
Object-based subcontracting for parallel

programming on loosely-coupled

distributed systems

RUSHIKESH K. JOSHI and D . JANAKI RAM

Department of Computer Science and Engineering, Indian Institute of Technology,

Madras-600036, India

Received 6 February 1995

Several languages have been proposed to support concurrency in object-oriented programming. However,

these languages do not address issues which are speci®c to parallel programming on loosely coupled dis-

tributed systems such as dynamic load variation, fault tolerance and scalability. We propose a new paradigm

called object-based subcontracting for parallel programming on loosely-coupled distributed systems. In this

paradigm, a metaclass called Parclass is de®ned to create a metaobject. The metaobject aggregates objects

belonging to a class. A member function of the class, which can be executed concurrently on all the objects,

is invoked as a subcontract on the metaobject. The metaobject manages the subcontract by employing various

nodes of the network. The subcontract invocation is made fault tolerant and scalable.

Keywords: concurrency, object-orientation, fault-tolerance, parclass, subcontracting

1. Introduction

Networks of workstations are becoming increasingly viable platforms for parallel programming. It

is an attractive proposition to combine object orientation and parallelism on these systems to claim

the advantages of both. Although several languages, such as Charm�� [1], Mentat [2], and con-

currency extensions to Ei�el [3, 4], have been proposed to support concurrency in object-oriented

programming, in general these languages do not address issues which are speci®c to loosely-

coupled distributed systems. The three major drawbacks of these languages when applied to

loosely-coupled distributed systems are as follows:

(1) Objects are mapped to processes and are located on machines resulting in object-to-machine-

a�nity. This a�nity can become a cause for load imbalances in the system.

(2) Once the object-to-process mapping is done, the grain size of the object remains ®xed. Thus

the maximum number of grains in the system is equal to the total number of processes. This

results in additional computing power remaining idle, if it becomes available at runtime.

Thus programs do not automatically scale to suit runtime situations.

(3) The state of an object resides on a single machine in full. Failure of a machine results in loss

of state of the entire object. Thus, objects extensively violate the statelessness property which

Journal of Programming Languages 4 (1996) 169±183

0963-9306 # 1996 Chapman & Hall

is highly desired for fault tolerance on loosely coupled systems. An example of this is the ®le

servers in distributed systems, which are made stateless to provide fault tolerance against

server crashes [5].

We propose a new model for concurrency called object based subcontracting for parallel pro-

gramming on loosely-coupled distributed systems. Object-based subcontracting takes the approach

of creating aggregate objects belonging to a base class. This approach is similar to the Parset

scheme [6] developed for procedural languages. The implementation of object-based subcontract-

ing is based on the distributed parset kernel which was developed for implementing Parsets.

A metaclass called Parclass is de®ned for a base class. A metaobject, which is a Parclass object,

holds together multiple objects belonging to the base class. The Parclass de®nes an insert operator

<<, with which objects can be inserted into the metaobject. Another operator ``..'', called the

subcontract operator, is de®ned on the Parclass. With the subcontract operator, a subcontract

message is sent to the metaobject to invoke a member function on all the objects held under the

metaobject. The metaobject makes the execution of the subcontract parallel, fault tolerant and

scalable. Parallelism exists within and also outside a subcontract. When di�erent subcontracts exe-

cute in parallel, synchronization between them is achieved by using a locking mechanism.

In the following section, we discuss the disadvantages of existing approaches to concurrency in

object-oriented languages in the context of loosely-coupled distributed systems. We propose object-

based subcontracting, a new approach for concurrency in object-oriented systems which eliminates

many of the problems with existing approaches. In Section 3, we discuss the subcontracting model

in detail. Subcontracting was implemented as an extension to C�� [7] on a network of SUN work-

stations. The implementation details are presented in the last section along with performance studies.

