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In this article, I identify filter configurations based on fil-
ter objects for OO distributed systems. The configurations
are based on the notion of first class filter objects that
transparently intercept messages in a client-server object
architecture. Transparency primitives for filtering are de-
scribed and various filter configurations are illustrated us-
ing the transparency primitives. The paper identifies six
filter configurations, namely Replacer, Router, Repeater,
Value Transformer, Message Transformer, and Logger. Each
filter configuration is demonstrated through an example
implementation template. I also discuss the consequences
of filter configurations for design patterns and evolution-
ary systems.

Filtering is a very useful abstraction in distributed systems.

Filters are increasingly being recognized as important archi-

tectural abstractions. An architectural description of filters

appears in the work of Shaw and Garlan.1 Filter implementations

have started appearing in commercial systems. For example,

C O R B A2 implementations such as Orbix3 provide specific filter-

ing abilities. The COM specification4 also defines filtering capa-

bilities for COM. Programming language models for filtering

include the Composition Filter model5 and the Filter Object model.6

Composition Filters describe filter specifications embedded with

object descriptions, whereas, Filter Objects are based on an inter-

class relationship called filter relationship. An IDL-centric design

for distributed filter objects based on this interclass filter rela-

tionship can be found in“Filter Objects for Distributed Systems.”7

Some example applications of filtering systems are security

filters, mail filters that filter electronic mails, routers that route

requests for load balancing, request loggers that maintain logs of

external accesses, and online caches. A requirement of filters in

distributed systems is transparency. With transparent filters, clients

are not aware of the existence of intermediate filter objects. 

In this article, I identify various filter configurations for dis-

tributed system structuring. The work is based on the notion of

transparent Filter Objects described in “Message Filters for Ob-

ject-Oriented Systems.”6 Filtering abilities may be viewed as

meta-patterns as defined by Pree.8 Filtering configurations

based on the filtering abilities have interesting consequences

in the implementation of design patterns. The conventional im-

plementations of design patterns are based on the direct delivery

message-passing model. Filter constructs open up a new way of

implementing design patterns based on transparent filter objects.

I begin with a brief description of the first class filter object

model based on filter relationship between classes. The primitive

filtering abstractions in the filter object model consist of a filter

relationship between two classes and consequently, a filter rela-

tionship between their instances, specifications of filter member

functions for their corresponding server member functions and

various capabilities of filter objects. These abstractions lead to var-

ious filter configurations. Six different filter configurations called

Replacer, Router, Repeater, Value Transformer, Message Trans-

former, and Logger are described in this work. Each description

carries an example and an implementation template. A notation

is also introduced for representing interaction scenarios in pres-

ence of filter objects.

The paper is organized as follows. In the first section, we de-

scribe the transparent filter object model. In subsequent sections,

the filter configurations are described. Finally, we discuss the con-

sequences of the filter configurations to design pattern imple-

mentations and the problem of software evolution.

TRANSPARENT FILTER OBJECTS

Figure 1 differentiates the basic filter object model from

the direct delivery model of message passing. In the direct de-

livery model, a message Obj.service (x) originating at ob-
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Figure 1. The Filter Object Model. 



ject C l i e n t is directly delivered to object O b j . The client's

view of message delivery is the same as that of the system's

view. In the filtered delivery model, a message is filtered on-

the-fly by an intermediate filter object F i l t. Messages are fil-

tered in upward direction, whereas, return results are filtered

in downward direction. The figure shows various possible ac-

tions that can be taken by the filter object F i l t. In this model,

the client's view is different from the system's view. The client

views the message path as a direct message path to the intended

server object, whereas, the system's view of the message path in-

cludes an intermediate filter object. The filter object may capture

both upward and downward messages leading to a message path

1(2)-1'(2)-2(2)-2'(2). Alternatively, it may bounce a result to the

client without passing the message on to the intended server, re-

sulting in a message path 1(2)-2(3). Either or both filtering ac-

tions may be deactivated or unspecified. For example, message

path 1(1)-2(2)-2'(2) is traversed in absence of an upward filter-

ing action, whereas, message path 1(2)-1'(2)-2(1) indicates an

absence of a downward filtering action. Message path 1(1)-2(1)

is traversed in presence of a filter object that is not activated in

either direction.

Transparent filter objects can be created in an object sys-

tem through a filter relationship between two classes. For ex-

ample, at the class level, if class F filters class S (represented

as F|S), an instance of class F, say f, can be plugged to s, an

instance of class S to filter messages sent to s. The filter ob-

ject f is a transparent object. The clients invoke methods di-

rectly on object s. Filter Object f can intercept on-the-fly a

member function invocation on s and can take intermediate

actions. The filter class F specifies filter member functions

that act as filters for their corresponding member functions

in the server class S. The filter member functions are speci-

fied in a distinct interface called filter interface in the filter

class. The filter class can also export conventional interfaces

such as public, private, and protected. The filter member func-

tions specified in a filter interface are not accessible as direct

invocations by any member function including self-members.

