Capturing Interactions in Architectural Patterns

Dharmendra K Yadav Rushikesh K Joshi
Department of Computer Science and Engineering Department of Computer Science and Engineering
Indian Institute of Technology Bombay Indian Institute of Technology Bombay
Powai, Mumbai 400076, India Powai, Mumbai 400076, India
Email: dharmendra@cse.iitb.ac.in Email: rkj@cse.iitb.ac.in
. . - TABLE |
Abstract—Patterns of software architecture help in describing A SUMMARY OF CCS GOMBINATORS
structural and functional properties of the system in terms of
smaller components. The emphasis of this work is on capturig Primitives & Descriptions Architectural
the aspects of pattern descriptions and the properties of iter- Exzamples Signi ficance
component interactions including non-deterministic behaior. Prefix () Action sequence | intra-component
Through these descriptions we capture structural and behaioral plp2 sequential flow
specifications as well as properties against which the spéications Summation (+) Nondeterminism | choice within a componen
are verified. The patterns covered in this paper are variantsof Al + A2
Proxy, Chain, MVC, Acceptor-Connector, Publisher-Subsciber Composition) | Connect matching | multiple connected
and Dinning Philosopher patterns. While the machines are CS- Al | A2 ifo ports in assembly] components
based, the properties have been described in Modal-Calculus. Restriction {) Hiding ports from | Internal
The approach serves as a framework for precise architectuda | A\PL K1, .} | further composition | features _
descriptions Relabeling ([]) Renaming of ports | syntactic renaming
’ Alnew/old, ..]

I. INTRODUCTION

In component/connector based architectural descripfglns . _
[13], components are primary entities having identitieshie represents interface points as ports uses a subset of CSP for

system and connectors provide the means for communicatlbh formal semantics. It allows architects to specify terg)
between them. This view is very similar to the abstractiof@mmunication protocols and check properties such as dead-
provided by CCS [12], in which, components can be seen '9¢k freedom. Besides special purpose ADLs, general perpos
non-movable agents and connectors as channels. Speoiicafiodeling techniques such as UML have also been found to
of software architectures from designer’s point of viewsc be useful for modeling high level software architecturel [7

at different levels such as process, component, module e[r%]] o]

object levels. The focus of this work is on modeling some We take an ADL-like approach in describing architectures
commonly occurring architectural patterns at the compondR t€rms of components and connectors, and use CCS, a
level in terms of CCS.u-Calculus [8] is used to specify Process calculus, to model and analyze software archrestu
example properties against which the architectural desoris 25 it prqvides abstractions (agents and channels)_ which are
can be verified. The CCS based approach effectively captu¥&&y Similar to components and connector abstractionsdoun
interactions occurring at architectural level through figg- COMMonly in software architecture descriptions.

tures such as components and their compositions, inpptibut N CCS, agents have input and output ports. The processes
actions over channels and non-deterministic behavior. TAEagent expression for an agent is constructed from a set of
machines described in this paper have been verified with f@Mic actions involving ports. A port name with an overbar
Concurrency Workbench [4]. The grammar used in specificB¥ch asp represents an output port. In the basic form of the

tions of the properties is as provided in [14]. language, data values can not be passed unlike in the value
passing form as in expressipfr). Agents communicate with
Il. RELATED WORK AND BACKGROUND each other via connected pairs of input and output portscBas

Various approaches for specifying and verifying softwargombinators in CCS are summarized in Table |.
architectures can be found in the literature. Architecture The formal semantics of the CCS [12] is given
Description Language (ADL) based approaches consist y transitional semantics. In this the general notion of
languages defined to describe, model and implement softwételed transition system as given below is used
architectures. A classification of ADL based languages can t
be found in [11]. Some of these languages have formal (ST {=:teT})
semantics supporting formal analysis. For example, Darwitdhich consists of a setS of states, a set T of
[10] is a general purpose configuration language for disteith ¢ransition labels, and atransition relation LC §x S for
dynamic system that usescalculus to model the componenteacht € T'. In this transition systen$ is taken to bef, the
interaction and composition properties. Wright [2], whiclagent expression, arifl is taken to beAct, the actions. The