2. Drawbacks of the existing approaches

Traditionally, concurrency in object-oriented programming is achieved by mapping objects to pro-

cesses. A process spans one or multiple objects. Languages provide implicit or explicit mechanisms

for mapping objects to processes. Examples of such mappings are the chares of Charm��, the

mentat classes of Mentat and the Concurrency classes for Ei�el [4]. This mechanism is often

referred to as making an object active [8]. This approach does not address issues speci®c to parallel

programming on loosely-coupled distributed systems. These issues are discussed in detail below:

Object-to-machine a�nity

When objects are mapped to processes, they are in turn mapped to machines. Very often objects

remain on the same machine throughout their lifetime. This is termed as object-to-machine-a�nity.

It results in dynamic load imbalances. This is especially true in the case of workstation clusters.

Programs are not scalable

At compile time, it is not possible to know in advance the number of available machines and the

load on them when a program actually starts executing. The scale of parallel programming should

170 Joshi and Ram

ideally be decided at runtime. When there are a large number of lightly loaded nodes available at

runtime, the parallel programs should automatically scale up. In the worst case, when there are no

lightly loaded nodes available, the programs should run e�ciently even on one node. This is termed

reverse scalability of a program. This factor is important in the context of parallel programming on

loosely-coupled distributed systems.

Violation of statelessness

When an object is mapped to a process, the process stores the full state of the object. This leads to

violation of the statelessness property. If a machine on which an object is located fails, the state of

that object is permanently lost necessitating a fresh run of the whole program.

It can be observed that systems that primarily de®ne a rigid object to processor mapping su�er

from these drawbacks. For example the create construct of Mentat maps an object to a processor,

either implicitly or explicitly. Failure of this processor would result in loss of the object's state. In

Charm++, a chare is mapped to a processor achieving dynamic load balancing. However, this

choice is given only once, and hence if the node becomes loaded due to other programs running on

it, the newly mapped chare may su�er.

We take a di�erent approach, called subcontracting, to address these problems in parallel pro-

gramming on loosely-coupled distributed systems. In our approach, objects are not mapped to

processors, but a metaobject is given the responsibility to execute a subcontract in a fault-tolerant

and scalable fashion. Object-based subcontracting does not create the object-to-machine a�nity. As

a result, an object never resides permanently on a remote node. Hence programs are executed

preserving the property of statelessness and a failure of a processor does not lead to the loss of

the object's state. Fault tolerance is achieved with the help of an object locking scheme. Programs

do not need recompilation for changing numbers of nodes or varying load patterns within a net-

work, making them scalable. We describe our model in detail in the following section.

3. Object-based subcontracting: a concurrency model

Traditional solutions to concurrent programming in object-oriented systems provide concurrency

at object level by mapping objects to processes. Subcontracting models concurrency at member

function level. Concurrent invocations of a member function on multiple objects form a subcon-

tract. Each subcontract is independent and subcontracts can be executed in parallel. A subcontract

is achieved through a metaclass declaration called Parclass. A metaobject belonging to the Parclass

is responsible to accomplish the subcontract by employing the nodes available in the network.

The declaration

Parclass ParMatrix holds matrix;

ParMatrix P;

creates the ParMatrix metaclass which is specialized to hold the objects of base class matrix. An

instance of the metaclass ParMatrix is the metaobject P which can hold a collection of instances of

the base class matrix. Objects of type matrix may be inserted in object P with the insert operator

Parallel programming on loosely-coupled systems 171

<<. The insert operator inserts elements into a metaobject and preserves the order of the inserted

elements. A subcontract for a particular method invocation on every member of P can be given

with the subcontract operator. The expression,

P::inverse� �;

sends a subcontract message inverse () to all the objects of metaobject P.

An explicit locking scheme similar to the scheme described in the Parset scheme [6] is

employed to achieve synchronization between concurrently executing subcontracts. We describe

the locking scheme later in this section in detail. Figure 1 demonstrates these features with an

example program.

At line 17 and 18, base objects M1 and M2, belonging to base class matrix are inserted into

metaobject P. At line 19, a subcontract is given to deliver the message inverse() to all the elements

of P. The scope of the subcontract extends till the completion of the member function execution by

every base object of P, in this case, both M1 and M2.

1.

2. class matrix {

3.

4. public:

5. WO void initialize (..);

// initializes the

// matrix with given data

6. RW void inverse (void);

7. RO void print_matrix(void);

8. };

9.

