Structuring I/O Services in Object-Oriented Architectures *

Anil A. Gracias, Rushikesh K. Joshi
Department of Computer Science and Engineering
Indian Institute of Technology, Bombay
Powai, Mumbai - 400 076, India.

{gracias, rkj}@cse.iitb.ac.in

ABSTRACT

Dynamic object creation or state changes often require in-
formation related to object’s state to be fetched from an en-
vironment external to object’s context. Similarly, object’s
state is accessed in external environments through its in-
terface. We discuss a general purpose service architecture
for structuring I/O services. The architecture separates the
concerns of I/O from object’s functionality. The architec-
ture employs event channel type communication, in which,
an intermediate 1/O channel provides variability to support
different types of object factories, observable objects and
I/0 streams.

Keywords
design patterns, I/O service,
Push/Pull architecture.

intermediate channel,

1. INTRODUCTION

Objects in an application need to communicate with the ex-
ternal environment for exchange of data. An application
fetches input in some form, processes it in its business logic
layer and presents results as output in a desired form. If the
concerns of functionality and I/O are separated, both can be
varied and adapted independently. Though in a given appli-
cation, I/O streams may communicate over a specific data
domain, they may use different forms of data and different
styles for communicating. For example, an input stream
may be hooked to a command line character sequence, or to
a GUI or to a network socket. Similarly, an output stream
may be hooked to a GUI, or to a printer or a file.

1.1 Variability in 1/O Structuring

The variations in I/O streams can be classified into push
style or pull style communication. If an object embeds its
1/0 implementation scheme, the I/O stream types get tied

*This work has been sponsored by Tata Infotech Limited
under R & D project code number 02SA011

to a specific choice. For example, consider a text to speech
conversion application designed to accept text through GUI
and to present the output as on-line synthesized speech. The
application would have to be designed with push style input
and push style output as shown in Figure 1. This would
require the speech engine to be modified if it is to be adapted
to a pull style file-based input and a pickup based pull style
output, in which, the user may want to pick up the results
conveniently at a later time.

/ INputGUI

SpeechEngine
“+pushText(txt: String) \

OutputSpeech
+pushV oice(clip: Audio)

Figure 1: A Speech Synthesizer Application

Moreover, with one style of communication, the form of the
streams may vary. For example, we may want the system
to be enhanced to accept input from a pdf document in a
pull style. Clearly, if the speech engine is overloaded with
1/0 responsibilities, it becomes cumbersome to manage the
adaptations since the concerns of functionality and I/O re-
main unseparated.

The separation of I/O concerns from functionality not only
allows us to carry out adaptations on I/O streams, but also
makes it possible to vary the functionality, i.e. speech syn-
thesis in this case, independently of I/O streams. For exam-
ple, we may want to replace the existing speech engine with
a new one with a more pleasing accent, without having to
worry about the variations in the data acquisition and de-
livery mechanisms. Hence to keep the system flexible, it be-
comes necessary to decouple the concerns of data acquisition
and delivery mechanisms from the concerns of functionality.
We present the design of an I/O service, which facilitates
this separation of concerns. The type of an existing stream
may be varied without changing any functional code in the
business logic.

2. STRUCTURING I/O STREAMS

The general data flow structure of a system using an I/O
channel is shown in Figure 2(a). The I/O channel provides
a means of communication between the data source and the
data sink. Using the intermediate I/O channel decouples
the source from the sink. The channel can be interfaced
with a push type source and a push type sink or a pull

type source and pull type sink, or even hybrids as shown
using representations captured in Figure 2(b). The channel
is capable to communicate in any style depending upon the
type of source and sink subscribed to it. This makes the
source independent of the type of sink. Hence, any changes
made at the sink are not noticed by the source and vice-
versa. The variations are handled by the channel leaving
the communicating components unaffected.

Data flow of 170 flow of | Data
Source data Channel [4ata Sink

(a) General Data Flow Structure

push source — push sink

using push using push -
/O Channel

pull source — push sink

using pull using push -

pull source — pull sink

using pull using pull "

push source — pull sink

using push using pull -
1/0 Channel Data Sink

(b) Different kinds of data sources and sinks handled by 1I/0O channel

Figure 2: General Architecture using I/O Channel

2.1 1/O Channel

The structure of the I/O channel is similar to that of the
event channel of the CORBA architecture [1], in the sense
that it uses variations of the push and pull style interfaces.
The channel implements the PULLCLIENTEC, PUSHCLI-
ENTEC, PULLSERVEREC and PUSHSERVEREC inter-
faces as shown in Figure 3. Each of the interfaces provides a
service to which a component can subscribe to. The channel
provides independence from the type of streams by handling
both push and pull style within the channel itself. The chan-
nel can also provide scalability by allowing multiple streams
to subscribe. Depending on the type of streams connected,
the channel may need to act as a simple request forwarder,
a smart channel or a buffered channel.

