

– Recursive lookup: i.e. lookup first in ‘/’, file ‘a’ and
then repeat the lookup procedure recursively on the
remaining path, terminating when no path remains;
the last result is returned.

Pathname Translation for naming
scheme III

�
�

�

�

�

� �� 	�
�
�
�

���

� �� 	�
�
�
�

���

� �� 	�
�
�
�

���

suryaCu3

VoxelCu2

everestCu1

Server
location

Component
unit

�����
�
������

Example: Pathname translation for
/a/b/c initiated on everest

• location table available to all machines
• Start from /
• a is local
• Lookup for b: b is remote
• Pass on b/c to voxel
• b is local on voxel, c is remote
• Pass on c to surya
• c is found
• Low level id for /a/b/c is returned to client

Variations in path lookup

• Does the machine return to the client
– or

• Should it delegate recursively?
should every request carry client

identifier, or should a recursive call be
returned to the recent caller?

Recursive Lookup (delegate)

�������

�����

�� ���

�������

�����

�� ���

Client iterates

�������
�����

�� ���

To be continued in next lecture

• Visit this pdf again

Mapping of file names to location

• /a/b/c � cu3/11 which says, cu3 is the
component unit for the file, and 11 is the
idenitifier in that unit

• The mapping /a/b/c � <cu3, 11> is not
invalidated upon migrating cu3 to another
machine

• A second level mapping stores the actual
location information on disk

Using ‘Hints’
• A hint is like a cached information

• But not exactly like a cache since it may also be
incorrect

• Hint:
– In case of incorrect information, there is no negative effect,

but additional overheads

– In case of correct information, lookup is faster

– (used in Andrews file system)

– If a hint is wrong, some systems do a broadcast of correct
information

Semantics of Sharing

• What happens when 2 or more applications use
the same file concurrently?

• Semantics with concurrent reads and writes?

» High level applications such as databases use their own
mechanisms to control concurrency (e.g. locks)

» They don’t rely on FS semantics

Unix Semantics

• Every read sees the effects of all previous writes
in a DFS
– Writes by a client are visible to all clients who have

that file open

– Sharing of file pointer is possible

• Effects of file operations can be totally arbitrary
as scheduling may determine the actual
sequence

Session Semantics

• Write to open file are visible to local clients but
invisible to remote clients who may have the file
open simultaneously

• Once a file is closed, the changes are made
visible to only later sessions

• i.e. each client/machine may have its own image

Which one is harder to achieve?

• Unix semantics or session semantics?

• Why?

Immutable shared files semantics

• Declare shared files as immutable

• These can now be opened by as many
clients, but cannot be modified

Transaction like semantics

• Final effect is that of executing sessions in
some serial order

• i.e. a file is r/w locked by sessions

Remote Access Method

• Remote service: for every access, use the
remote service

• Caching
– Cache consistency problem

• Is the cached copy consistent with master copy?
– Cache unit size?

• Can you implement read-ahead?
– Cache location?

• On local disk? Or in local memory?
– Cache Modification (dirty block flush) policy?

• Affects system performance

Cache Modification policy
• Write-through

– Reliable
• when client, the writing process crashes, little info is lost

– Equivalent to using remote service for write accesses: poor write performance
• Delayed-write

– Delay updates to master copy
– Write modifications to cache
– If data is deleted before written back, update is saved
– When to write?

• When the block is about to be ejected from cache
• Periodically (compromise between write-through and delayed write)

– E.g. Unix uses 30 seconds delayed-write policy for flushing
• Write-on-close: write data back to server when file is closed

– Close operation gets delayed
– Does not reduce n/w traffic for short files with fewer modifications
– Useful for long sessions with frequent modifications

• Write-on-close: suitable for session semantics
• Write-through: suitable for unix semantics

Who performs Cache validation?

• Client initiated
– client checks with the server whether local local data is consistent with

master copy
– check before every access
– Check on first access to a file
– Check periodically

• Server initiated
– Server takes the responsibility

– When server detects potential for inconsistency (e.g. caching by
clients in conflicting modes)

• Session semantics: on close, server can notify cache invalidation to
other clients

• Unix semantics: on write request from client, invalidate remote
copies and switch to remote service access

– Violates the client-server model

serializability

• Do the “caching-oriented” unix semantics
and session semantics guarantee
serializability?

Fault tolerance

• Stateful servers
– Server maintains information about clients

• Stateless servers
– Server does not remember anything about

client after client finishes its single request

Recoverable and Robust files

• A file is recoverable if it’s possible to revert
the file to its earlier consistent state if an
operation fails or gets aborted by the caller

• A file is robust if it is guaranteed to survive
crashes of storage device and decays of
storage medium

Available files

• A file is available if it can be accessed
whenever needed despite machine,
storage device crashes and
communication failures

Readings

• Levy and Silberschatz, Distributed
File Systems, ACM Computing
Surveys, Dec. 1990