10. main() {

11. Parclass ParMatrix holds matrix;

12. ParMatrix P;

13. matrix M1, M2;

14.

15. M1.initialize(..); // ®ll in the values

16. M2.initialize(..); // ®ll in the values

17. P << M1;

18. P << M2;

19. P..inverse (U);

20. P..print_matrix (O);

21. }

Fig. 1. Locking speci®cations in subcontracting

172 Joshi and Ram

3.1 Object locking in subcontracting

Objects can be locked by three types of locks called read-only (RO), write-only (WO) and read-

write (RW) locks. When a member function in an object requires the object's state to be read and

not written to, it obtains an RO lock on the object. Multiple RO locks can be existing on an object

at a time. A WO lock can be used by a member function if it writes to the state of the object. An

RW lock indicates that the object is required for reading as well as writing. If an object is locked

with a WO or an RW lock, no other lock can be obtained on it till the lock is released. The impli-

cations of locking are described later in this section.

At line 6 in Fig. 1, a lock keyword RW is added before the declaration of the member function

inverse(). This indicates that the member function reads the state of the object and also modi®es it.

Whereas print_matrix() only reads the state, and initialize() changes the state irrespective of

the earlier state of the object. Hence these two member functions are declared as RO and WO,

respectively.

3.2 Implications of locking speci®cations

The locking speci®cations are used for di�erent purposes at various stages of a subcontract exe-

cution. The three implications of locks are that they guide parallelism dynamically, ensure fault-

tolerant behaviour and help in reducing the network communication. We describe these bene®ts of

locks below.

Guiding parallelism dynamically

Lock speci®cations guide parallelism in the control ¯ow of the program. When a subcontract is

given at line 19, the system may start two parallel activities to execute inverse() on M1 and on M2

by appropriately migrating each object state to a remote node. When the execution of inverse() on

M1 starts, it ®rst locks the object M1 in read-write mode. No other member function of M1 can be

executed till the lock is released. Similarly, M2 is also locked. If M1 ®nishes earlier, it will be

unlocked and the subcontract in line 20 can start printing the matrix M1. In this manner, locks

guide parallel execution of subcontracts. For example, two subcontracts which require only read

access to the state of an object can be executed concurrently. It can be observed that the control

¯ow may reach the end of program while subcontracts are still in progress. The termination of the

program has to wait till all the subcontracts are executed to completion.

Providing fault tolerance to subcontracts

A metaobject secures locks which are required for a subcontract. A subcontract may involve exe-

cution on a number of processors. The required object states are migrated to remote nodes at the

time of execution of a subcontract. The locks are not released till the execution is complete. In the

case of failures, the un®nished part of a subcontract can be re-executed at a new location main-

taining the lock status.

Parallel programming on loosely-coupled systems 173

Minimizing network communication

The lock speci®cations are also used to minimize network communication at runtime. If an

execution on an RO object is to take place at a remote site, the object state needs to be exported

to a remote site (upward communication) and need not be imported at the end of execution. The

state of an RW object has to be exported as well as imported (upward and downward

communication). WO object has to only import its state no matter what the earlier state was

(downward communication).

3.3 Subcontract directives

With every subcontract, a subcontract directive is also supplied to the corresponding metaobject.

The directive is provided as an argument to the subcontract message. Two subcontract directivesO

and U are de®ned. The directive U informs the metaobject that the member function on base

objects can be invoked in any order leading to concurrency (unordered execution). The directive

O dictates an orderly execution. For example, in Fig. 1, on line 19, the subcontract inverse() is

speci®ed as highly concurrent, whereas on line 20, the printing function has to print the matrices

one after the other in an orderly fashion.

3.4 Object interactions in subcontracting

In the example in Fig. 1, an inverse() message is sent to multiple base objects of class matrix.

Since this message does not involve arguments, there is no interaction involved between di�erent

base objects. However, in some cases, a subcontract may operate on more than one object and

may also need to know the states of other objects. Such an interaction can also be captured in

the subcontracting model. This is explained with an example matrix multiplication problem as

shown in Fig. 2.