The I/O channel has compatible interfaces for clients and
servers of both push and pull type. Interface PULLSERVE-
REC and PUSHSERVEREC respectively define interfaces
for pull type and push type servers for the I/O channel. Ob-
jects of the type PULLCLIENT and PUSHCLIENT inter-
act with these interfaces respectively. Similarly, interfaces
PUSHCLIENTEC and PULLCLIENTEC define interfaces
for push type and pull type clients for the I/O channel. Ob-
jects of the type PUSHSERVER and PULLSERVER inter-
act with these interface respectively.

3. ENGINEERING OF INPUT
ARCHITECTURE

For designing the input of the system, the input streams act
as sources producing data to be provided to the channel.
The object which is to process this data will act as a sink.
The channel forms an intermediate pipe carrying data from
the input streams to the data processing object. This section
describes static and dynamic models of input architecture
based on the design of the I/O channel discussed in the
previous section.

PUL L SERVEREC

PUSHCLIENTEC

+ pull Data(): Object
+subscribe(id: PULLCLIENT)
+unsubscribe(id: PULLCLIENT)

+ pushData(data: Object)
+ subscribe(id: PUSHSERVER)
+unsubscribe(id: PUSHSERVER)

PUSHSERVEREC

PULLCLIENTEC

+subscribe(id: PUSHCLIENT)

+subscribe(id: PULLSERVER)
+unsubscribe(id: PULLSERVER)

|
|
|
|
+unsubscribe(id: PUSHCLIENT) i
|
|
I
|

IOCHANNEL

Figure 3: Structure of the I/O Channel

3.1 Static Model

The static model of a system using an input channel is shown
in Figure 4. The architecture comprises of an application
layer requiring to fetch input, an I/O channel and input
streams layer.

Application Layer:

Objects requiring to receive data from the input stream are
interfaced with one of the server interfaces of the I/O chan-
nel. An application object designed to pull data from the
1/0 streams needs to implement the PULLCLIENT inter-
face and is shown as the PULLCONS class in the Figure 4.
Objects of type PULLCONS interact with the PULLSERV-
EREC of the I/O channel to fetch the required data. If ob-
jects in the application layer rather receive data from the
input stream, it needs to implement the interface PUSH-
CLIENT. Class PUSHCONS which implements the PUSH-
CLIENT interface allows the intermediate I/O channel to
push data onto it.

Input Stream Layer:

Input streams, which are to provide the application layer
with the required data form a part of the input stream
layer. Interfaces PUSHSERVER and PULLSERVER de-
fine the interface for push type input stream and pull type
input stream respectively. An input stream of push style
communication will implement the interface PUSHSERVER
and push data to the I/O channel communicating through
the PUSHCLIENTEC interface. This class is shown as PU-
SHIPSTREAM in the Figure 4. An input stream exhibit-
ing pull style communication will implement the interface
PULLSERVER and allow the I/O channel to pull data from
itself. This class is shown as PULLIPSTREAM.

3.2 Dynamic Model

We capture the behavioral aspect of an input architecture
by means of sequence diagrams. Following subsections de-
scribe how requests made by the communicating objects are
handled by the channel. Depending on the type of appli-
cation object and the type of input stream interfaced, the
input channel alters its behavior.

