
MTCoord 2007

Mobile Agent Abstractions: Formulation and
Implementation

Rushikesh K. Joshi, Harikrishnan C. R., M. Hidayath Ansari

Department of Computer Science and Engineering

Indian Institute of Technology Bombay

Powai, Mumbai-400076, India.

Email := {rkj, harikcr, ansari}@cse.iitb.ac.in

Abstract

We present mobile agent abstractions in terms of a few basic mobility and connec-
tivity features. The features used in formulating the abstractions are identified as
self-hopping, push by host, retraction by originator, push by originator, and mobility
and disconnection of host machines. Combining these primitives leads to different
agent abstractions with varying flavors of mobility and interaction with hosts. Six
such abstractions namely Autonomous Agent, Messenger Agent, Controlled Agent,
Greedy Agent, Phoenix Agent and Disconnected Agent are presented. A unique
feature of this work is that the abstractions themselves are described in the more
general Ambient Calculus. Ambient descriptions bring out the subtle differences
between structural and behavioral properties of the agent abstractions. Guidelines
for mapping the abstractions to an implementation over a mobility framework are
also discussed.

Key words: Ambients, Agent Abstractions, Mobility Patterns,
Autonomous Agents.

1 Introduction

Primitive agent design patterns of Aridor and Lange [3] fall in the categories
of travelling patterns, task patterns and interaction patterns. The design pat-
terns form elementary design facets of agent-based applications. We present
a classification of agents, which is an abstraction layer above most of the pat-
terns described by Aridor and Lange. The agent abstractions that we describe
are defined in terms of a few primitives of mobility and disconnection. Our ap-
proach has been to consider mobility of agents through computers that hold
the agents. Six abstractions formulated in this paper. Autonomous Agents

navigate and act on their own. Messenger Agents follow navigation com-
mands and their transit hosts can interact with them. Controlled Agents are
controlled by their originator agents. Greedy Agents may make their itineraries

Joshi, Harikrishnan and Ansari

Table 1
Summary of Mobility Primitives in ARC

Primitive Description

Self-hopping A computation agent autonomously hops to another host

Push by host Application at current host holding the agent pushes it to an-

other host

Retraction by

Originator

Originator application retracts the migrated agent

Push by origina-

tor

Originator application pushes the migrated agent to another host

Dynamic Leave

and Join

A machine may leave an agent system and join dynamically

Auto Restart An agent deemed failed may be restarted by the originator

dynamically based on some local criteria. Phoenix Agents are copies of agents
which are lost to the host due to link or node failures. Disconnected Agents

are machines that carry computational agents with them. The computational
agents can further navigate after reconnection.

While many mobile agent based systems such as Aglets [7], Voyager [11]
and other frameworks such as those surveyed in [10] are known, we have cho-
sen to implement the high level agent abstractions on top of an Anonymous
Remote Computing (ARC) framework for C# over .NET [5] due to its char-
acteristic services such as auto restart for computational-agents and dynamic

leave and join by machines [4]. The main features of the ARC framework
which can be used in agent implementations are listed in Table 1. Formu-
lations of the agent abstractions are described in terms of Ambient Calculus
[1]. The abstract description clearly brings out the differences among the ab-
stractions in terms of the key structural and behavioral features that they use.
We note that it is possible to design composite agents that use a mixture of
features that characterize different abstractions.

The rest of the paper is organized as follows. In Section 2 we present a
brief overview of Ambient Calculus as relevant to this work. The next section
describes agent abstractions as ambients. Section 4 provides brief guidelines
of an implementation of these agent abstractions in an anonymous remote
computing framework.

2 Overview of Ambient Calculus

The Ambient Calculus [1] introduced by Luca Cardelli and Andrew Gordon
has the concept of an “ambient” central to it. It captures the concepts of
locality, mobility and ability to cross boundaries. In this section we cover the
background required for the formulations presented in this paper. Readers

2

Joshi, Harikrishnan and Ansari

Table 2
Ambient Calculus Syntax

(ν n) P Restriction of name n within

process P .

in n Capability to enter n.

0 Inactivity i.e. null process. out n Capability to exit n.

P |Q Parallel composition of two pro-

cesses P and Q.

open n Capability to dissolve

n’s boundary.

P.Q Serial composition of two pro-

cesses P and Q.

be n Capability to change

ambient’s name to n.

!P Replication of process P . (x).P Read a message and

bind it to x in P .

n[P] An ambient named n with pro-

cess P .

〈M〉 Asynchronous output

operation.