A matrix multiplication procedure mult() takes two arguments. The ®rst is the operand matrix

m2, and the second is the output matrix m3. It can be observed that in the subcontract P..mult()

(line 20), Q and R form additional arguments. The arguments Q and R are metaobjects. The

metaobject P holds objects M1 and M2, and the metaobject Q holds objects M3 and M4. One

object each from metaobjects Q and R form arguments to each invocation of the member function

mult() which is invoked by the subcontract on P. There can be as many activations of mult() as the

number of elements in P, which in this case is two. Each activation gets the corresponding argu-

ments from Q and R. Thus the following activations of the subcontract

RO mult(RO matrix m2, WO matrix m3) can be executed concurrently:

1: RO M1:mult �RO M3; WO output1�;

2: RO M2:mult �RO M4; WO output2�;

A read-only access is required for m2, since multiplication needs only the state of m2 to be read.

Since m3 is an output matrix, it is speci®ed as write-only. The member function mult() operating

174 Joshi and Ram

on m1 is declared as read-only. This implies that mult() accesses m1 only for reading. It can be

noted that lock speci®cations are required at the level of member functions and also at the level of

arguments. A lock speci®cation for a member function states the access type for the object itself,

whereas a speci®cation at the argument level states the access requirements for objects which form

arguments to the subcontract. Hence arguments are passed to functions either for read-only

(equivalent to pass-by-value), read-write (equivalent to pass-by-reference), or write-only (output)

operations. The output of multiplication is performed through an argument m3, which is a speci-

®ed as a write-only object. The outputs of multiple activations of mult() are automatically

collected in the metaobject R.

1. ...

2. class matrix {

3. // matrix data

4. public:

5

6. RO mat_data peep (void);

// returns the actual matrix data

7. WO void initialize (..);

// initializes the matrix

// with given data

8. RO void mult (RO matrix m2, WO matrix m3);

// multiplies m2 with this matrix by

// calling m2.peep(), and outputs a

// result matrix to m3

9. };

10. ...

11. main() {

12. Parclass ParMatrix holds matrix;

13. ParMatrix P,Q,R;

14. matrix M1, M2, M3, M4;

15. ...

16. M1.initialize(..); // ®ll in the values

17. M2.initialize(..); // ®ll in the values

18. P <<M1 <<M2;

19. Q <<M3 <<M4;

20. P..mult (Q, R, U); // new elements are

// formed in R

21. R..print_matrix (O);

22. }

Fig. 2. Interobject interaction

Parallel programming on loosely-coupled systems 175

3.5 Support for task decomposition

The schemes described above require that the task decomposition be done by the programmer by

generating multiple base objects and inserting them into the metaobject one by one. We describe a

scheme which provides support for performing task division. Figure 3 shows an example to illus-

trate this scheme. A Parclass de®nes a member function build() which can be invoked on a meta-

object. This function is used to build the metaobject's collection from a single larger base object

which divides itself into multiple smaller base objects. The function build() takes a pointer to an

instance of class TaskGenerator. This class de®nes a virtual member function called split(). The

function build() repetitively calls split() on the TaskGenerator object to obtain a number of

smaller base objects till a NULL is obtained which speci®es the end of task division. A larger

base object, which needs to be decomposed into smaller objects, inherits the class TaskGenerator

1. ...

2. class TaskGenerator {

3. public:

4. virtual void* split(void) {return NULL;};

5. };

6. class largeImage: public TaskGenerator {

7. // image data

8. public:

9. void *split (void);

10. ...

11. };

12. class subTask {

13. // subtask data

14. public:

15. // subcontract members

16. };

17. main() {

18. Parclass ParImage holds subTask;

19. ParImage I;

20. largeImage mega_image;

21. ...

22. mega_image.initialize(..);

// load the image data

23. I.build (&mega_image);

24. I..transform (U);

25. I..print_image (O);

26. }

Fig. 3. Supporting task division

176 Joshi and Ram

and rede®nes the virtual member split(). The function split() must be written in such a way that

every time it is called, a pointer to a smaller base object is returned. A NULL is returned at the end

of the decomposition. The function build() obtains a polymorphic behaviour on its argument by

accepting instances of any class derived from the TaskGenerator class. In this way, the metaobject

internally inserts smaller base objects into itself by making repetitive calls to split().