Refer to “Message Filters for Object-Oriented Systems,”6 a n d

“Filter Objects for Distributed Systems”7 for a detailed dis-

cussion on the filter object constructs and their semantics. 

Figure 2 shows scenarios elaborating primitive interactions

in the presence of a filter object. These interactions form the

basis for obtaining various filter configurations that are de-

scribed in subsequent sections. An extended notation has been

developed for drawing interaction diagrams. In Figure 2, the

transparency of a filter object is depicted through square braces

surrounding the vertical line, representing the filter object.  

Scenario (a) shows a method invocation on a server object in

presence of a filter object with filter performing no action. Sim-

ilarly, scenario (b) shows a return result from Server in presence

of a filter object, which performs no action. In scenario (c), the

filter captures the ongoing message, performs a local computa-

tion in the corresponding filter member function, and passes the

message on to the destination. The method arguments are un-

changed. The portion of the onward message path shown as a

dashed segment in this scenario indicates an apparent path, which

is not traversed. In the subsequent scenarios, apparent paths (both

onward and return paths) that are not traversed have been iden-

tified as dashed segments.

In (d), the filter modifies the method arguments from a to a’

before passing the method on to the destination. In scenario (e),

the filter member function sends an invocation n to object An-

other before it passes the captured message on to the destination.

In scenario (f), the filter member function itself bounces a result

to the client without passing the message on to the destination

intended by the client. The onward method invocation is thus

terminated at the filter object itself. Scenario (g) shows a situa-

tion similar to that of (c) except that in a downward direction,

an additional filtering action is incorporated. The filter object

captures the return result and modifies the return argument from

r to r’ before it is bounced to the client. Scenario (h) represents

a similar situation with a local computation between the result

capture and the result bounce actions. 

The subsequent sections demonstrate filter configurations

based on the properties of filter objects as discussed above.

Each configuration is discussed with an example and the fil-

tering abstractions used along with an implementation tem-

plate. The implementation template has been provided as a

pseudo object code that can be translated to a specific pro-

gramming language extension supporting transparent filter

objects. The templates show only the filtering members omit-

ting other implementation details.

R E P L A C E R

A filter member function that works as a r e p l a c e r p r o v i d e s
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a replacement code for its corresponding server member func-

tion. The filter member in this case must take a bounce ac-

tion to return a value to the client on behalf of the server. Let

Rpl | S represent a filter relationship between two classes

R p l and S, with class R p l acting as a filter class for server class

S. A replacer upfilter member function for a member func-

tion S : : f may be defined as UF (S::f) = Rpl::rf = [bounce

(self <-- action);]. 

The specification indicates that when a function f on an

instance of class S is invoked, the corresponding upfilter mem-

ber function Rpl::rf transparently filters S : : f. The code for

Rpl::rf invokes a method action on self and bounces its re-

turn value to the client without passing on the message. Fig-

ure 3 provides an interaction diagram for the replacer

configuration. The action taken by the replacer implements

a bounce action as in scenario (f) and a self-computation pre-

ceding a bounce as in scenario (h) in Figure 2.

Action taken on a c a c h e - h i t situation is an example of t h e

replacer configuration with a cache object modeled as a filter ob-

ject. The filter object maintains the cached entries as its internal

state. Given below is pseudo object code for filter member func-

tion C a c h e : : f functioning as a replacer in this example. 

Cache | InfoServer {

filter interface:

r e a d R e p l a c e r ( ) u p f i l t e r s

/ / I n f o S e r v er: : r e a d ( k e y ) {

v = self --> read(key); 

bounce (v); 

}

}

A client's view of the message is I n f o S e r v er. r e a d as shown in the

interaction diagram. The dashed segment in this message indi-

cates an apparent path. The filter object explicitly invokes a self

message to retrieve the contents of the cached entry. The dotted

line representing a return message has originated from within the

filter object.

R O U T E R

A filter member function that acts as a router redirects requests

to other objects. Let Rtr | S and R t r : : f be a router function for

member function S::f. Rtr::rf may be defined as UF (S::f)

= Rtr::rf = [v --> (s2 <-- f); bounce(v);]. In this case,

the router function blocks for a result from server object s2. How-

ever, in a language of implementation that supports non-block-

ing invocations on objects, it is possible to write non-blocking

router functions. 

Figure 4 depicts a scenario representing a router configuration.