Input Channel with Push Type Application Object:
Figure 5(a) shows the input channel with a push type of
input stream. For this environment, the input channel sim-
ply forwards the push message along with the data from
the push input stream to the push application object. Fig-
ure 5(b) shows the input channel with a pull type of input

PULLCLIENT

+disconnect()

[

PUSHSERVER

+disconnect()

[

PULLCONS PULLSERVEREC

PUSHCLIENTEC PUSHIPSTREAM

=+ pullData(): Object
+subscribe(id: PULLCLIENT)
+unsubscribe(id: PULLCLIENT)

+ pushData(data: Object)
+subscribe(id: PUSHSERVER)
+unsubscribe(id: PUSHSERVER)

PUSHCLIENT

+ pushData(data: Object)
+disconnect()

|
! PULL SERVER
|

+ pullData(): Object
+disconnect()

PUSHCONS PUSHSERVEREC

PULLCLIENTEC PULLIPSTREAM

+subscribe(id: PUSHCLIENT)
+unsubscribe(id: PUSHCLIENT)

+subscribe(id: PULLSERVER)
+unsubscribe(id: PULLSERVER)

INPUTCHANNEL

——— APPLICATION LAYER —= ‘

1/0 CHANNEL

‘ —— INPUT STREAMSLAYER —=

Figure 4: Structure of the Input Architecture

pushCons inputChannel inputChannel pushlpStream

pushCons inputChannel inputChannel pulllpStream

{PUSHCLIENT || :PUSHSERVEREC :PUSHCLIENTEC ... || :PUSHSERVER

:PUSHCLIENT ||:PUSHSERVEREC :PULLCLIENTEC ... ||:PULLSERVER

‘
|
subscribe(id:PUSHSERVER)

‘
|
|
1
pushData(data: Object)
|
|
|
|
‘
|
|

pushData(ddta: Object)
‘

‘
subscribe(id:PUSHCLIENT)
iPUSHCLIENT)
‘
|
|
|
‘
|
‘
‘
i
|
|
‘
‘
|

(a) with push type input stream

‘
|
subscribe(id:PULL SERVER)

~ ‘
|
|
‘
|

pull Data():Object

‘
subscribe(id:PUSHOLIENT)
; Subscribe(id:PUSHO
‘
|
|
|
‘
|
‘

pushData(data: Object)
.

(b) with pull type input stream

Figure 5: Push Consumer - Input Channel - Input Stream

stream. In this scenario, the input channel acts as an intel-
ligent channel which itself pulls data from the input stream
and then pushes it onto the push application object. The
pulling may be periodic, wherein the input channel acts as
a sampler or the pulling may be governed by some external
trigger logic.

Input Channel with Pull Type Application Object:
Figure 6(a) shows the input channel with a pull type of in-
put stream. For this environment, the input channel simply
forwards the pull message from the pull application object
to the pull input stream. The pull application object blocks
till the required data is provided to it by the input channel.
Figure 6(b) shows the input channel with a push type of
input stream. In this scenario both the input stream and
the application are active objects and send messages asyn-
chronously. If push message from the input stream occurs
before a pull from the application object, the input channel
buffers the data obtained from the push message. When a
pull request is made from the application object the input
channel supplies the buffered data to it. Here, the input

channel provides buffering. The pull message from the pull
application object can occur first, even before a push from
the input stream has been made. In this case, the pull from
the application object is blocked till a push message is re-
ceived from the input stream with the required data.

4. ENGINEERING OF OUTPUT
ARCHITECTURE

We have seen how the input channel decouples the input
streams from the application layer making the system adapt-
able for changes in input layer. By using a similar design, the
system can be made to adapt to different output streams.
Output streams are interfaced with the channel as data
sinks. Application objects act as sources and provide data
to be delivered to external environment through the output
channel. From the designs of the input channel and output
channel shown in Figures 4 & 7 respectively, it can be seen
that both designs are mirror images of each other. Dynamic
model for the output channel will be similar to that of the
input channel.

pullCons inputChannel inputChannel pulllpStream

pullCons inputChannel inputChannel pushlpStream

:PULLCLIENT || :PULLSERVEREC :PULLCLIENTEC ...

:PULLSERVER

PULLCLIENT

:PULLSERVEREC :PUSHCLIENTEC ... || :PUSHSERVER

i
subscribe(id;PULL CLIENT)
—

|
|
i
|
ull Data(): Object
pullData):Obj pull Data():Object
:

(a) with pull type input stream

I
| |

I .

| subscrlbe(ld:PULLS‘ER\/ER)
-~

i

I

I

I

. . . .
| | |
| subscribe(id:PULL,CLIENT)

I

I
| |
I A

1 subscribe(i d:PUSHSEtRV ER)
e —

i i

I I

I
I
i

|
pushData(data: Object)
ﬁ i

|
pullpata():Object

if pushDatareceived
]

(b) with push type input stream

Figure 6: Pull Consumer - Input Channel - Input Stream

PUSHSERVER

+disconnect()