C.P An action.

familiar with the primitives of Ambient Calculus [1] [2] may skip this section.

An ambient is a bounded place where computation happens. The concept of
a boundary is crucial to clearly distinguish between the inside and the outside
of an ambient. This makes it possible to organize ambients in a hierarchical
structure. Each ambient has a name, which can be used for security purposes.
An ambient can be nested inside other ambients. When an ambient moves,
everything inside it moves with it. An ambient may contain a number of
parallel processes running inside it.

In Table 2, P and Q are processes, and C is a capability. The left part
of the table describes syntax related to processes, the top right part describes
capabilities, and the bottom right part lists message-passing primitives.

Restriction is used to introduce a new name and limit its scope. The 0

process signifies an empty process. Composition means that two processes P

and Q run in parallel or one after the other, as per the composition operator
used. Parallel composition of processes can lead to nondeterminism, since ac-
tions in multiple processes may execute in different orders, leading to possibly
different results. !P means that there as many copies of P available as needed.
This is useful in replicating daemons or services.

An ambient is written as n[P], where n is its name and a process P is
running inside it. P may be running even if n is moving, therefore in general,
only the immediate enclosing environment n is relevant to the operation of
sub-ambients and processes. Note that two ambients with the same name
may reside as siblings within the same parent ambient. An ambient in general
has a tree structure formed by nested sub-ambients and processes. Each node
of this tree may contain a number of sub-ambients as well as non-ambient
processes. The processes are immovable parts of the parent ambient node,

3

Joshi, Harikrishnan and Ansari

whereas the sub-ambients are independently movable ambients which may
move out of their current parent ambient node.

Capabilities and actions are the core components of this calculus which
provide mobility and security. Since movement of ambients changes the hier-
archical structure of the system, these operations are sensitive. If an ambient
n is to allow another ambient m to enter inside it, m must have the capability
in n. An ambient m that is a sibling of n and which contains an action in n.P

can enter n and continue with P. This is captured in the example reduction
below:

m[in n.P |Q] | n[R] → n[m[P |Q] | R]

Note that m can only move into n when they are siblings. In any other
case, this process of m is blocked until m gets a sibling named n. This is a
very useful way to introduce synchronization amidst inherent nondeterminism,
because the process P being serially composed with the capability is only
allowed to execute after m has entered n.

An example of the out capability reduction works similarly:

n[m[out n.P |Q]|R]] → m[P |Q] | n[R]

In this case, an ambient named n must be the parent of m, otherwise the
process is blocked till that becomes the case.

The open capability dissolves the boundary of a sibling and releases its
contents into the parent ambient.

open n.P | n[Q] → P | Q

If n is not a sibling of the process, the process is blocked until such a
situation arises.

The be capability [2] changes the name of the parent ambient as follows:

n[be m.P] → m[P]

These semantics also provide a form of in-built security. For example, in
order to unleash a process directly under ambient n, there needs to be a process
running within n to open an ambient containing that process. Only ambients
with appropriate capabilities can enter and exit n, which is an ambient. Also,
no child of an ambient may dissolve its parent. Only a sibling may do that,
and negative effects of this too may be controlled by careful handing out of
capabilities.

The last two entries of the table are communication primitives. 〈M〉 is
used to asynchronously output a message M . M may be a capability or a
value or a name. The process (x).P “consumes” a message, binds it to name
x within P and continues with process P .

4

Joshi, Harikrishnan and Ansari

Table 3
Agent Abstractions

Abstraction Description

Autonomous Agent Itinerary is with the agent, interactions are outward

from agent to host

Messenger Agent Itinerary decided by hosts, interactions are inward

from hosts to agent

Controlled Agent Itinerary is controllable by originator, primary inter-

actions are outward

Greedy Agent Dynamic and autonomous, outward interactions

Phoenix Agent A clone of an agent deemed as failed

Disconnected Agent A machine leaves or joins the system dynamically

3 Agent Abstractions as Ambients

Our experiments with agent implementation on the ARC framework have been
a motivation behind formulating the agent abstractions. The framework is a
distributed computing platform supporting mobile objects and dynamically
connectible machines through features listed in Table 1. Mobile agents under
this framework are objects that can move from machine to machine performing
assigned tasks. While an agent moves and performs task on remote machine,
it remains addressable to the originator machine through a logical connection.
The migrated agent may decide to hop to another machine, may be pushed
to another machine by its current host, or may be forcibly retracted by the
originator. A machine may get physically disconnected and reconnected at a
later time. Guidelines for implementing the agent abstractions over the ARC
framework are discussed in Section 4.