4. Implementation

A prototype implementation of object-based subcontracting is available as an extension to the

C�� programming language. The implementation works in a distributed environment consisting

of a network of SUN workstations. The implementation uses the distributed parset kernel devel-

oped for implementing Parsets [6]. A program is ®rst translated into a C++ program which makes

calls to the distributed parset kernel. An overview of the implementation is shown in Fig. 4. A three

node con®guration is shown with the host node in the middle.

4.1 The resident and the volatile kernel

The distributed parset kernel is divided into two parts called the volatile kernel and resident kernel.

A resident kernel resides on the machines which are ready to participate in the execution of sub-

contracts arriving from di�erent machines. The resident kernel looks at the overall functionality

whereas the volatile kernel is created on demand for a particular subcontract execution. The vola-

tile kernel consists of two types of processes called P-processes and E-processes.

P-processes manage the metaobjects whereas E-processes are the actual participants which exe-

cute subcontracts. The code for P-processes is written in a completely generic fashion independent

of the type of the base objects. However, an E-process code needs to be linked with the subcontract

information. The subcontract information is compiled into a remote instruction block (RIB). It

consists of details about the objects and the member functions involved in the subcontract. Various

communication patterns between these entities are shown in the ®gure.

4.2 The kernel interface

The translated C�� program makes various calls to the kernel. Whenever a new metaobject is

created by a declaration in the program, a create message is sent to the resident kernel. An insert

operator makes an insert call and a subcontract operator makes a subcontract call to the kernel.

Whenever a metaobject is destroyed in the program, a destroy call is made to the kernel in order to

destroy the corresponding P-process.

The create and insert calls

A create() call is made to the resident kernel, which in turn invokes a P-process on the local node.

Each P-process manages one metaobject. The call returns a P-process handle to the user program.

Parallel programming on loosely-coupled systems 177

The handle is used for performing operations on metaobjects such as insert. Thus, calls for inser-

tion into a metaobject do not need the involvement of the resident kernel.

The subcontract call

A subcontract operation informs the resident kernel about the metaobjects involved in the sub-

contract and their cardinalities. The resident kernel on the local node contacts remote nodes and E-

processes are created on these nodes. The kernel chooses lightly loaded nodes for creating the

remote E-processes.

A subcontract on a metaobject is further broken down into multiple grains and all grains may

execute their part of the subcontract in parallel. Each grain corresponds to an object inserted in the

metaobject. When a remote E-process is ready to execute a part of the subcontract, the states of the

involved objects are migrated to and from the E-process as guided by the lock speci®cations. As

Fig. 4. The implementation of object based subcontracting

178 Joshi and Ram

seen in the ®gure, the communication is from P-processes to E-processes in the case of read-only P-

processes p and q. Whereas, it is in the opposite direction for the write-only P-process r. While

migrating an object's state to a remote node, pointers are not chased and it is required that objects

manage their states in a contiguous memory space.

4.3 Implementing fault tolerance

A P-process does not release the locks till the metaobjects involved ®nish their part of the subcon-

tract. If a failure of a node on which a subcontract is executing is detected, the subcontract is

restarted on another node. This is explained further with an example. Consider the following sub-

contract:

RO Obj1:compute �RO Obj2; WO Obj3; WO Obj4�

The execution of this subcontract is via the following steps:

1. A remote E-process is created for the execution of compute().

2. The four P-processes corresponding to Obj1..4 are noti®ed of the address of the E-process.

3. The P-processes corresponding to Obj1 and Obj2 lock Obj1 and Obj2 in read-only mode and

send their states to the remote E-process.

4. The P-processes corresponding to Obj3 and Obj4 lock these objects in write-only mode and

wait for the results from the E-process so that the states of Obj3 and Obj4 can be refreshed.

5. The E-process executes the peer steps. It ®rst receives the states of Obj1 and Obj2, then

executes Obj1.compute(), and writes the output to two dummy objects. The states of these

dummy objects are sent back to their respective P-processes.