TABLE 1l —
Syntax of modal mu-calculus

prop® = tt‘ff|X|‘1’1/\‘1>2|‘1’1\/‘1)2|[K}‘1)|
(KY® | vX.® | pX.® | not prop | (prop) |
AG prop | AF prop | A (propU prop) | —
A (prop W prop) | EG prop | EF prop | ans ans
E (propUprop) | A (prop W prop)

request
request reply
semantics fo€ consists in the definition of each transitiéh server
over £. The transitions of each composite agent is defined in
terms of the transitions of its component agent or agents. Th Teply
general rule of inference will be:
From E % E infer E|F3> E'|F Fig. 1. Caching Proxy Pattern
and it can be written in the form
% req.request.reply.ans.Proxy
E|FSE'|F -
. L. . . SGT’UGT‘ = request.repl .Server
There will be one or more transition rules associated witthea q_ Py
combinator. The set of transition rules are as follows: Arch = Client|Proxy|Server

The namesAct, Sum, Com, Res and Relindicates that The desirable properties of interaction can be captured in
the rules are associated respectively with Prefix, Summatignodal,, calculus. These properties can be used as verification
Composition, Restriction and Relabeling. properties to model-check the architectural descriptiGusne
E;%F _ properties are outlined below. It can be noted that the prope
Act —=— Sum 27.3%_(] el ties are expressed in terms-ofctions that occur in the above
machine. For each action, a separatebservation action

Comy E%E Com, F%F’ Com Ei»E’T FLE is introduced in the machine. The properties below use these
E|F—>E'|F E|F—E|F’ E|F—E'|F' observation actions. The property-friendly verifiable machine

Re| _ESE (0,@ ¢ L) Res B E is listed subseque_ntly. The properties r_n(_antioned below are

E\LZEN\L" "’ BN S B necessary properties. They are not sufficient. Throughethes

properties we have tried to capture some of the essential
For the specification of properties, ModatCalculus has behaviours of the patterns.
been used. The modal calculus [16], [17] used here is

P = AG(not (t tt) Vv AF((t tt
an extension of Henessy-Milner logic with two fixed poinf E:gg P; _ A(n(£?<t;;;(1t>t)12V<treq)(t<t)an8>)
operators. Thesg two operators, Ieas'F.fng.(b(X_) aqd prop P, = AG(not((tregytt) v AF({tans)ttv
greatest fixed points X.¢(X) allow specification of iterative (trequesttt))
behavior in the system, where(X) is a state predicate in | oo o may X = (1) (treg) (t) (trequeskt) treply) (1)
which state predicate variable X can occur. The syntax of (tans X
modal . calculus is summarized in Table Il for reference. propp = max Y =(t)(tre)(t) (tans Y

II. PROXY In the verifiable machine below, the observation actions

In this section, the interactions occurring in a cachingsgro introduced corresponding to the actions aretans, treg,
[3] that hides the actual server and also caches informatigrquest, treply. The observation actions are introduced as
from the server are modeled. When a client makes a requésput actions, and they are inserted uniformly immediately
the reply may be handed over to the client either by the profgllowing input actions of the correspondingactions. The
or from the server through the proxy. The CCS model shown éame structure is followed for other patterns describedhén t
Figure 1 captures the sequence of flow of messages. The GfiBsequent sections.
model includes the two possibilities through non-deteistin
summation. The pattern is a composition of three components , _
The description of the components is given below. lient = ‘reg.ans.tans.Client

o Proxy = req.treq.ans.Proxy +

A. Pattern Description req.treq. request.reply.treply.’ans. Prozy
Server = request.trequest.’reply.Server
Client = Teq.ans.Client Arch = (Client|Proxy|Server)\

Proxry = req.ans.Proxy + {req, ans, request, reply}

The properties can be read as below.