Using these mobility primitives leads to a few basic agent abstractions
which are identified in Table 3. Their formulations in terms of Ambient Cal-
culus are discussed below. For this purpose, we assume a logical bus topology
of host machines, which are also modeled as ambients along with computa-
tional agents. The ambient formulations inspired from Cardelli’s examples [2]
turn out to be interesting and sometimes intricate. We will describe only the
key structural and behavioral features of the ambients, which are agent navi-
gation for implementing autonomous itineraries, agent forwarding for making
itineraries for messenger agents, host access to agent contents for inward inter-
actions, remote control of agents by originator machines, external observation
for greedy agents, and periodic signaling and monitoring for enabling phoenix
agent launches.

• Agent Navigation: An agent that moves along a pre-programmed itinerary
has a main navigation process which encodes the destinations. This pro-
cess changes the name of the agent ambient depending on its current state

5

Joshi, Harikrishnan and Ansari

(either in transit or at location). For example, the following process Nav

guides its parent ambient agent A out of node N0 into node N1 and then
into N2:

Nav := (ν transit) (be transit.out N0.in N1.

be AinN1.open miner.be transit.out N1.in N2.be AinN2 ...)

The process starts by changing the name of A to transit. Since transit

is a local name, the agent is not addressable during transit. The name is
changed to AinN1 and to AinN2 as per the identity of the new host. The
name switching permits us to regulate the interactions for each host. The
process also uses a local outwardly interacting agent called miner for syn-
chronization before it moves to the next location. The outward interactions
and synchronization are described below.

• Outward interaction in Autonomous Agents: In parallel with process
Nav, the agent runs one communication ambient with a standard name
comm for each host encapsulating interactions with the respective hosts.
The communication ambient meant for the current host exits the agent
ambient and enters into the host node as soon as the agent arrives and
changes its name. This is achieved through command out AinN1 in the
communication ambient structure shown below.

comm[out AinN1 | 〈M1〉 | . . . | miner [. . . .in AinN1]]
The host has copies of a blocked process open comm running all the

time, one of which opens comm once it comes out of the agent. This releases
miner into the host which then performs its tasks on the host and eventually
returns back to A. This signals the agent that it can leave the host. The
signaling is achieved through a blocking process open miner, which is part
of process Nav as described above. In addition to miner ambient, comm

may also release messages such as 〈M1〉 shown in the code above, and also
other ambients inside its new host. The released ambients including miner

carry capabilities to access ambients on the host.

• Host Access to Messenger Agent Content: Some messenger agents
may wish to allow the host ambient to access certain local components.
Controlled access is provided by letting in probe ambients from the host,
instead of releasing the entire contents of A inside it. The host can thus
access only those elements for which it has capabilities. Probe ambients
can be guided in by having a parallel sub-ambient with a standard name
capability in A of the form capability[out AinN1. !〈in AinN1〉] inside the
agent A. The host opens capability (similar to comm above). This releases
as many copies of the capability message 〈in AinN1〉 as needed inside the
host. Using the capability, the host ambient can insert probe ambients in-
side A to interact with the messenger’s contents. For example, the probe
ambient P pre-equipped with capability in v, reads value v inside agent A:

P [in v.(x) out v.out AinN1.R]
A[v[! < 5 >] | . . .]

6

Joshi, Harikrishnan and Ansari

The probe carries on with the computation R after reading in the value of v

in local variable x and exiting A. The variable v is abstracted as an ambient
in order to facilitate multiple variables inside the messenger agent.

• Agent Forwarding for Messenger Agents: The agent may wish to al-
low its current host to forward it to another location. The host environment
inserts an ambient dest with a standard name and structure into A through
the process D given below. dest contains the itinerary for the forward path
of A. Agent A contains a parallel path blocked on open dest to release the
new incoming navigation process.

D := (incap) dest[incap. out N1. in N2]
A[. . . | !open dest| . . .]

Since dest requires a capability to enter the agent, process D of the host
waits on a capability message (incap) from agent A before creating dest.
This mechanism is similar to that used in agent access by host, as described
above. The ! for open dest process permits reuse of the forwarding mecha-
nism by the agent for subsequent hosts.

• Remote Control of Agents: Through remote control, the originating
ambient can exercise remote control on an agent that it sent out previously.
The primary idea is to send out a control agent which finds and encapsulates
the desired remote agent, and then guides it to destination desired by the
originator. In the example the agent C is a controlling agent which is sent
out by machine home in order to bring agent A back home. We assume
that C originating at home knows either the itinerary or the location of A.

