


What's a DFS?

A distributed implementation of the
classical file system

 To its clients, DFS should look like a
conventional FS
— Dispersion of servers and multiplicity of

storage devices should be transparent
(Ideally) to clients










































Example: Pathname translation for

/a/b/c Initiated on everest

location table available to all machines
Start from /

a is local

Lookup for b: b is remote

Pass on b/c to voxel

b is local on voxel, ¢ is remote

Pass on c to surya

c Is found

Low level id for /a/b/c is returned to client



Variations in path lookup

 Does the machine return to the client
— Ofr

« Should it delegate recursively?

should every request carry client
identifier, or should a recursive call be
returned to the recent caller?












Mapping of file names to location

» /a/b/c = cu3/11 which says, cu3 is the
component unit for the file, and 11 is the
idenitifier in that unit

* The mapping /a/b/c - <cu3, 11> is not

invalidated upon migrating cu3 to another
machine

* A second level mapping stores the actual
location information on disk












Session Semantics

« Write to open file are visible to local clients but
invisible to remote clients who may have the file
open simultaneously

* Once afile is closed, the changes are made
visible to only later sessions

* |.e. each client/machine may have its own image












Remote Access Method

- Remote service: for every access, use the
remote service

« Caching
— Cache consistency problem
* Is the cached copy consistent with master copy?
— Cache unit size?
« Can you implement read-ahead?
— Cache location?
* On local disk? Or in local memory?

— Cache Modification (dirty block flush) policy?

 Affects system performance






Who performs Cache validation?

 (Client initiated

— client checks with the server whether local local data is consistent with
master copy

— check before every access
— Check on first access to a file
— Check periodically

« Server initiated
— Server takes the responsibility
— When server detects potential for inconsistency (e.g. caching by
clients in conflicting modes)

- Session semantics: on close, server can notify cache invalidation to
other clients

- Unix semantics: on write request from client, invalidate remote
copies and switch to remote service access

— Violates the client-server model









Recoverable and Robust files

« Afile is recoverable if it's possible to revert
the file to its earlier consistent state if an
operation fails or gets aborted by the caller

» Afile is robust if it is guaranteed to survive
crashes of storage device and decays of
storage medium









