
Inheritance Metrics: What do they Measure?

G. Sri Krishna and Rushikesh K. Joshi
Department of Computer Science and Engineering

Indian Institute of Technology Bombay
Mumbai, 400 076, India

Email:{srikrishna,rkj}@cse.iitb.ac.in

Abstract

Characteristics of inheritance metrics are compared with size and length
measurement using the property based validation framework of Briand et
al. About a dozen inheritance metrics are analyzed and compared with
some known object oriented metrics. The analysis first performs an iden-
tification of viewpoints and projections of the chosen metrics in order to
meaningfully apply the property based framework. For the purpose of
this analysis, nested and internal projections are also newly suggested in
this paper. The work results in associating most of the chosen inheritance
metrics with either the size or the length aspect, while two metrics remain
unclassified.
keywords:Metric Validation Properties, Object Oriented Metrics, Size,
Length, Inheritance, Measurement Concepts.

1 Introduction

The metric validation framework of Briand et al. [2] includes mathematical
properties for measurement concepts such as size and length. Evaluation of
metrics against such measurement concepts provides insights into the charac-
teristics and defects of the metrics. Besides serving as a tool for classification
and understanding, property based evaluation can also potentially lead to for-
mulation of new metrics.

Inheritance metrics measure various aspects of inheritance such as depth and
breadth in a hierarchy and overriding complexity. Many inheritance metrics
have been proposed in the literature. Yet, there are no significant attempts
to validate and classify them. In this paper, theoretical validation of size and
inheritance metrics is performed against the size and length properties of Briand
et al.

Size metrics are commonly found in object oriented approaches. Sizes are not
bounded, and they are computed as positive integers. The three size properties
namely non-negativity, presence of null value and module additivity as outlined
by Briand et al. are summarized in Table 1. The third property of modular

1



Property Description
S1 The size of a system is nonnegative (Non-

negativity)
S2 The size of a system is 0 if the set of

elements which constitute the system is
empty. (Null value)

S3 The size of a system can not be more than
the sum of the sizes of its modules. In
the case of disjoint modules, the size of a
system is equal to the sum of the sizes of
the modules. (Module Additivity)

Table 1: Size Properties of Briand et al.

additivity sets size metrics apart from other metrics classes such as cohesion
and coupling metrics.

A dictionary meaning of length [5] mentions it as the longer or the longest
dimension of an object. From a measurement theory perspective [1], the length
of a system is seen as size of the shortest path between two extremes of the
system. Length is therefore not the same as size, since it captures the size
from the point of view of the extreme limits, whereas, size in general captures
the measured as a whole. Lines of Code and CLD are examples of size and
length metrics respectively. The length properties observed by Briand et al. are
summarized in Table 2.

The analysis reported in this paper reveals that some inheritance metrics fol-
low the patterns of size metrics, while some others follow the length properties.
Some inheritance metrics have been found to follow none of the two.

The paper is organized as follows. In Section 2, the notion of viewpoints and
projections are discussed. Section 3 discusses different kinds of mergers relevant
for property based validation. The metrics are analyzed against size and length
properties in Sections 4 and 5 respectively.

2 Viewpoints and Projections

The notion of viewpoints and projections was first introduced in [4] to aid clas-
sification of metrics. The notion of viewpoint captures the level of reference
abstraction at which the measurement is carried out. Viewpoints can be macro-
scopic or microscopic. Projections capture the directionality of interaction be-
tween the reference abstraction of the view point and the portion of the program
that is relevant for the measurement. Projections can be outward, inward or
gross projections. While inward projection measurement requires information
about contributions and interactions from entities external to the viewpoint,
outward projection metrics use outgoing interactions or contributions. On the

2



Property Description
L1 The length of a system is nonnegative

(Non-negativity)
L2 The length of a system is 0 if the set of

elements which constitute the system is
empty. (Null value)

L3 Adding relationships between the ele-
ments of a module m in a system does not
increase the length of the system. (Non
Increasing Monotonicity)

L4 A system having modules m1 and m2 such
that they are represented by separate con-
nected components in the system; adding
relationships from elements of m1 to ele-
ments of m2 does not decrease the length
of system.(Non Decreasing Monotonicity)

L5 The length of a system made of union of
two disjoint modules m1 and m2 is equal
to the maximum of the lengths of m1 and
m2. (Merger)

Table 2: Length Properties of Briand et al.

other hand, gross projection indicates bidirectional contributions and interac-
tions with the external entities. In addition to above viewpoints and projections,
for the analysis reported in this paper, we further refine the projections to nested
inward, nested outward, nested gross and internal projections. Metrics follow-
ing nested projections trace interactions and contributions transitively across
multiple levels. Internal projections are used when entities external to the view
point are not involved in the measurement.