« Whenever a client makes a request, eventually there will

always be an answer to the clierf®y].
« Whenever there is an answer to the client, there is a pr
request from the clientit).

« Immediately after a request, either an answer or a further

request will be generated from the proxy componé) (

ior

o There is a possibility of a request from client, followed
by request generated from the proxy, followed by a repfy. Verification Properties

from the server and finally an answer from the proxy. some of the interaction properties for the MVC patterns are

This sequence of actions may repeat infinitéh)(

« There is a possibility of a request from client, followed .
by an answer from the proxy. This sequence of actions

may also repeat infinitely{).

In the subsequent section, the same template is followed

for presenting the descriptions of machines and propesfies
other architectural patterns. A brief description of thétgra

to be described is given first. The CCS model characterizes

the pattern’s components, component behaviors, channdls
interactions through the channels. The properties caphee
typical interaction properties and the correspondingfiadrie
machines are also provided.

IV. MODEL VIEW CONTROLLER ARCHITECTURAL
DESCRIPTION

The Model-View-Controller architectural pattern [3] digs
an interactive application into three parts. The model @ioist

model. The components and the interaction channels for
MVC system are depicted in Figure 2.

A. Structural and Behavioral Specification

info_rep

into_req

info_rep

Fig. 2. Model View Controller Pattern

listed below.

Controller
M odel

View
Arch

= change-mController
change-nchange-vM odel +
info-reqinfo-rep M odel
change-vinfo-reginfo-rep View
Controller| Model|View

If there is a request for updated information, eventually
there will be a reply Py).

« It is not the case that without any request for updated

information, there will be reply for the informatior%).

« If the controller outputs a request for change in model a
change in view also takes placfs).

It is not the case that without any change from the

a controller, there will be change in viewPy).

prop P = AG(not (tinfo-reqtt)
VAF ({tinfo-rep)tt)

prop P = A(not ({tinfo-rep)tt)
W ({tinfo-req)tt)

prop P = AG(not (tchange-nit)

prop P, = A(not (({tchange-Vit)

VAF((tchange-ytt)

W ((tchange-nit)))

The above properties use additional observation actions
core functionality and data. The controller changes theehodtinfo-req tinfo-rep tchange-m tchange-vcorresponding to
Whenever there is change in model, the view is required toactions on the four linkginfo_req, info_req), (info_rep,
reflect the current state of model. Thus, the controllermd®t info_rep), (change_m, change_m) and ghange_v, change_v).

the model, while the view keeps track of the changes in tfide corresponding verifiable machine is given below.

an
Controller =

Model =

View =

Arch =

‘change-mController
change-mtchange-nichange-viM odel +
info-reqtinfo-req’info-rep. M odel
change-uchange-vinfo-reg.info-rep
tinfo-repView
(Controller|Model|View)\
{change-mchange-vinfo-req info-rep}

V. ACCEPTORCONNECTOR

In the acceptor-connector architectural pattern [15] heanA
tion establishment and service initialization is done befmy
processing is performed. This separation of responsdslis
achieved by three components, an acceptor, a connector, and
a service handler. Before the client sends a request torserve
a connection establishment protocol is initiated. Only whe
the server approves a connection establishment, it accepts
the request from the client and replies to it. The connection
establishment protocol involves a client sidennectorand a
server sideacceptorcomponent as captured in the below CCS

description.

A. Structural and Behavioral Specification

ser_req

ser_req

service
handler

connect

connect

acceptor

Fig. 3. Acceptor-Connector Pattern

Client
Connector
Acceptor

ServiceHandler

Arch

con-reqserv-regrep.Client
con-reqconneciConnector
connecinit-h. Acceptor
init-h.serv-reqrep.Service Handler
Client|Connector|Acceptor|

ServiceHandler

B. Verification Properties

Some of the properties of the acceptor-connector pattern ar

captured below.

« If there is a connection request, followed by service
request from client, the client eventually receives a reply

(P1).

o It is not the case that client receives a reply without

service request from the clienP).

« If there is connection request from the client, service

handler will get initialized £3).