A[. . . |in capsule.sync[outA].out arrived.R]
C[!navig|inA.capsule[. . .]]

capsule[out C.out A.open sync.(. . . |out host| . . .).in home.be arrived]
navig := out home.in N1. out N1. inN2. outN2. in N3 . . .

Agent A has a parallel process which is blocked to go inside capsule, which
is a secret name known to A. Machine home sends out a controlling agent
C which has the same itinerary and has a parallel process inA running,
so that during navigation when it finds A, it enters A. C creates a sub-
ambient named capsule when C enters A. capsule then exits C and A,
which is when A enters capsule. A then releases a synchronizing agent sync

to signal capsule about its encapsulation into capsule, after which, capsule

leaves the current host with a pre-programmed capability, arrives at home

and changes its own name to arrived. The change in name is observed by
A through an open process, after which A continues with process R which
is meant to execute in its originator. R and C can contain code to dispose
of C.

It may be noted that due to nondeterminism, there is a possibility of star-
vation resulting in C not entering A and instead continuing to only execute
the navig process. However, we believe that this issue may be resolved by
some fairness criteria through the implementation. This happens when the

7

Joshi, Harikrishnan and Ansari

location of A is not known to C in advance.

• External Observation by Greedy Agents: A greedy agent inspects
its host environment to decide on its itinerary. For example, a computa-
tion may move to a lightly loaded machine if its current host gets heavily
loaded. The greedy behavior is captured in the below description through
a local ambient that changes its name between high and low. The greedy
agent watches for these names and executes its greedy itineraries. In the
example below, the agent has parallel processes. The first two watch the
local parameter to move the agent A out of a highly loaded node and into a
lightly loaded node. The third process tries to navigate whenever possible.
The last process is an ambient representing the core computation which is
programmed to execute at any location.

A[!out high|!in low|navig|R]

• Periodic Signaling and Monitoring: A phoenix (clone) for a monitored
agent is created as a replacement when the host loses contact with the
agent. Monitoring is done by making the remote agent periodically (every
t time units) send back an ambient called signal through the recursive
process cabinman. The originating host on the other hand waits for these
periodic signals. The recursive process monitor located at the originator is
so programmed that if a signal is not received, the phoenix is started. The
description of this mechanism is provided below.

monitor := rec X. phoenix[in signal. <

be recd > |wait m.out home.in home.A].wait(m).X
cabinman :=

rec Y. wait t.signal[out A.(out N1|out N2| . . .).in home|(x).x].Y
A[out phoenix.R]

If a signal is received, phoenix enters signal ambient, which blocks phoenix
A from exiting. Also, ambient signal notes this by changing its name, which
prevents use of the older signal by a newer phoenix. A successful phoenix

is one that does not find a valid signal. It notes this after expiry of wait
period by going out of home. It comes in again to continue with launch
of phoenix code A. The outhome process prevents unnecessary creation of
ambient A.

• Disconnection and Reconnection: A disconnected machine with its
computation is modeled by an ambient which changes its name to some
secret value. Due to this, none of the existing agents under this ambient
can move out. Similarly, no new agent can enter the machine agent. Recon-
nection of the machine to an agent space is modeled by restoring the name
back to its old value. In the example below, the agent home disconnects
and reconnects while there are local ambients captured in R executing in
parallel with disconnection and reconnection. Ambients in R may move out
of home after reconnection on their intended destination.

home[. . . .be secret.be home|R]

8

Joshi, Harikrishnan and Ansari

ARC Services

user
application

agent

create

push out

ARC Services

user
application

agent

move in

diskactivation

deactivation

Infrastructure
machine A

Infrastructure
machine B

detachable
connection

Figure 1. Agents in Disconnected Mode

4 Implementing Agent Abstractions

This section describes an implementation of the agent abstractions on top
of the ARC framework. An example of the DisconnectedAgent abstraction
is illustrated. Disconnected operations in file systems such as AFS [8] and
CODA [9] can be viewed as instances of the disconnected agent abstraction.
File systems use local caches while a machine or server remains disconnected
from the rest of the network. Whereas, in the ARC framework, a machine
may be disconnected by its user from the rest of the network. In disconnected
mode, the machine carries live agents which operate locally while disconnected.

Disconnected operation in ARC is implemented through dynamic leave

and join service for machines and Deactivation and reactivation service for
computational agents. Once the machine is reconnected, the agents find their
way back to originators or other machines in the shared agent space. This
allows users to operate on agents even when they are mobile and disconnected.
A machine may even be switched off, in which case the agents get deactivated.