Viewpoints and projections used by the metrics analyzed in this paper are
enlisted in Table 3. For example, the inheritance metric Specialization Ratio
is defined with system viewpoint, a macroscopic viewpoint, and with internal
projection. Few metrics such as DIT and Fandown can’t be computed using
one level of interactions. DIT is a class viewpoint metric generating values per
class. It follows nested outward projection as it traces outgoing parent links in
the inheritance chain. On the other hand, Class-leaf Depth, a class viewpoint
metric uses nested inward projection as it recursively traces incoming parent
relations from child classes. NoVM uses nested gross projection since it requires
the information about the methods declared in ancestor chain, and the concrete
implementations that the reference abstraction contributes into the ancestors
through overriding.

Viewpoints play a role in property based evaluation of metrics. For example,
consider the case of property L4, which refers to system and its modules. When
this property is applied to a metric with class viewpoint such as NOC, class takes

3



the role of system, while components of the class play the role of modules that
form the system. Thus adding relations between modules as defined in property
L4 translates to adding relations between member functions and attributes that
form the class under measurement. On the other hand, property L5 requires
that the metric that is being validated is defined over modules and the resultant
module merger. In this case, module refers to viewpoint, which happens to be
class for metric NOC. In this way, while class plays the role of system w.r.t.
one property it may play the role of module as referenced in another property.

Projections when seen in the perspective of viewpoints help in disambiguat-
ing this assignment of program entities to roles referred by the properties. For
example applying S3 to metric NOC requires that the role system be mapped
to class. However, computation of NOC requires information from outside the
system. Therefore, one would ask, is a class to be seen as system or the entire
collection of the classes that are involved in the measurement of NOC? This ap-
parent contradiction is resolved by noting that the projection for NOC is nested
outward. In other words, the projection of the metric confirms the fact that the
metric requires information from outside the viewpoint entity that plays the
role of system as far as property S3 is concerned.

3 Module Mergers

Module mergers are often referred in validation properties to capture the phe-
nomena of decomposition and composition. The focus of the discussion in this
section is mainly on size and length properties of the validation framework of
Briand et al. For example, to apply S3 or L5 on a system and its disjoint
modules, a merge operation on the disjoint modules of the system under mea-
surement needs to be defined. Also, both the properties require that the metric
be defined on the modules as well on the system.

There are various ways to merge disjoint classes. A merger can be obtained
at source code level or also through inheritance techniques such as mixin [7].
At source code level union merge merges two classes by removing duplicates.
An example of union merge is Hard Merge [7], in which, no separate copies of
common superclasses are made.

An alpha renaming merge on the other hand requires appropriate renaming
of clashing names. For example, source level alpha renaming is used for class
merger in [6]. Alpha renaming is also required in inheritance based mergers to
eliminate ambiguities such as when used in MixIn inheritance based merge [7].

An example of source level merger is the merger of a base class and its derived
class in collapse hierarchy refactoring [3]. In this case, property duplications
are handled by generalization. However, such classes not being disjoint due
to method or attribute sharing that automatically occurs through inheritance.
Property S3 defined over merger of disjoint modules is not directly applicable
to such mergers.

Throughout this paper, we consider the source code level mergers i.e, alpha
renaming and union merge. Alpha renaming is useful in ambiguous situations

4



Figure 1: Fanup satisfying S3

arising out of using same names. Union merge is used when redundancies need to
be removed. In a merger, both kinds of merges may be applicable. Irrespective
of whether the names are same or different, when the entities are semantically
equivalent, a union merge is applicable. Similarly, when the entities are seman-
tically different, a hard merge based on alpha renaming is applicable when the
names are same.

Properties S3 and L5 requiring merger of modules themselves require the
modules to be disjoint. The disjointness between the modules can be both syn-
tactic and semantic. Syntactically disjoint modules may not refer to common
entities defined in the program. Semantically disjoint modules may not have
internal units that are semantically equivalent. If two modules are not seman-
tically disjoint a union merge may be used to eliminate redundancies. If they
are semantically disjoint, an alpha renaming may still be required to eliminate
ambiguities.

4 Size Properties

In this section, 10 inheritance metrics are evaluated against size properties given
in Table 1. The metrics and their evaluation against size properties is summa-
rized in Table 4. It can be noted that non negativity and null value are satisfied
by all metrics. Hence, the rest of the discussion focuses on property S3.

The eight size metrics considered satisfy all the three size properties as
they are relationship-independent counting measures defined in terms of en-
tities. Also the mergers considered for evaluating property S3 do not introduce
a new entity in the system as opposed to inheritance based mergers such as
mixin. The property S3 may not be satisfied under mergers of the latter kind.

