
Capturing Interactions in Architectural Patterns
Dharmendra K Yadav

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Powai, Mumbai 400076, India
Email: dharmendra@cse.iitb.ac.in

Rushikesh K Joshi
Department of Computer Science and Engineering

Indian Institute of Technology Bombay
Powai, Mumbai 400076, India

Email: rkj@cse.iitb.ac.in

Abstract—Patterns of software architecture help in describing
structural and functional properties of the system in terms of
smaller components. The emphasis of this work is on capturing
the aspects of pattern descriptions and the properties of inter-
component interactions including non-deterministic behavior.
Through these descriptions we capture structural and behavioral
specifications as well as properties against which the specifications
are verified. The patterns covered in this paper are variantsof
Proxy, Chain, MVC, Acceptor-Connector, Publisher-Subscriber
and Dinning Philosopher patterns. While the machines are CCS-
based, the properties have been described in Modalµ-Calculus.
The approach serves as a framework for precise architectural
descriptions.

I. I NTRODUCTION

In component/connector based architectural descriptions[6],
[13], components are primary entities having identities inthe
system and connectors provide the means for communication
between them. This view is very similar to the abstractions
provided by CCS [12], in which, components can be seen as
non-movable agents and connectors as channels. Specification
of software architectures from designer’s point of view occurs
at different levels such as process, component, module and
object levels. The focus of this work is on modeling some
commonly occurring architectural patterns at the component
level in terms of CCS.µ-Calculus [8] is used to specify
example properties against which the architectural descriptions
can be verified. The CCS based approach effectively captures
interactions occurring at architectural level through itsfea-
tures such as components and their compositions, input/output
actions over channels and non-deterministic behavior. The
machines described in this paper have been verified with the
Concurrency Workbench [4]. The grammar used in specifica-
tions of the properties is as provided in [14].

II. RELATED WORK AND BACKGROUND

Various approaches for specifying and verifying software
architectures can be found in the literature. Architecture
Description Language (ADL) based approaches consist of
languages defined to describe, model and implement software
architectures. A classification of ADL based languages can
be found in [11]. Some of these languages have formal
semantics supporting formal analysis. For example, Darwin
[10] is a general purpose configuration language for distributed
dynamic system that usesπ-calculus to model the component
interaction and composition properties. Wright [2], which

TABLE I
A SUMMARY OF CCS COMBINATORS

Primitives & Descriptions Architectural
Examples Significance

Prefix (.) Action sequence intra-component
p1.p2 sequential flow

Summation (+) Nondeterminism choice within a component
A1 + A2

Composition (|) Connect matching multiple connected
A1 | A2 i/o ports in assembly components

Restriction (\) Hiding ports from Internal
A\{p1, k1, ..} further composition features
Relabeling ([]) Renaming of ports syntactic renaming
A[new/old, ..]

represents interface points as ports uses a subset of CSP for
it’s formal semantics. It allows architects to specify temporal
communication protocols and check properties such as dead-
lock freedom. Besides special purpose ADLs, general purpose
modeling techniques such as UML have also been found to
be useful for modeling high level software architectures [7],
[9].

We take an ADL-like approach in describing architectures
in terms of components and connectors, and use CCS, a
process calculus, to model and analyze software architectures
as it provides abstractions (agents and channels) which are
very similar to components and connector abstractions found
commonly in software architecture descriptions.

In CCS, agents have input and output ports. The processes
or agent expression for an agent is constructed from a set of
atomic actions involving ports. A port name with an overbar
such asp represents an output port. In the basic form of the
language, data values can not be passed unlike in the value
passing form as in expressionp(x). Agents communicate with
each other via connected pairs of input and output ports. Basic
combinators in CCS are summarized in Table I.