Deactivation of an agent stores the agent’s state into a persistent form. A
re-activation process regenerates the agent from its persistent form and brings
it back under the local machine’s active agent space. Figure 3 depicts a few
scenarios of software agents which operate in disconnected mode.

The development process for agents under the framework involves agent
interface specification, Agent implementation and application development.
These steps are described below.

• Interface specification: The interface IArcobject contains methods that
are used by the external user application. ARC framework design expects
the implementation of the specified interface to be through a skeleton class.

using System;

namespace ARCobjectInterface {

public interface IArcobject {

..... methods externally visible to applications

..... methods for visual display

}}

9

Joshi, Harikrishnan and Ansari

• Implementing the Agent: Implementation of an agent consists of im-
plementing an entry method called Trigger() and other interface functions.
Method Trigger() is executed automatically by the framework whenever an
object arrives on a node. Deactivation can be done from within Trigger().
Deactivation writes the agent to a local disk. When deactivated, the agent
does not move out. In the example snapshot below, the else part is executed
after reactivation of the agent. The agent uses a local variable flag to indi-
cate its current state. Reactivation is done by the external application that
uses the agent. The reactivation process is described in the next subsection.

public class ..., ARCobjectInterface.IArcobject, ITrigger {

...

public void Trigger() {

if (!flag) {

flag=true;

Console.WriteLine("in remote machine");

this.GUIbasedServiceLoop(); //local operations by user

SerializationNamespace.Serializer.

Deactivate("anAgent.arc",this);}

else { //nop: return to originator

Console.WriteLine("returning to originator");}}}

• Using an Agent in Disconnected State: An application program uses
serialization to bring back a deactivated agent to life. It may reactivate the
object after the machine hosting the object rejoins the ARC agent network.
After reactivation, the Trigger() of the agent is executed once again. As
shown in the above code, this results in termination of the trigger in an
activated object, leading to movement of the agent to its originator. A
snapshot of the example user application holding the agent is given below.

namespace remotemachine {

public class Application {

public static void Main(){

// load the agent from local persistent store

ARCobjectInterface.IArcobject obj =

(ARCobjectInterface.IArcobject) SerializationNamespace.

Serializer.Deserialize("anAgent.arc");

// Trigger is not called

obj.GUIbasedServiceLoop(); // use the agent locally

// now serialize it to a local persistent store

SerializationNamespace.Serializer.

Serialize("anAgent.arc",obj);

// activate from persistent store

SerializationNamespace.Serializer.Activate("anAgent.arc");

// agent hooked on net

}}}

10

Joshi, Harikrishnan and Ansari

5 Conclusions and Future Work

High level mobile agent abstractions for Autonomous Agent, Messenger Agent,
Controlled Agent, Greedy Agent, Phoenix Agent and Disconnected Agent
are formulated. Each of them has characteristic features of their own. The
abstractions are formulated in terms of Ambient Calculus, and it is possible
to neatly capture the key features of the abstractions in this calculus. The
work was derived from experiments on an existing service-oriented Anonymous
Remote Computing framework for mobility. The key features of the framework
that capture the characteristic features of the agent abstractions. An overview
of the development process for implementation is also provided.

In the context of availability of patterns and platform-related work in the
mobile application development area, our work on agent abstractions and
their formulations further emphasizes the richness of abstraction space in mo-
bile systems. It also points to a need for more work in this area that can be
beneficial both for application as well as middleware development. We finally
note that although a large body of literature on abstractions and implementa-
tions is available in object-oriented distributed middleware abstractions, the
effect of mobility on these largely remains to be explored. Further, as the work
shows, the emerging mobility abstractions at different levels can be captured
elegantly through Ambient Calculus.

A compelling reason to use Ambient Calculus for modelling purposes is that
a formal model-checking mechanism is possible for it. It is possible to express
properties we wish to hold at the end or during an Ambient computation and
use an automated technique to check for those properties. It is important
that the above patterns in their ambient formulations be formally verified in
order to ensure their functional guarantees. The authors are currently in the
process of developing a tool based on the CTL* logic developed by Mardare
and Priami [6], and using NuSMV to perform the model-checking.

References

[1] Luca Cardelli and Andrew D. Gordon, Mobile Ambients, Foundations of
Software Science and Computation Structures: First International Conference,
FOSSACS 1998.

[2] Luca Cardelli, Abstractions for Mobile Computation, Technical Report MSR-
TR-98-34, Microsoft Research, 1998.