PULLCLIENT

+disconnect()

PULLSERVEREC PULLOPSTREAM

+ pull Data(): Object
+subscribe(id: PULLCLIENT)
+unsubscribe(id: PULLCLIENT)

PUSHPROD PUSHCLIENTEC
+pushData(data: Object)
+subscribe(id: PUSHSERVER)
+unsubscribe(id: PUSHSERVER)

[
j
PULLSERVER [™] I
I

+ pull Data(): Object
+disconnect()

[

PUSHCLIENT

+ pushData(data: Obj ect)
+disconnect()

5

PULLPROD PULLCLIENTEC

PUSHSERVEREC PUSHOPSTREAM

+subscribe(id: PULLSERVER)
+unsubscribe(id: PULLSERVER)

+subscribe(id: PUSHCLIENT)
+unsubscribe(id: PUSHCLIENT)

OUTPUTCHANNEL

——— APPLICATION LAYER —= ‘

1/O0 CHANNEL

‘ —=— OUPUT STREAMSLAYER —=

Figure 7: Structure of the Output Architecture

5. INTERWEAVING I/O SERVICES
WITH OTHER DESIGN PATTERNS

The I/O Service discussed above can be used in co-operation
with other design patterns [3, 6] to enhance the benefits
provided by them. The 1/O service can be employed in
event channel based systems or systems having a client-
server type of architecture to provide communication style
independence. The design can be used to support style in-
dependent peer to peer communication. It is also possible
to utilize the I/O channel in creational patterns to fetch the
initial state for the object being created. This section il-
lustrates with examples how I/O services can be put to use
with other widely used design patterns.

5.1 Pipes and Filters

Pipes and Filters [2, 5] are used to carry out transformations
on data streams. Filters act as processing units which can
refine or transform data. A series of filters are connected
with pipes to carry out complex transformations. Filters
may be of pull, push or pull-push type. Depending on the
output style of a filter and the input style of the subsequent
filter different types of pipes could be required. For example,
connecting a push filter with another push filter requires

the pipe to do simple forwarding of the data, but if a push
filter is to be connected with a pull-push filter, a buffered
pipe will be required. The output channel can be used to
connect two filters of any type. Using the output channel it
is possible to remove a filter of one type and connect a filter
of another type without affecting the filter at the other end
of the channel. The channel will automatically adapt to the
style of communication of the newly attached filter.

5.2 Producer-Consumer

In a producer consumer environment, the producer can cre-
ate data and have them delivered in either the push or the
pull style. Similarly, the consumer can get data in either
style. The producer and consumer can communicate with
each other in three ways, push-push, pull-pull and push-
pull. Inserting the output channel between the producer
and the consumer decouples them allowing any type of pro-
ducer and any type of consumer to be interfaced with each
other. In addition to the existing three communication ways,
the producer and consumer can communicate in a pull-push
fashion, wherein, the output channel is the active element
pulling data from a passive producer and pushing the data
to a passive consumer.

PUSHSERVER

+disconnect()

PULLCLIENT

+notify()
+disconnect()

L
PULL SERVEREC PULLSUB

+pull(): Object
+subscribe(id: PULLCLIENT)
+unsubscribe(id: PULLCLIENT)

p
I
PUSHPUB PUSHCLIENTEC
+ notifyAndPush(data: Object)
+ subscribe(id: PUSHSERVER)
+unsubscribe(id: PUSHSERVER)
p
I
PULLSERVER || I

+pull(): Object
+ disconnect()

PUSHCLIENT

+ notifyAndPush(data: Object)
+ disconnect()

PUL LPUB PULLCLIENTEC

PUSHSERVEREC PUSHSUB

+notify()
+ subscribe(id: PULLSERVER)
+unsubscribe(id: PULLSERVER)

+subscribe(id: PUSHCLIENT)
+unsubscribe(id: PUSHCLIENT)