« If there is a connection request from the client, a connec-
tion request on the acceptor-connector link follovi)(

to links client-service handlerclient-connector connector-
acceptor acceptor-service handleandclient-service handler
The verifiable machine including these actions is listea\el

Client = ’con-reg'serv-reqrep.trep.Client
Connector = con-regtcon-req'connectConnector
Acceptor = connecttconnecftinit-h.Acceptor
ServiceHandler = init-h.tinit-h.serv-reqtserv-req'rep.
ServiceHandler
Arch = (Client|Connector|Acceptor|

Service Handler)\{con-reqrep,
connecttinit-h, serv-reg

VI. THE CHAIN OF RESPONSIBILITY PATTERN

In the chain of responsibility pattern [5], the coupling
between sender of a request to its specific receiver is adoide
A request send by the client is dropped into a chain of
handler objects. A receiving object either handles the estju
or forwards it into the chain until an object handles it. The
terminal handler always handles its incoming requests.

Fig. 4. Chain of Responsibility Pattern

« If there is connection request from the client eventually
service-handler will be initializedH;).

« There is a possibility of a connection request from 1) Structural and Behavioral Specification:
client, followed by connect request generated from the

connector, followed by a initialization of handler, reques ~ Client = Teg.ans.Client
to server from the client and finally reply to the client. Chaini = req.ans.Chain, + req.reql.Chain,
This sequence of actions may repeat infinitély(Chaines = reql.ans.Chaing + reql.req2.Chains
prop P = AG(not((tcon-reg(t)(tserv-reqtt) Chains = req2.ans.Chains
VAF ({trep)tt)) Arch = Client|Chaini|Chaing|Chaing
prop P> = A(not({trep)tt)
W (tserv-reqtt) 2) Verification Properties:Some of the properties of the
prop P = AG(not({tcon-regtt v AF((tinit-h)tt)) chain of responsibility pattern are as follows.
prop Py = AG(not((tcon-reqit v AF(({tconnecttt)) « If request is answered by chain-3 then no other object
prop Ps = AG(not({tconnectit) v AF({tinit-h)it)) had answered the request}.
prop p; = max X = (t)(tcon-req (t) (tconnect « It is not the case that without a request from the client,
(t) (tinit-h)(t) (tserv-req (t) (trep) X It receives the answer,).

The above properties use observation actidserv-req
tcon-req tconnecttinit-h andtrep, respectively corresponding

« Ifrequestis answered by chain3 then all objects including
the terminator receive the request earli€)(

prop Py =

prop P, =
prop P =

(not (tanstt) Vv ((treq)(treql)(treq2)
(tans)tt)

A(not((tanstt)W (treq)tt)

(not (tanstt) Vv ({treq)(treql)(treq2)tt)

The actionstreq, treql, treq2 and tans are introduced as

4) Verification Properties:Some interaction properties of
the publisher subscriber pattern are described below. The
publishers publish into the intermediate channel, and the
channel generates notifications.

« After the publication of an event, it should be received

observable actions between connectors associated with por by the subscribersi).
req, reql, req2 andans respectively. The verifiable machine « It is not the case that without publication, it is recieved
that uses these actions is listed below.

Client
Chaing

Chaine

Chains
Arch

= 'req.ans.tans.Client

= req.treq.’ans.Chain; +
req.treq.'reql.Chain,

= reql.treql.’ans.Chaing +
reql.treql.'req2.Chaing

= req2.treq2. ans.Chaing

= (Client|Chaini|Chains|
Chains)\{req,reql,req2,ans}

VIl. PUBLISHER-SUBSCRIBER ARCHITECTURAL

DESCRIPTION

by the subscribersr).