It can be seen that a fault may occur during the execution of any one of the above steps. A

subcontract is said to be successful only when all the P-processes which acquire write-only locks

on objects receive their respective states. If any one of them fails due to a failure of the E-process,

the complete sequence has to be re-executed at a new location. We have used TCP communication

as a medium for interprocess communication, and we infer node failures by detecting a broken

socket connection. When a broken connection is detected, the resident kernel is informed. The

resident kernel ®nds a new location and the above steps are repeated with respect to the new E-

process.

4.4 Performance ®gures

The implementation was tested for double precision matrix multiplication on a network consisting

of Sun3/50 workstations. The tests were conducted under no load conditions. The details of the

performance are discussed in the following sections. The program is listed in the appendix.

The scalability test

When a subcontract call is made by the user program, information about the number of grains

involved in the subcontract is also supplied. Based on this information, the resident kernel can

Parallel programming on loosely-coupled systems 179

locate at the most k nodes, where k is the cardinality of a metaobject participating in the subcon-

tract. If enough nodes are not available, grains are clubbed together into larger grains. Formation

of e�ective grains is done at runtime and it does not require programs to be recompiled for a

varying number of nodes. In worst cases, the whole subcontract can be executed on the host

node itself. We de®ne reverse scalability as the ability of a program to execute without recompila-

tion using the maximum possible number of nodes down to one node. The program should not

carry large overheads in satisfying reverse scalability.

Table 1 summarizes the results of the scalability test. The test program computes matrix

multiplication for a size of 150�150. The same compiled code was executed varying the number

of machines from 10 down to 1 at runtime. The number of grains was ®xed at 10 at compile

time.

The speedup is calculated by comparing the program which uses object based subcontracting

with optimized sequential code in C for the same task. It can be observed that the program

which runs on 10 nodes also runs on one node without signi®cant overheads. The test for

single node indicates reverse scalability. The speedup of 0.94 on one node shows that the pro-

gram designed for running on a higher number of nodes can also run on a single node without

signi®cant overheads.

Comparison with PVM

This test was conducted to observe the overheads of our implementation as compared to PVM [9],

a commonly available platform for parallel programming on loosely coupled distributed systems.

Table 2 shows the results of the test. The number of grains chosen was set equal to the number of

available nodes for maximizing the performance. The results of the implementation show that

object-based subcontracting carries a negligible overhead as compared to PVM.

5. Advantages of object-based subcontracting

Object based subcontracting is a new model of concurrency in object-oriented systems. It supports

subcontracting which is based on concurrent member function activations on multiple objects

belonging to a class. The subcontracts are executed by the kernel. It handles the details of migrat-

ing the subcontracts to remote machines which include data and code migration to an appropriate

node.

Table 1. The scalability test

Number

of nodes Speedup

10 6.92

5 4.05

2 1.8

1 0.94

180 Joshi and Ram

There is no object-to-process mapping and hence object-to-machine a�nity is not created.

A suitable node is selected at runtime by the kernel. This alleviates the user from the bur-

den of anticipating the runtime conditions such as load patterns and the number of nodes

in the system.

A subcontract contains multiple member function invocations which can be executed in parallel.

The scheduling is done internally by the kernel. Di�erent runs of the same program may utilize a

di�erent number of nodes, thus providing scalability to the program. In extreme cases, a program

can execute on a single node as a sequential program. The code need not be recompiled to handle a

varying number of nodes in the system.

Object-based subcontracting is modelled on the statelessness property. No remote machine

exclusively holds the state of an object. Hence, programs become fault-tolerant to machine failures.

In the case of failures, the distributed kernel locates a new node and migrates the subcontract for

re-execution.

6. Conclusions

We presented a new paradigm called object-based subcontracting for parallel programming on

loosely coupled distributed systems. The paradigm uses metaobjects to hold together multiple

base objects. A subcontract is expressed as a member function invocation on the metaobject.

The metaobject handles internally the concurrent execution of the subcontract and provides

scalability and fault tolerance to programs.