[3] Y. Aridor, D. B. Lange, Agent Design Patterns: Elements of Agent Application

Design, Proceedings of Autonomous Agents, 1998, ACM Press.

[4] Aruna. L, Yamini Sharma, Rushikesh K. Joshi, Design and Implementation

of an RPC-Based ARC Kernel, In Proceedings of HPCN, volume 2110, pages
251-262, 2001.

11

Joshi, Harikrishnan and Ansari

[5] Rushikesh K. Joshi, T. Vamsi Kalyan, Architecture of the Object Oriented

Anonymous Remote Computing Framework for C# over .NET, 2nd Workshop
on Software Architecture and Design, Bangalore, 2004.

[6] Radu Mardare and Corrado Priami, A Logical Approach to Security in the

Context of Ambient Calculus, MEFISTO Workshop, November 2003, Electronic
Notes in Theoretical Computer Science, Vol. 99, 2004.

[7] Danny B. Lange and Mitsuru Oshima, Mobile Agents with Java: The Aglet API.
World Wide Web Journal, Vol. 1, No. 3, 1998, pp. 111-121.

[8] Huston L, Honeyman P, Disconnected Operation for AFS, In Proceedings of the
1993 USENIX Symposium on Mobile and Location Independent Computing,
Cambridge, MA, August 1993.

[9] Kistler J J, Satyanarayanan M., Disconnected Operation in the Coda File

System, ACM Transactions on Computer Systems 10(1), February 1992.

[10] Jens Krause, Technology Review of Java-based Mobile Agent Platforms,
Technical Reports in Computer and Communication Sciences, Id. 199810, EPFL
I&C, Lausanne, 1998.

[11] Graham Glass, ObjectSpace Voyager - The Agent ORB for Java, In proceedings
of WWCA, LNCS Vol. 1368, pages 38-55, 1998.

6 Appendix

We present a sample execution trace of a controlled agent being recalled to its
originating machine. In the formulae below, A is the agent to be recalled, C

is the ambient sent out to bring A back, capsule is a helper ambient inside C,
and navig is the navigation process encoding the itinerary of both A and C.

navig := out home.in N1. out N1. inN2. outN2. in N3 . . .

A[. . . |in capsule.sync[outA].out arrived.R]
capsule[out C.out A.open sync.(. . . |out host| . . .).in home.be arrived]
C[!navig|inA.capsule[. . .]]

Agent A is in a machine other than its host, and the host machine sends out
agent C to bring it back. C follows the same navigation path as A until it
finds A in some host and executes the in A action. At this point, the navig

process in C is blocked and cannot continue further since it is inside A.

A[. . . | C |in capsule.sync[outA].out arrived.R]
capsule[out C.out A.open sync.(. . . |out host| . . .).in home.be arrived]
C[!navig|capsule[. . .]]

capsule is released inside C. It immediately exits C and A, executing the
out C and out A capabilities. Note that capsule could not have been released
without C entering A.

12

Joshi, Harikrishnan and Ansari

A[. . . | C |in capsule.sync[outA].out arrived.R]
capsule[open sync.(. . . |out host| . . .).in home.be arrived]
C[!navig]

A enters capsule, and sync is released into A. This has the effect of blocking
A’s navig process.

A[. . . | C |sync[outA] | out arrived.R]
capsule[A |open sync.(. . . |out host| . . .).in home.be arrived]
C[!navig]

sync exits A.

A[. . . | C | out arrived.R]
capsule[A | sync[] | open sync.(. . . |out host| . . .).in home.be arrived]
C[!navig]

sync is opened by a process in capsule, which is a signal to leave the host.

A[. . . | C | out arrived.R]
capsule[A | (. . . |out host| . . .).in home.be arrived]
C[!navig]

capsule has a parallel composition of out capabilities for all nodes in the
itinerary, and it uses the applicable one to leave host and head to home.

A[. . . | C | out arrived.R]
capsule[A |in home.be arrived]
C[!navig]

capsule arrives in ambient home, and changes its name to arrived, so that
A knows it has arrived and may continue with the actions in R after exiting
arrived.

A[. . . | C | out arrived.R]
arrived[A]
C[!navig]

A continues with process R. C and arrived can be collected as garbage.

A[. . . | C | R]
arrived[]
C[!navig]

13

	 Introduction
	Overview of Ambient Calculus
	Agent Abstractions as Ambients
	Implementing Agent Abstractions
	Conclusions and Future Work
	References
	Appendix