« There exists a repeating sequence of publication of an
event el and its notification/).

o There exists a repeating sequence of publication of an
event e2 and its notificationr).

prop P, = (not (tpublish-e}tt)v
EF({tnotify-eDtt)
prop P, = A(not((tnotify-eltt)
W (({tpublish-eltt))
prop p; = max X = (tpublish-e}(tnotify-e X
prop p, = max Y =(tpublish-e2(tnotify-e2Y

The above properties use observable actigmgblish-el
tpublish-e2 tnotify-el and tnotify-e2 corresponding to con-
nector groups associated with popsblish el, publish e2,

A variation of the pattern that uses an intermediate evemetify_el and notify_e2 The verifiable machine written in
channels and a push-push model is modeled. A more gendeaims of these actions is provided below.
pattern of this kind can be found in the CORBA event service
description [1]. Whenever a publisher publishes an event,
the subscribers are required to receive a notification. Our p,p1 — ‘publish-e1Pub1 + 'publish-e2Publ

assumption in modeling this architectural descriptionhatt

subscribers are pre-subscribed.

publish_e2

publis|

h_el

notify_el

publish_el notify_e2

publish_el

3) Structura

Publ
Pub2 =
Subl =
Sub2 =
Ecl =
Ec2 =
Arch

publish_e2

publish_e2 notify_el

notify_e2

publish_e2

Fig. 5. Publisher Subscriber Pattern

| and Behavioral Specification:

publish-e1Pub1 + publish-e2Publ
publish-e1Pub2 + publish-e2Pub2
notify-e1Subl + notify-e2Subl
notify-e1Sub2 + notify-e2Sub2
publish-elnotify-e1Ecl
publish-e2notify-e2E¢2

Publ | Pub2 | Subl | Sub2 | Ecl | Ec2

Pub2 = ‘’publish-e1Pub2 + 'publish-e2Pub2
Subl = notify-eltnotify-e1Subl
—+notify-e2tnotify-e2Subl
Sub2 = notify-eltnotify-e1lSub2
-+notify-e2tnotify-e2Sub2
Ecl = publish-eltpublish-eI'notify-el Ecl
Ec2 = publish-e2publish-eZnotify-e2 Ec2
Arch = (Publ | Pub2 | Subl | Sub2 | Ecl | Ec2)\

{publish-e1publish-e2notify-e1 notify-e2

VIIl. DINING PHILOSOPHERPROBLEM

The dining philosopher problem is modeled using CCS.
CCS model is presented that simulates the behavior of two
philosophers. They are gathered around a table to think and
eat. Each philosopher thinks for a while, then eats, then
thinks again, and so on, independently of the others. When
a philosopher wants to eat, he picks the fork on his left,
if it's available, then the fork on his right, eats, and then
puts both forks back. It may happen that both philosophers
simultaneously want to eat. They pick their left fork, andifin
the right fork already picked by their right neighbor. Inghi
case the philosophers may stay in that situation (deadlock)
indefinitely.

g_efa getfl

getfl

used to bring out alternative interaction sequences antoag t
components. Modal: calculus was used for specifying the
desirable interaction properties of the system.

With the restriction operator in place, the internal action
become unobservable and hence for specifying the verditati
properties in terms of the actions, additional corresponding

getf2 observation actions were introduced in the CCS models. The

additional actions were introduced as input actions withieo

Philosopherz sponding input ports being unrestricted. With this techsiq

getf2 getf2

the number of labels used in the properties becomes the same
as the number of types of links present in the CCS model.

The CCS models precisely capture the interfaces of various

Fig. 6. Dinning Philosopher Problem

components in an abstract sense through the ports, and the

interactions among them through input and output actions.

A. Structural and Behavioral Specification
(1]
(2]

Py = getfi.getfa.put fi.pul fo.Pr 3]
Py = getfs.getfi.putfo.pul f1.Ps
Fi = getfi.tgeti.putfi.Fy [4]
Fy, = getfa.tgetfo.putfa.Fy

dpp = (Pi|P2|Fi|F2)\

(5]

{getfi, getfa, put f1, put fo} -
1) Verification Properties: Two important properties for

dining philosopher problem are as given below.
« The mutual exclusion property ensures that the fork i$’]
not assigned to two philosophers at the same tifg. (
o Deadlock property checks whether there is deadlock in
the system.).