Acknowledgements

The authors thank Mr U. Shaji for providing an implementation for some of the ideas discussed in

this document. The authors thank the anonymous referees whose comments have greatly helped in

improving the quality of this manuscript.

Table 2. Comparison with PVM for double precision ¯oating

point matrix multiplication

Number

of Subcontracting PVM

Task size nodes time (s) time (s)

50�50 2 13.86 13.48

100�100 2 100.3 97.82

4 57.1 51.1

5 47.18 42.34

150�150 2 331.6 324.48

3 228.48 219.16

5 147.28 137.28

6 130.32 117.14

Parallel programming on loosely-coupled systems 181

References

1. L. V. Kale and Sanjeev Krishnan. CHARM��: a portable concurrent object oriented system based on

C��, OOPSLA '93, ACM SIGPLAN Notices, October (1993) 91±108.

2. A. S. Grimshaw. Easy-to-use object-oriented parallel processing with Mentat, IEEE Computer, 26(5)

(1993) 39±51.

3. D. Caromel. Toward a method of object oriented concurrent programming, Communications of the

ACM, 36(9) (1993) 90±102.

4. M. Karaorman and J. Bruno. Introducing concurrency to a sequential language, Communications of the

ACM, 36(9) (1993) 103±115.

5. E. Levy and A. Silberschatz. Distributed ®le systems, ACM Computing Surveys, 22 (1990) 321±374.

6. R. K. Joshi and D. Janaki Ram. Parset: a language construct for parallel programming on distributed

systems, Microprocessing and Microprogramming, 41 (1995) 245±259.

7. B. Strustrup. The C�� Programming Language (Addison-Wesley Reading, MA, 1991).

8. B. B. Wyatt, K. K. Kavi and S. Hufnagel. Parellelism in object oriented languages: a survey, IEEE

Software, November (1992) 56±65.

9. V. S. Sunderam. PVM: a framework for parallel distributed computing, Concurrency: Practice and

Experience, December (1990) 315±339.

182 Joshi and Ram

Appendix. The matrix multiplication program

// computes M3 � M1 * M2

// M1 is split to form Parclass P

// M3 is split to form Parclass R

// At the end of the execution, R holds the

// di�erent parts of results

...

class =matrix {

// matrix data

const int grains � ..;

// matrix is to be divided into grain

// blocks, which are smaller matrices

public:

....

WO initialize (..);

RO matrix split (void);

// returns grain blocks of this matrix

// when called repeatedly

RO void mult (RO matrix m2, WO matrix m3);

// multiplies m2 with this matrix by

// calling m2.peep(), and

// forms a new matrix m3.

// Results are written to m3 by calling

// m3.initialize()

RO void print_matrix ();

};

...

main() {

Parclass ParMatrix holds matrix;

ParMatrix P,Q,R;

matrix M1, M2, M3;

...

...

M1.initialize(..); // ®ll in the values

M2.initialize(..); // ®ll in the values

P.build (&M1); // P holds subblocks

for (i=0; i < No_of_grains; i++)

Q << M2; // read replication of matrix M2

P..mult (Q, R, U); // R holds result blocks

R..print_matrix (O);

}

Parallel programming on loosely-coupled systems 183

	Abstract
	1. Introduction
	2. Drawbacks of the Existing Approaches
	Object-to-machine affinity
	Programs are not scalable
	Violation of statelessness
	3. Object-Based Subcontracting: A Concurrency Model
	3.1 Object locking in subcontracting
	3.2 Implications of locking specifications
	Guiding parallelism dynamically
	Providing fault tolerance to subcontracts
	Minimizing network communication
	3.3 Subcontract directives
	3.4 Object interactions in subcontracting
	3.5 Support for task decomposition
	4. Implementation
	4.1 The resident and the volatile kernel
	4.2 The kernel interface
	The create and insert calls
	The subcontract call
	4.3 Implementing fault tolerance
	4.4 Performance figures
	The scalability test
	Comparison with PVM
	5. Advantages of object-based subcontracting
	6. Conclusions
	References
	Appendix. The matrix multiplication program