A filter object called b a l a n c e r transparently routes a request

searchEngine.search to a replicated server object n e w D e s t . T h e

following pseudo-object-code shows an implementation of the

router in a filter class B a l a n c er.An invocation of n e x t D e s t ( )p e r-

forms the scheduling. The definition of the member function

n e x t D e s t has been omitted.

Balancer | SearchEngine {

filter interface:

searchRouter () upfilters

//SearchEngine::search (item) {

newDest = self --> nextDest();  

v = newDest --> search (item); 

bounce (v); 

}

}

R E P E A T E R

A filter object configured in repeater configuration dispatches a

member invocation to multiple objects. In this configuration, the

filter object maintains a list of subscribed servers to which a mes-

sage is dispatched. Multicast groups can be created in this fash-

ion. Let a repeater class R p t r filter a server class S, i.e., R p t r |

S. In this case, class Rptr provides a filter member function

Rptr::rf such that R p t r : : r f repeats the invocation of S : : f

on multiple instances of S or its equivalent classes. Member

function Rptr::rf may be defined as UF (S::f) = Rptr::rf

=  [s1 <-- f;...sn <-- f;  pass;].  

Let us consider an enrollment scenario in an academic infor-

mation system. A central enroller object provides an enrollment

interface via a member function called e n r o ll. Now consider a

case where the Civil Engineering department sets up its depart-

mental library and wants all students enrolled as Civil Engineer-

ing students to get enrolled in the library. Additionally, there may

be another enrollment requirement for students belonging to mi-

nor categories. 

These new requirements can be handled without modifying

the existing code by means of a transparent filter object. The so-

lution is depicted in an interaction diagram in Figure 5. In

Figure 4. The Router. 

Figure 3. Replacer

Figure 5. The Repeater. 



this figure, the repeater filter object repeats the invocation of

m e t h o d e n r o l l e r . e n r o l l on two other enroll servers. The

following pseudo object code describes the corresponding re-

peater filter method called m u l t i E n r o l l ( ) that dispatches the

additional invocations before passing the message on to the

intended server. 

EnrollFilter | Enroller {

filter interface:

m u l t i E n r o l l ( ) upfilters 

// Enroller::enroll (student) {

if (student-->dept()==CIVIL) 

//civilLib --> enroll (student);

if (student-->status()=MINOR) 

//minorBody --> enroll (student);

pass; 

}

}

In this code, the value returned to the client is the value re-

turned by the intended central enroller. A repeater may al-

ternatively select a return value from various return values

received from repeated invocations, including an invocation

on the intended server. An example of this variation can be

found in the fault-tolerant n - m o d u l a r - r e d u n d a n t i n v o c a-

t i o n s in S h a d o w O b j e c t s9 model of replicated services. The

ShadowObjects model employees a voting mechanism t o

construct a return result from multiple return values received.

VALUE TRANSFORMER

A value transformer transforms the message arguments be-

fore the message is delivered to the intended destination. L e t

V t r be a value transformer filter object for server S, i.e., V t r

| S. The filter object V t r provides a filter member function

Vtr::vtf to upfilter the server member function S : : f. T h e

filter member function can be defined as Vtr::vtf(v) = [v'

--> (self <-- transform(v)); pass (v');]. T h e

Vtr::transform member function is an implementation mem-

ber defined in V t r to transform the message value. The filter

passes the transformed value on to the intended destination. This

scenario is similar to scenario presented in Figure 2(d). 

Filters that work as value transformers are useful in car-

rying out on the fly decryption and encryption of message

contents. Figure 6 depicts an example of a value transformer

configuration. A message content is a polymorphic type as

shown in the figure. The filter object that decrypts the in-

coming message builds an instance of R e a l M e s s a g e from the

received instance of T r a n s f o r m e d M e s s a g e. Similarly, a return

value may be intercepted by the filter object for encryption

before bouncing it to the client. 

The following code shows a value transformer filter that

works as a Decryptor for upward requests and as an Encryp-

tor for downward results. As shown in the figure, the De-

cryptor function obtains the real message from a decrypted

message with a key and similarly obtains an encrypted mes-

sage from a real message.

Secure | Server {

filter interface:

decryptor () upfilters server::

//service (message) {

realMesg = message >getRealMesg(key1); 

pass (realMesg); 

} 

encryptor () downfilters server::

//service (result) {

transMesg = result ->getTrnsMesg(key2); 

bounce (transMesg); 

} 

}

MESSAGE TRANSFORMER

A message transformer filter transforms the type of the message.

The new message is either passed on to the intended destination

or sent to a new destination. This configuration can be used as

a transparent compatibility adapter. For example, older clients

that use an older server interface may be diverted to a new in-

terface on a newer server through a transparent message trans-

former provided that the old messages can be mapped to the new

interface. The difference between the R o u t e r and the M e s s a g e

T r a n s f o r m e r is that the former routes a message to an equiva-

lent server, whereas, the latter changes the message and diverts

it to a possibly different server. 