OUTPUTCHANNEL

—=—— APPLICATION LAYER ——= ‘

1/0 CHANNEL

—=— OUPUT STREAMSLAYER ——=

Figure 8: Publisher-Subscriber using I/O Service

5.3 Publisher-Subscriber

The publisher-subscriber design pattern [4] is used when an
object wishes to communicate information to a set of inter-
ested objects. Objects providing the information are called
publishers and the receiving objects are termed subscribers.
The publisher notifies all subscribed objects on availability
of information. Data is then communicated between the
publisher and the subscribers. The data can be communi-
cated in two ways. The publisher can push data along with
the notify message to the subscribers or the publisher simply
sends a notify message and the subscribers later pick up data
from it in pull style. By communicating through the output
channel, it is possible to interface any type of publisher with
any type of subscribers. The subscription information is also
handled by the output channel. The publisher-subscriber
pattern using the output channel is shown in Figure 8. The
output channel has a few changes. The push method in
the PUSHCLIENTEC is to be taken as notifyAndPush and
the PULLCLIENTEC has an additional notify message to
trigger the pull type client to pull data from the pull server.

5.4 Builder

Builder [3] is used for separating the construction process
of an object from its representation. This allows us to use
the same creation process to form different representations
of the object. The I/O service can be used if the system
requires to fetch data from an external environment or from
some other object. The builder can be interfaced with an
input channel to fetch data external to it for the construc-
tion of the object. The builder can act as a pull client which
pulls data from the channel when the director of the builder
pattern instructs it to construct the object. It is also possi-
ble to have the builder as a push client which accepts data
pushed onto it by the channel but constructs the object only
when the director requests construction of the object. The
input streams may be of any type and will be handled trans-
parently by the input channel. The builder is not aware of
the types and forms of the input streams.

5.5 Factory Method

The factory method pattern [3] defines the interface of the
creator class and delegates the actual construction of the
product to subclasses. The concrete creator class which ac-
tually creates the product can make use of the input chan-
nel for fetching data required to construct the product. The
concrete creator can implement the pull client interface and
pull data from the input channel when it is instructed to
create the product. It is also possible for the concrete cre-
ator to implement the push client interface and allow the
input channel to push the required data to it. Later when
the product is demanded, it can use the data pushed to it to
create the product. Since the input channel decouples the
factory from the input streams, any type of input stream
can be interfaced and varied at the input channel without
affecting the factory code.

5.6 Forwarder-Receiver

The forwarder-receiver pattern [2] is used for peer-to-peer
communication. FEach peer communicates with the other
only via forwarder and receivers. The forwarder acts as a
push client allowing a communicating peer to push messages
to it. The receiver acts as a pull server and waits for the
peer to read a message. Hence, every peer needs to interact
with its forwarder in push style and with its receiver in pull
style. The channel between the forwarder of one peer and
the receiver of the other peer is buffered for supporting such
a push-pull type of communication between peers. It could
be possible that we have peers which wish to communicate
its output in pull style and get its messages in push style.
Incompatible communication styles between peers would re-
quire the forwarders and receivers to be changed accordingly
so that they adapt to this new style of communication. By
using the I/O channel, it is possible to adapt to such commu-
nicating peers without changing any code of the forwarder
or receiver. Two I/O channels are required between any two
communicating peers. Input channel of one peer will act as
the output channel for the other and vice-versa.

PUSHSERVER

+disconnect()

PULLSERVEREC

=+ pullData(): Object
+subscribe(id: PULLCLIENT)
+unsubscribe(id: PULLCLIENT)

PUSHCLIENT

+ pushData(data: Object)
+disconnect()

[
I
PUSHCLIENTEC InputGUI
+ pushData(data: Object)
+subscribe(id: PUSHSERVER)
+unsubscribe(id: PUSHSERVER)
4
i
| [T PULLSERVER
I

+ pullData(): Object
+disconnect()

SpeechEngine PUSHSERVEREC

+subscribe(id: PUSHCLIENT)
+unsubscribe(id: PUSHCLIENT)

T
|
PULLCLIENTEC TextFile
+subscribe(id: PULLSERVER)
+unsubscribe(id: PULLSERVER)
A
PDFFile

INPUTCHANNEL

——— APPLICATION LAYER —= ‘

1/0 CHANNEL

‘ —— INPUT STREAMSLAYER —=

Figure 9: Speech Synthesizer Application using I/O Service

PULLCLIENT

+disconnect()

[

PUSHCLIENTEC

PULL SERVEREC ViewPayGUI

+ pushData(data: Object)
+subscribe(id: PUSHSERVER)
+unsubscribe(id: PUSHSERVER)

+ pull Data(): Object
+subscribe(id: PULLCLIENT)
+unsubscribe(id: PULLCLIENT)

[

T
|
PUL L SERVER |
|

+pullDataQ:Object | | T
+disconnect()