The formal semantics of the CCS [12] is given
by transitional semantics. In this the general notion of
labeled transition system as given below is used

(S, T, {
t
→: t ∈ T })

Which consists of a setS of states, a set T of
transition labels, and atransition relation

t
→⊆ S×S for

eacht ∈ T . In this transition systemS is taken to beE , the
agent expression, andT is taken to beAct, theactions. The

TABLE II
Syntax of modal mu-calculus

prop Φ ::= tt | ff | X | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [K]Φ |
〈K〉Φ | νX.Φ | µX.Φ | not prop | (prop) |
AG prop | AF prop | A (prop ∪ prop) |
A (prop W prop) | EG prop | EF prop |
E (prop ∪ prop) | A (prop W prop)

semantics forE consists in the definition of each transition
α
→

over E . The transitions of each composite agent is defined in
terms of the transitions of its component agent or agents. The
general rule of inference will be:

From E
α
→ E′ infer E|F

α
→ E′|F

and it can be written in the form

E
α
→E′

E|F
α
→E′|F

There will be one or more transition rules associated with each
combinator. The set of transition rules are as follows:
The namesAct, Sum, Com, Res and Relindicates that
the rules are associated respectively with Prefix, Summation,
Composition, Restriction and Relabeling.

Act
α.E

α
→E

Sumj
Ej

α
→E′

j∑
i∈I

Ei
α
→E′

j

(j ∈ I)

Com1
E

α
→E′

E|F
α
→E′|F

Com2
F

α
→F ′

E|F
α
→E|F ′

Com3
E

l
→E′ F

l
→F ′

E|F
τ
→E′|F ′

Rel E
α
→E′

E\L
α
→E′\L

(α, α /∈ L) Res E
α
→E′

E[f]
f(α)
→ E′[f]

For the specification of properties, Modalµ-Calculus has
been used. The modalµ calculus [16], [17] used here is
an extension of Henessy-Milner logic with two fixed point
operators. These two operators, least fixedµX.φ(X) and
greatest fixed pointsνX.φ(X) allow specification of iterative
behavior in the system, whereφ(X) is a state predicate in
which state predicate variable X can occur. The syntax of
modalµ calculus is summarized in Table II for reference.

III. PROXY

In this section, the interactions occurring in a caching proxy
[3] that hides the actual server and also caches information
from the server are modeled. When a client makes a request,
the reply may be handed over to the client either by the proxy
or from the server through the proxy. The CCS model shown in
Figure 1 captures the sequence of flow of messages. The CCS
model includes the two possibilities through non-deterministic
summation. The pattern is a composition of three components.
The description of the components is given below.

A. Pattern Description

Client = req.ans.Client

Proxy = req.ans.Proxy +

Fig. 1. Caching Proxy Pattern

req.request.reply.ans.Proxy

Server = request.reply.Server

Arch = Client|Proxy|Server

The desirable properties of interaction can be captured in
modalµ calculus. These properties can be used as verification
properties to model-check the architectural descriptions. Some
properties are outlined below. It can be noted that the proper-
ties are expressed in terms ofτ actions that occur in the above
machine. For eachτ action, a separateobservation action
is introduced in the machine. The properties below use these
observation actions. The property-friendly verifiable machine
is listed subsequently. The properties mentioned below are
necessary properties. They are not sufficient. Through these
properties we have tried to capture some of the essential
behaviours of the patterns.

prop P1 = AG(not 〈treq〉tt) ∨ AF (〈tans〉tt)
prop P2 = A(not(〈tans〉tt)W 〈treq〉tt)
prop P3 = AG(not(〈treq〉tt) ∨ AF (〈tans〉tt∨

〈trequest〉tt))
prop p4 = max X = 〈t〉〈treq〉〈t〉〈trequest〉〈t〉〈treply〉〈t〉

〈tans〉X
prop p5 = max Y =〈t〉〈treq〉〈t〉〈tans〉Y

In the verifiable machine below, the observation actions
introduced corresponding to theτ actions aretans, treq,
trequest, treply. The observation actions are introduced as
input actions, and they are inserted uniformly immediately
following input actions of the correspondingτ actions. The
same structure is followed for other patterns described in the
subsequent sections.

Client = ′req.ans.tans.Client

Proxy = req.treq.′ans.Proxy +

req.treq.′request.reply.treply.′ans.Proxy

Server = request.trequest.′reply.Server

Arch = (Client|Proxy|Server)\

{req, ans, request, reply}

The properties can be read as below.

• Whenever a client makes a request, eventually there will
always be an answer to the client (P1).

• Whenever there is an answer to the client, there is a prior
request from the client (P2).