Figure 7 depicts a scenario based on the message transformer

configuration. A message transformer filter may be defined as
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UF  (S::f) = Mtr::mtf  = [ bounce (s2 <-- g () );]. I n

this case, the transformer filter object bounces the value returned

by the member function g ( ). The following code shows a mes-

sage transformer that filters invocations to an old service and in-

vokes a compatible member function on an upgraded server. 

Support | Server {

filter interface:

m T r a n s f o r m () u p f i l t e r s S e r v e r : : s e r v i c e ( a r g ) {

newArg = self --> newArgument (arg);

b o u n c e ( n e w S e r v e r - - > n e w S e r v i c e ( n e w A r g )); 

}

}

REQUEST LOGGER

Figure 8 shows a filter object that works as a logger. The

request logger filter configuration is used for transparent re-

quest tracking. The logger sends a logging message to a log

object. Loggers are common in web-based servers. Let a log-

ger filter class LF filter a server class S, i.e., LF | S. [ A Q :

Could you please rewrite this previous sentence? It is a little

u n c l e a r . ] Class LF provides an upfilter member function

L F : : l f that can be defined as UF (S::f) = LF::lf, that in-

vokes a logging message on a logger object as in LF::lf =

[logger <-- log(); pass;].

A representative code for the logger configuration is shown

below. It is assumed that the programming environment sup-

ports implicit client identification. The logger code retrieves

this identification by means of a helper member function

m a k e C o n t e x t D e t a i l s.

Logger | Server {

filter interface:

l o g R e q u e s t X ( ) upfilters server::

// requestX (message) {

details = makeContextDetails ();

log --> record (details); 

pass; 

} 

}

The logger filter configuration provides an interesting imple-

mentation for the Decorator design pattern discussed in D e-

sign Patterns.1 0 This implementation is provided in a “Filter

Object-Based Decorator.”

A Filter Object-Based Decorator

A filter object-based implementation of the Decorator pattern

provides an on the fly solution to the problem of decoration. A

decoration is an additional task that can be performed by the

transparent filter object without involving the client or the server

object. The following code presents an implementation template

for a filter object-based decorator.

Decorator | Component {

filter interface:

decorate () upfilters component::draw () {

self --> decorate ();

pass; 

}

}

As shown in the previous code listing, a logger filter object

provides a logging member function that invokes a d e c o r a t e

member function on the decorator object. Note that in this

example, the decorator object itself is modeled as a filter ob-

ject. It is possible to switch decorator objects dynamically

through dynamic binding of filter objects. The filter object-

based solution makes it possible to plug or unplug a decora-

tor object dynamically without involving the client and the

server objects. An interesting property of the filter object-

based implementation of the decorator is that neither the

client nor the server needs to explicitly handle the decorator

object through a pointer. The client maintains a pointer to

the intended server object, whereas, the server object does not

need to be evolved. 

FILTER CONFIGURATIONS FOR SOFTWARE

E V O L U T I O N

Filter object based configurations have interesting consequences

to providing solutions for evolution.1 1 An existing design can

be adapted to new requirements using filter objects. Stand-

alone filter objects or a network of filter objects can provide

on the fly solutions for software evolution. The evolution

methodology is based on the transparency properties of filter

objects. The transparency properties ensure that client objects

remain unaware of the existence of intermediate filter objects.

Filter-based solutions to evolution may be classified in two

broad categories of a d a p t a t i o n s and t o t a l solutions. 

Adaptations are applicable when objects in the system un-

dergo structural changes. As a result of these changes, client ob-

jects that depend on the evolved objects may also need to undergo

evolution. Adaptations based on a network of filter objects can

prevent client code from undergoing evolution. An example of

an adaptation through the Message Transformer configuration

has been discussed earlier. Total solutions are those that do not

involve a modification to client and server object code. A new

evolutionary requirement may be satisfied completely by a net-

work of filter objects. An example of a total solution to evolu-

tion has been described in “New Programming Paradigms for

Distributed and Object Oriented S y s t e m s , ”1 1 with a r e a d e r s

and w r i t e r s benchmark problem.
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C O N C L U S I O N

Filter configurations are useful in transparently carrying out

activities such as routing, logging, and function replacement;

caching and message repetition with least involvement of client

and server code at the programming level. Filter configura-

tions rely on the transparency properties of filter objects. Six

filter configurations were described with the help of exam-

ples and implementation templates. Filter configurations can

be used to implement design patterns and they are also ap-

plicable to the problem of OO software evolution.
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