Fanup is a measure with class viewpoint. For a metric with class viewpoint,

5



Figure 2: Class-Leaf Depth does not satisfy S3

the class under measurement plays the role of system. Since the metric uses
nested outward projections, the external entities that are indirectly related to
class and that are essential for metric calculation are also included as parts of
the system. On applying the properties against the metric, it is observed that
the metric satisfies property S3. A typical situation satisfying S3 is shown in
Figure 1, in which, C1 and C2 are two disjoint classes. Source level merger does
not increase the number of ancestor classes between the modules as merging
would club the two classes into a single class borrowing the subclasses and the
superclasses from the two disjoint hierarchies into the newly formed hierarchy
after the merger.

On the same lines, Fandown metric also satisfies property S3. In this case
the descendents from two disjoint trees are considered instead of superclasses.
NOC is a sub case of Fandown with the difference that NOC considers only the
immediate subclasses, while Fandown considers all the subclasses.

Class-leaf depth (CLD) measures the maximum length of the path from a
class to a leaf. The metric uses nested inward projection to measure the max-
imum depth since the depth is a consequence of incoming upward inheritance
links. The metric does not satisfy property S3. A counter example proving
the same is shown in Figure 2. Depth of inheritance (DIT) is complementary
to CLD. The latter measures the length of inheritance from a class up to the
root class. DIT does not satisfy property S3 as proved by the counter example
shown in Figure 3. However, the metrics satisfy the five length properties as
discussed in the next section.

Specialization ratio (S), a metric with system viewpoint and internal pro-
jection does not satisfy property S3 as shown in the counter example given in
Figure 4. Similarly, Reuse ratio (U) does not satisfy S3 as shown in the same
counter example.

Number of inherited attributes (NIA), Number of inherited methods (NIM)
and Number of overridden methods (NoVM) for a class are dependent on the
ancestor classes of the class that is under measurement. When two semanti-
cally disjoint inheritance trees are merged, the resulting merged class has all
the inherited attributes and methods from the ancestors of both the classes.

6



Figure 3: DIT does not satisfy S3

Figure 4: Specialization Ratio and Reuse Ratio do not satisfy S3

Therefore, they satisfy property S3. All the three metrics use nested outward
projections.

So far, the discussion was pertaining to merging of modules that are both
syntactically and semantically disjoint. However, it can be noted that in the
case of modules that are syntactically disjoint but not semantically disjoint,
under application of union merge to remove semantic redundancies, property
S3 is not satisfied by all size metrics. Therefore, while applying size property
S3, both syntactic and semantic disjointedness need to be observed.

Figure 5: Reuse ratio and Specialization Ratio do not satisfy L5

7



5 Length Properties

Length properties L1 and L2 are the same as S1 and S2 respectively. Table 4
evaluates the selected inheritance and size metrics against properties L3, L4 and
L5. Size metrics satisfy non-increasing monotonicity (L3) and non-decreasing
monotonicity property (L4), since adding relationships between the elements
within a module or between the elements of different modules in the system does
not change the count of the entities already present in the system. However,
the considered size metrics do not satisfy module merger (L5) because the size
metrics are sum oriented and not comparison oriented. Thus, it can be observed
that metrics satisfying sum oriented size property S3 do not satisfy comparison
oriented length property L5.

Class-Leaf Depth is a class viewpoint based inheritance metric. For a metric
with class viewpoint, the modules are inner components of a class, which are
methods and attributes. Adding new relations among the inner components
does not effect the metric value of the enclosing class as the metric uses external
inward projection. Therefore, CLD satisfies both L3 and L4. Property L5 is also
satisfied by the metric as the definition of the metric itself inherently captures
the comparison based property. Depth of Inheritance Tree (DIT) follows the
same evaluation results as that of CLD, since the two metrics are complementary
in nature in terms of path lengths up to either leaves or roots.

Reuse Ratio and Specialization Ratio are system viewpoint based inheritance
metrics. Modules for these metrics are classes with the system playing the role
of the connected component under measurement. In this case, adding relations
within modules does not affect the metric value. Therefore, property L3 is
satisfied by both reuse ratio and specialization ratio. However, unlike other
inheritance metrics, adding relations among the modules may change the metric
value, since modules being classes, new inheritance relations can be created
between them. Property L4 is satisfied by Reuse Ratio since addition of new
inheritance relations does not reduce the number of superclasses. However,
Specialization Ratio does not satisfy L4 as shown in Figure 6. The metric
is defined with system viewpoint such that the system under measurement is
a hierarchy. As shown in Figure 5, property L5 is not satisfied by both the
metrics.

Number of inherited attributes (NIA) , Number of inherited methods (NIM)
and Number of overridden methods methods (NoVM) satisfy properties L3 and
L4 as they consider only the methods and attributes defined in ancestor classes
and are not dependent on relations within a class. They do not satisfy L5 as
they are counting metrics satisfying S3.