prop o = AG(=({tget f1)(tgetf1)tt) o]
A=((tget f2) (tget f2)tt))

propp = min X =[-]ffv ()X

Specifying Invariants for Dining Philosophers

(8]

[10]
The above properties use observable actigesf;, tgeth, (11]
corresponding to connector groups associated with pget§,

tgetf,. The verifiable machine written in terms of these actiori$?]
is provided below. [13]

P = getfi.getfa.put fi.put fo.Pr [14]

Py = getfs.getfi.putfo.pul f1.Ps 1]

= getfi.tgetfi.putfr.Fy

Fy, = getfs.tgetfo.putfa.Fy [16]
dpp = (Pi|P2|Fi|F2)\

{getfla gethaPUtflaPUth}

IX. CONCLUSION

[17]

Variants of Proxy, Chain, MVC, Acceptor-Connector,
Publisher-Subscriber and dinning philosopher patternge ha
been modeled in the CCS process calculus with components
as agents and inter-component interactions as a resulteof th
composition with restriction. Non-determinism in CCS can b

REFERENCES

Event service specification, object management growgiolazr 2004.

R. Allen and D. Garlan. A formal basis for architecturainoection.
ACM Trans. Softw. Eng. Methodpb(3):213-249, 1997.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, Ml, $ Som-
merlad, and M. StalPattern-Oriented Software Architecture, Volume 1:
A System of Patternslohn Wiley & Sons, August 1996.

R. Cleaveland, J. Parrow, and B. Steffen. The concuyremarkbench.
In Proceedings of the international workshop on Automaticfieation
methods for finite state systgnmages 24-37, New York, NY, USA,
1990. Springer-Verlag New York, Inc.

E. Gamma, R. Helm, R. Johnson, and J. Vlissid&esign Patterns:
Elements of Reusable Object-Oriented Softwamdison-Wesley, 1995.
D. Garlan and M. Shaw. An introduction to software arebitire. In
V. Ambriola and G. Tortora, editorg\dvances in Software Engineering
and Knowledge Engineeringpages 1-39, Singapore, 1993. World
Scientific Publishing Company.

M. M. Kandé and A. Strohmeier. Towards a UML profile forftseare
architecture descriptions. In A. Evans, S. Kent, and B.cSdditors,
UML 2000 - The Unified Modeling Language. Advancing the Stehd
Third International Conference, York, UK, October 2000p&&edings
volume 1939 ofLNCS pages 513-527. Springer, 2000.

D. Kozen. Results on the propositional mu-calculugheor. Comput.
Sci, 27:333-354, 1983.

C. Lange, M. Chaudron, and J. Muskens. In practice: Unfinsoe
architecture and design descriptioBEE Software23(2):40-46, March-
April 2006.

J. Magee and J. Kramer. Dynamic structure in softwashitectures.
SIGSOFT Softw. Eng. Note21(6):3-14, 1996.

N. Medvidovic and R. N. Taylor. A classification and coanigson
framework for software architecture description langgadeEE Trans.
Softw. Eng.26(1):70-93, 2000.

R. Milner. Communication and Concurrencyrentice-Hall, 1989.

D. E. Perry and A. L. Wolf. Foundations for the study offta@re
architecture.ACM SIGSOFT Software Engineering Not&3(4):40-52,
1992.

T. L. Rance Cleaveland and S. Sims. The concurrency besr&h of
the new century, user’s manual. June 6, 2000.

D. C. Schmidt, H. Rohnert, M. Stal, and D. SchulRattern-Oriented
Software Architecture: Patterns for Concurrent and Netear Objects
John Wiley & Sons, Inc., New York, NY, USA, 2000.

C. Stirling. An introduction to modal and temporal logifor ccs.
In Proceedings of the UK/Japan workshop on Concurrency : theor
language, and architecturepages 2-20, New York, NY, USA, 1991.
Springer-Verlag New York, Inc.

C. Stirling. Modal and temporal properties of process&pringer-Verlag
New York, Inc., New York, NY, USA, 2001.