PayPr ocessor PULLCLIENTEC

4
3 ™ PUSHCLIENT
7777777777777 +pushData(data: Object)
+disconnect()
Lo .
PUSHSERVEREC Printer

+subscribe(id: PULLSERVER)
+unsubscribe(id: PULLSERVER)

+subscribe(id: PUSHCLIENT)
+unsubscribe(id: PUSHCLIENT)

OUTPUTCHANNEL

——— APPLICATION LAYER —=— ‘

1/0 CHANNEL

—— OUPUT STREAMSLAYER —=—

Figure 10: Payroll System using I/O Service

6. EXAMPLE APPLICATIONS
6.1 An Input Architecture

Consider the speech synthesizer application discussed in Sec-
tion 1, depicted in Figure 1. The new design shown in Figure
9 is a flexible architecture enhanced to adapt to variations
in the input layer. The speech engine is decoupled from
the mechanisms used to fetch data from the input stream.
Hence it is no longer dependent on the type of the input
streams. The initial speech engine acts as a push client ac-
cepting text from the GUI input. Synthesizing speech from
the text file would require the speech engine to act as pull
client and pull data from the text file. Each time a new in-
put stream is added the speech engine will have to undergo
changes to adapt it. But by using the input channel, any
input stream, push or pull type can be added to the system
without requiring changes to be made to the speech engine.
New streams can be added by simply registering the stream
with the input channel making the system scalable. Also,

on availability of an enhanced speech engine, the existing
speech engine can be easily replaced and it automatically
adapts to the existing input streams.

In absence of the I/O Service, the speech engine will be
overloaded with all I/O responsibilities. Using I/O Service,
these extra responsibilities are delegated to the I/O channel
and other objects. The input channel provides stream type
independence and can allow multiple streams to be added
without changing the speech engine class.

6.2 An Output Architecture

Consider a payroll system, which needs to output data to
different output streams. Figure 10 shows the design of the
output section of the payroll system. The system allows the
user to view the pay details generated for an employee and
issue pay slips. The pay details are calculated by a pay pro-
cessor which acts as a pull server allowing pay information

to be retrieved from it. A query class acts as a pull client
and fetches data from pay processor. The query class is com-
patible with the pay processor and both form the pull style
environment. To issue pay slips, the information is required
to be pushed to the printer. The printer in itself is of push
client type. By using the output channel, the task of issuing
pay slips through the printer can be incorporated without
changing the pay processor class.

New output streams irrespective of its form and type can
be added with ease. It may be desirous to send the pay-slip
as an email attachment to the employee as a reference. The
email client which behaves as a push client can be incorpo-
rated into the system. Or further still, the system may wish
to directly make payments by crediting the bank account of
the employee. This would simply require that a bank class
capable of handling transactions be added as a push client.
The output channel will provide the bank client with the
information required for carrying out the transaction.

7. CONCLUSION

The I/O Service architecture separates I/O concerns from
the functional code of objects. This design keeps functional
objects independent of both the type and form of the com-
municating streams by means of a decoupling channel. One
can unplug a stream of one type and plug in a stream of
a different type without needing to change the existing ap-
plication object. The functional(application) object has no
knowledge of the variations carried out in the type of streams
and hence remains unaffected. I/O services when used with
other design patterns enrich them providing independence
from communication style type and form.

8. REFERENCES

[1] Object management group. CORBA Services: Event Service
Specification, v1.1, (01-03-01), March 2001.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture, A System
of Patterns. John Wiley & Sons Ltd, Chichester, England,
1996.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns, Elements of Reusable Object-Oriented Software.
Addison-Wesley Publishing Company, New York, NY, 1995.

[4] R. Kannan. Managing continuous data feed with
subscriber/publisher pattern. OOPSLA’95, Workshop on
Design Patterns for Concurrent, Parallel and Distributed
Object-Oriented Systems, (TR-SE-DNA-95-003), October
1995.

[5] A. Vermeulen, G. Beged-Dov, and P. Thompson. The
pipeline design pattern. OOPSLA’95, Workshop on Design
Patterns for Concurrent, Parallel and Distributed
Object-Oriented Systems, October 1995.

[6] J. Vlissides, J. Coplien, and N. Kerth. Pattern Languages of
Program Design 2. Addison-Wesley, Reading,
Massachusetts, 1996.