• Immediately after a request, either an answer or a further
request will be generated from the proxy component (P3).

• There is a possibility of a request from client, followed
by request generated from the proxy, followed by a reply
from the server and finally an answer from the proxy.
This sequence of actions may repeat infinitely(P4).

• There is a possibility of a request from client, followed
by an answer from the proxy. This sequence of actions
may also repeat infinitely(P5).

In the subsequent section, the same template is followed
for presenting the descriptions of machines and propertiesof
other architectural patterns. A brief description of the pattern
to be described is given first. The CCS model characterizes
the pattern’s components, component behaviors, channels and
interactions through the channels. The properties capturethe
typical interaction properties and the corresponding verifiable
machines are also provided.

IV. M ODEL V IEW CONTROLLER ARCHITECTURAL

DESCRIPTION

The Model-View-Controller architectural pattern [3] divides
an interactive application into three parts. The model contains
core functionality and data. The controller changes the model.
Whenever there is change in model, the view is required to
reflect the current state of model. Thus, the controller controls
the model, while the view keeps track of the changes in the
model. The components and the interaction channels for an
MVC system are depicted in Figure 2.

A. Structural and Behavioral Specification

Fig. 2. Model View Controller Pattern

Controller = change-m.Controller

Model = change-m.change-v.Model +

info-req.info-rep.Model

V iew = change-v.info-req.info-rep.V iew

Arch = Controller|Model|V iew

B. Verification Properties

some of the interaction properties for the MVC patterns are
listed below.

• If there is a request for updated information, eventually
there will be a reply (P1).

• It is not the case that without any request for updated
information, there will be reply for the information (P2).

• If the controller outputs a request for change in model a
change in view also takes place (P3).

• It is not the case that without any change from the
controller, there will be change in view (P4).

prop P1 = AG(not 〈tinfo-req〉tt)
∨AF (〈tinfo-rep〉tt)

prop P2 = A(not (〈tinfo-rep〉tt)
W (〈tinfo-req〉tt)

prop P3 = AG(not 〈tchange-m〉tt)
∨AF (〈tchange-v〉tt)

prop P4 = A(not ((〈tchange-v〉tt)
W (〈tchange-m〉tt)))

The above properties use additional observation actions
tinfo-req, tinfo-rep, tchange-m, tchange-vcorresponding to
τ actions on the four links(info req, info req), (info rep,
info rep), (change m, change m) and (change v, change v).
The corresponding verifiable machine is given below.

Controller = ’change-m.Controller

Model = change-m.tchange-m.’change-v.Model +

info-req.tinfo-req.’info-rep.Model

V iew = change-v.tchange-v.’info-req.info-rep

.tinfo-rep.V iew

Arch = (Controller|Model|V iew)\

{change-m, change-v, info-req, info-rep}

V. ACCEPTOR-CONNECTOR

In the acceptor-connector architectural pattern [15], connec-
tion establishment and service initialization is done before any
processing is performed. This separation of responsibilities is
achieved by three components, an acceptor, a connector, and
a service handler. Before the client sends a request to server,
a connection establishment protocol is initiated. Only when
the server approves a connection establishment, it accepts
the request from the client and replies to it. The connection
establishment protocol involves a client sideconnectorand a
server sideacceptorcomponent as captured in the below CCS
description.

A. Structural and Behavioral Specification

Fig. 3. Acceptor-Connector Pattern

Client = con-req.serv-req.rep.Client

Connector = con-req.connect.Connector

Acceptor = connect.init-h.Acceptor

ServiceHandler = init-h.serv-req.rep.ServiceHandler

Arch = Client|Connector|Acceptor|

ServiceHandler

B. Verification Properties

Some of the properties of the acceptor-connector pattern are
captured below.

• If there is a connection request, followed by service
request from client, the client eventually receives a reply
(P1).

• It is not the case that client receives a reply without
service request from the client (P2).

• If there is connection request from the client, service
handler will get initialized (P3).

• If there is a connection request from the client, a connec-
tion request on the acceptor-connector link follows (P4).

• If there is connection request from the client eventually
service-handler will be initialized (P5).