Fanup, a classes viewpoint metric satisfies properties L3 and L4, as the
metric does not use the relations among the methods and attributes. Adding
new relations among the methods and attributes does not change the metric
value. From Figure 1, it can be observed that Fanup does not satisfy L5.
Fandown, a complementary metric and Number of Children (NOC), a special
case of Fandown exhibit the same results as that of Fanup.

8



Figure 6: Specialization Ratio does not satisfy L4

6 Conclusions and Future Work

To meaningfully apply the framework of Briand et al., a mapping of terms
system, module, elements, and relations with appropriate program components
needs to be defined. Identification of viewpoints and projections has been found
to be essential for this task. New projections were proposed, and the viewpoints
and projections were identified for 20 metrics for measuring size, length and
inheritance properties. The property based evaluation also requires an analysis
of different kinds of mergers. The evaluation of the selected metrics revealed
that metrics NIA, NIM, NoVM, NOC, Fanup and Fandown are size metrics as
far as inheritance hierarchies are concerned. On the other hand, metrics DIT
and CLD were found to follow length properties. Specialization Ratio and Reuse
Ratio do not fall under size and length concepts. Further analysis revealed that
they also do not satisfy the complexity property disjoint module additivity of
Briand et al. Similarly, it was found that in general inheritance metrics do not
satisfy the symmetry property associated with complexity metrics since they are
dependent on the directionality of parent child relations between classes. The
work also points at a need for further work on the scope of existing validation
properties and also on measurement concepts that are relatively less explored.

References

[1] E. B. Allen. Measuring graph abstractions of software: An information-
theory approach. In METRICS ’02: Proceedings of the 8th International
Symposium on Software Metrics, page 182, Washington, DC, USA, 2002.
IEEE Computer Society.

9



[2] L. C. Briand, S. Morasca, and V. R. Basili. Property-based software engi-
neering measurement. IEEE Trans. Software Eng., 22(1):68–86, 1996.

[3] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, Boston, MA, USA, 1999.

[4] P. Joshi and R. K. Joshi. Microscopic coupling metrics for refactoring.
Proceedings of the Conference on Software Maintenance and Reengineering,
pages 145–152, 2006.

[5] Merriam-Webster. Merriam-Webster Online Dictionary. 2010.

[6] F. Tip, C. Laffra, P. F. Sweeney, and D. Streeter. Practical experience with
an application extractor for java. SIGPLAN Not., 34(10):292–305, 1999.

[7] S. Yacoub and H. Ammar. Pattern-Oriented Analysis and Design: Compos-
ing Patterns to Design Software Systems. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2003.

10



Metric Definition Viewpoint Projection

LoC Lines of Code Program Internal
NoC Number of concrete Classes de-

fined in a system
Class Internal

NoM Number of Methods defined in a
class

Class Internal

NoA Number of Attributes defined in
a class

Class Internal

SIZE2 Number of methods defined in a
class + Number of attributes de-
fined in a class

Class Internal

NOK Number of occurrences of a key-
words in a program

Program Internal

NOAOP Number of occurrences of a arith-
metic operators in a program

Program Internal

class-leaf depth
(CLD)

Length of the path from the class
to farthest leaf

Class Nested Inward

Reuse Ratio No. of superclasses / total no. of
classes

System Internal

Specialization
Ratio

No. of subclasses/ no. of super-
classes

System Internal

DIT Depth of Inheritance of a class Class Nested Outward
NOC Number of Children is the num-

ber of immediate subclasses sub-
ordinated to a class

Class Nested Inward

Fandown Number of subclasses of a class Class Nested Inward
Fanup Number of super classes of a class Class Nested Outward
NIA Number of Inherited Attributes

in a class
Class Nested Outward

NIM Number of Inherited Methods in
a class

Class Nested Outward

NoVM Number of Overridden Methods
in a class

Class Nested Gross

Table 3: Metrics with their Viewpoint and Projections

11



Metric S1, S2, S3 L3 L4 L5
L1 L2

LoC
√ √ √ √ √

X
NoC

√ √ √ √ √
X

NoM
√ √ √ √ √

X
NoA

√ √ √ √ √
X

SIZE2
√ √ √ √ √

X
NOK

√ √ √ √ √
X

NOAOP
√ √ √ √ √

X
CLD

√ √
X

√ √ √

Reuse Ratio
√ √

X
√ √

X
Specialization Ra-
tio

√ √
X

√
X X

DIT
√ √

X
√ √ √

NOC
√ √ √ √ √

X
Fandown

√ √ √ √ √
X

Fanup
√ √ √ √ √

X
NIA

√ √ √ √ √
X

NIM
√ √ √ √ √

X
NoVM

√ √ √ √ √
X

Table 4: Evaluation Matrix

12