• There is a possibility of a connection request from
client, followed by connect request generated from the
connector, followed by a initialization of handler, request
to server from the client and finally reply to the client.
This sequence of actions may repeat infinitely(P6).

prop P1 = AG(not(〈tcon-req〉〈t〉〈tserv-req〉tt)
∨AF (〈trep〉tt))

prop P2 = A(not(〈trep〉tt)
W (tserv-req〉tt)

prop P3 = AG(not(〈tcon-req〉tt ∨ AF (〈tinit-h〉tt))
prop P4 = AG(not(〈tcon-req〉tt ∨ AF (〈tconnect〉tt))
prop P5 = AG(not(〈tconnect〉tt) ∨ AF (〈tinit-h〉tt))
prop p6 = max X = 〈t〉〈tcon-req〉〈t〉〈tconnect〉

〈t〉〈tinit-h〉〈t〉〈tserv-req〉〈t〉〈trep〉X

The above properties use observation actionstserv-req,
tcon-req, tconnect, tinit-h andtrep, respectively corresponding

to links client-service handler, client-connector, connector-
acceptor, acceptor-service handlerandclient-service handler.
The verifiable machine including these actions is listed below.

Client = ’con-req.’serv-req.rep.trep.Client

Connector = con-req.tcon-req.’connect.Connector

Acceptor = connect.tconnect.’init-h .Acceptor

ServiceHandler = init-h.tinit-h.serv-req.tserv-req.’rep.

ServiceHandler

Arch = (Client|Connector|Acceptor|

ServiceHandler)\{con-req, rep,

connect, tinit-h, serv-req}

VI. T HE CHAIN OF RESPONSIBILITY PATTERN

In the chain of responsibility pattern [5], the coupling
between sender of a request to its specific receiver is avoided.
A request send by the client is dropped into a chain of
handler objects. A receiving object either handles the request
or forwards it into the chain until an object handles it. The
terminal handler always handles its incoming requests.

CLIENT

ans

req

req2

req1

req1

req

req2

ans
ans

ans

chain3 chain2

chain1

Fig. 4. Chain of Responsibility Pattern

1) Structural and Behavioral Specification:

Client = req.ans.Client

Chain1 = req.ans.Chain1 + req.req1.Chain1

Chain2 = req1.ans.Chain2 + req1.req2.Chain2

Chain3 = req2.ans.Chain3

Arch = Client|Chain1|Chain2|Chain3

2) Verification Properties:Some of the properties of the
chain of responsibility pattern are as follows.

• If request is answered by chain-3 then no other object
had answered the request (P1).

• It is not the case that without a request from the client,
It receives the answer (P2).

• If request is answered by chain3 then all objects including
the terminator receive the request earlier (P3).

prop P1 = (not 〈tans〉tt) ∨ (〈treq〉〈treq1〉〈treq2〉
〈tans〉tt)

prop P2 = A(not(〈tans〉tt)W 〈treq〉tt)
prop P3 = (not 〈tans〉tt) ∨ (〈treq〉〈treq1〉〈treq2〉tt)

The actionstreq, treq1, treq2 and tans are introduced as
observable actions between connectors associated with ports
req, req1, req2 andans respectively. The verifiable machine
that uses these actions is listed below.

Client = ′req.ans.tans.Client

Chain1 = req.treq.′ans.Chain1 +

req.treq.′req1.Chain1

Chain2 = req1.treq1.′ans.Chain2 +

req1.treq1.′req2.Chain2

Chain3 = req2.treq2.′ans.Chain3

Arch = (Client|Chain1|Chain2|

Chain3)\{req, req1, req2, ans}

VII. PUBLISHER-SUBSCRIBER ARCHITECTURAL

DESCRIPTION

A variation of the pattern that uses an intermediate event
channels and a push-push model is modeled. A more general
pattern of this kind can be found in the CORBA event service
description [1]. Whenever a publisher publishes an event,
the subscribers are required to receive a notification. Our
assumption in modeling this architectural description is that
subscribers are pre-subscribed.

pub2

ec1pub1

publish_e2
ec2

sub1

sub2

publish_e1

notify_e1

notify_e2

publish_e1

publish_e2

publish_e2

publish_e1

publish_e2

publish_e1

notify_e1

notify_e1

notify_e2

notify_e2

Fig. 5. Publisher Subscriber Pattern

3) Structural and Behavioral Specification:

Pub1 = publish-e1.Pub1 + publish-e2.Pub1

Pub2 = publish-e1.Pub2 + publish-e2.Pub2

Sub1 = notify-e1.Sub1 + notify-e2.Sub1

Sub2 = notify-e1.Sub2 + notify-e2.Sub2

Ec1 = publish-e1.notify-e1.Ec1

Ec2 = publish-e2.notify-e2.Ec2

Arch = Pub1 | Pub2 | Sub1 | Sub2 | Ec1 | Ec2

4) Verification Properties:Some interaction properties of
the publisher subscriber pattern are described below. The
publishers publish into the intermediate channel, and the
channel generates notifications.

• After the publication of an event, it should be received
by the subscribers (P1).

• It is not the case that without publication, it is recieved
by the subscribers (P2).

• There exists a repeating sequence of publication of an
event e1 and its notification (P3).

• There exists a repeating sequence of publication of an
event e2 and its notification (P4).

prop P1 = (not 〈tpublish-e1〉tt)∨
EF (〈tnotify-e1〉tt)

prop P2 = A(not(〈tnotify-e1〉tt)
W (〈tpublish-e1〉tt))

prop p3 = max X = 〈tpublish-e1〉〈tnotify-e1〉X
prop p4 = max Y =〈tpublish-e2〉〈tnotify-e2〉Y

The above properties use observable actionstpublish-e1,
tpublish-e2, tnotify-e1 and tnotify-e2 corresponding to con-
nector groups associated with portspublish e1, publish e2,
notify e1 and notify e2. The verifiable machine written in
terms of these actions is provided below.

Pub1 = ’publish-e1.Pub1 + ’publish-e2.Pub1

Pub2 = ’publish-e1.Pub2 + ’publish-e2.Pub2

Sub1 = notify-e1.tnotify-e1.Sub1

+notify-e2.tnotify-e2.Sub1

Sub2 = notify-e1.tnotify-e1.Sub2

+notify-e2.tnotify-e2.Sub2

Ec1 = publish-e1.tpublish-e1.’notify-e1.Ec1

Ec2 = publish-e2.tpublish-e2.’notify-e2.Ec2

Arch = (Pub1 | Pub2 | Sub1 | Sub2 | Ec1 | Ec2)\

{publish-e1, publish-e2, notify-e1, notify-e2}

VIII. D INING PHILOSOPHERPROBLEM

The dining philosopher problem is modeled using CCS.
CCS model is presented that simulates the behavior of two
philosophers. They are gathered around a table to think and
eat. Each philosopher thinks for a while, then eats, then
thinks again, and so on, independently of the others. When
a philosopher wants to eat, he picks the fork on his left,
if it’s available, then the fork on his right, eats, and then
puts both forks back. It may happen that both philosophers
simultaneously want to eat. They pick their left fork, and find
the right fork already picked by their right neighbor. In this
case the philosophers may stay in that situation (deadlock)
indefinitely.

Fork2

Philosopher1

Philosopher2

Fork1

getf2

get f2 put f2 get f1

get f2 get f2

put f2
put f2

put f1 get f1

put f1put f1

get f1 get f1

put f2

put f1

Fig. 6. Dinning Philosopher Problem

A. Structural and Behavioral Specification

P1 = getf1.getf2.putf1.putf2.P1

P2 = getf2.getf1.putf2.putf1.P2

F1 = getf1.tget1.putf1.F1

F2 = getf2.tgetf2.putf2.F2

dpp = (P1|P2|F1|F2)\

{getf1, getf2, putf1, putf2}

1) Verification Properties: Two important properties for
dining philosopher problem are as given below.

• The mutual exclusion property ensures that the fork is
not assigned to two philosophers at the same time (P1).

• Deadlock property checks whether there is deadlock in
the system. (P2).

prop p1 = AG(¬(〈tgetf1〉〈tgetf1〉tt)
∧¬(〈tgetf2〉〈tgetf2〉tt))

prop p2 = min X = [−]ff ∨ 〈−〉X

Specifying Invariants for Dining Philosophers

The above properties use observable actionstgetf1, tgetf2,
corresponding to connector groups associated with portstgetf1,
tgetf2. The verifiable machine written in terms of these actions
is provided below.

P1 = getf1.getf2.putf1.putf2.P1

P2 = getf2.getf1.putf2.putf1.P2

F1 = getf1.tgetf1.putf1.F1

F2 = getf2.tgetf2.putf2.F2

dpp = (P1|P2|F1|F2)\

{getf1, getf2, putf1, putf2}

IX. CONCLUSION

Variants of Proxy, Chain, MVC, Acceptor-Connector,
Publisher-Subscriber and dinning philosopher patterns have
been modeled in the CCS process calculus with components
as agents and inter-component interactions as a result of the
composition with restriction. Non-determinism in CCS can be

used to bring out alternative interaction sequences among the
components. Modalµ calculus was used for specifying the
desirable interaction properties of the system.

With the restriction operator in place, the internal actions
become unobservable and hence for specifying the verification
properties in terms of theτ actions, additional corresponding
observation actions were introduced in the CCS models. The
additional actions were introduced as input actions with corre-
sponding input ports being unrestricted. With this technique,
the number of labels used in the properties becomes the same
as the number of types of links present in the CCS model.

The CCS models precisely capture the interfaces of various
components in an abstract sense through the ports, and the
interactions among them through input and output actions.

REFERENCES

[1] Event service specification, object management group, October 2004.
[2] R. Allen and D. Garlan. A formal basis for architectural connection.

ACM Trans. Softw. Eng. Methodol., 6(3):213–249, 1997.
[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, P. Som-

merlad, and M. Stal.Pattern-Oriented Software Architecture, Volume 1:
A System of Patterns. John Wiley & Sons, August 1996.

[4] R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench.
In Proceedings of the international workshop on Automatic verification
methods for finite state systems, pages 24–37, New York, NY, USA,
1990. Springer-Verlag New York, Inc.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[6] D. Garlan and M. Shaw. An introduction to software architecture. In
V. Ambriola and G. Tortora, editors,Advances in Software Engineering
and Knowledge Engineering, pages 1–39, Singapore, 1993. World
Scientific Publishing Company.

[7] M. M. Kandé and A. Strohmeier. Towards a UML profile for software
architecture descriptions. In A. Evans, S. Kent, and B. Selic, editors,
UML 2000 - The Unified Modeling Language. Advancing the Standard.
Third International Conference, York, UK, October 2000, Proceedings,
volume 1939 ofLNCS, pages 513–527. Springer, 2000.

[8] D. Kozen. Results on the propositional mu-calculus.Theor. Comput.
Sci., 27:333–354, 1983.

[9] C. Lange, M. Chaudron, and J. Muskens. In practice: Uml software
architecture and design description.IEEE Software, 23(2):40–46, March-
April 2006.

[10] J. Magee and J. Kramer. Dynamic structure in software architectures.
SIGSOFT Softw. Eng. Notes, 21(6):3–14, 1996.

[11] N. Medvidovic and R. N. Taylor. A classification and comparison
framework for software architecture description languages. IEEE Trans.
Softw. Eng., 26(1):70–93, 2000.

[12] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[13] D. E. Perry and A. L. Wolf. Foundations for the study of software

architecture.ACM SIGSOFT Software Engineering Notes, 17(4):40–52,
1992.

[14] T. L. Rance Cleaveland and S. Sims. The concurrency workbench of
the new century, user’s manual. June 6, 2000.

[15] D. C. Schmidt, H. Rohnert, M. Stal, and D. Schultz.Pattern-Oriented
Software Architecture: Patterns for Concurrent and Networked Objects.
John Wiley & Sons, Inc., New York, NY, USA, 2000.

[16] C. Stirling. An introduction to modal and temporal logics for ccs.
In Proceedings of the UK/Japan workshop on Concurrency : theory,
language, and architecture, pages 2–20, New York, NY, USA, 1991.
Springer-Verlag New York, Inc.

[17] C. Stirling. Modal and temporal properties of processes. Springer-Verlag
New York, Inc., New York, NY, USA, 2001.

