
Network Topology Processing Using CORBA Objects

S.A.Khaparde

Binu.K.S
R.K.Joshi Shubha Pandit

S.A.Soman

Department of Electrical Engineering

Department of

Computer Science

Department of Electrical Engineering

Indian Institute of Technology

Bombay, India 400076

Keywords: Object Oriented Programming, CORBA,

Topology Processing

Abstract

Object oriented technology has been widely accepted by vari-

uos engineering disciplines. The popularity of the technology

stems from the fact that it allows modeling and evolution

of large sized applications with ease. New functionality can

be integrated into existing object oriented applications with

ease.

All power system analysis begins with the processing of the

topology of the circuit being analyzed. Hence the implemen-

tation of an object based topology processor is the �rst step

in developing object oriented applications for power system

analysis. Foley and Bose have provided algorithms for the de-

velopment of an object oriented topology processor. The ob-

jects modeled in the topology processor proposed were phys-

ical component objects found in power systems. This paper

proposes an enhancement to the object based topology pro-

cessor by distributing the component objects using CORBA

technology.

I. Introduction

The object paradigm has proved to be helpful in develop-

ing and maintaining large scale application code. The basic

structural building blocks of an object oriented program are

classes.

A class is an abstract data type that encapsulates data

members and algorithms used to change or query the states of

the data members. This creates a strong association between

the algorithms and the data they process. The algorithms

de�ned in a class are known as it's methods. The implemen-

tation details of a class are hidden behind its interface. The

user's perception of the class is de�ned in it's interface com-

posed of public. Programmers using a class are not required

to know the implementation details of the class.

An object is an instance of a class. Since object oriented

applications use the public interface of a class without know-

ing the implementation details, the class implementation can

be changed with minimum changes in the application code.

Hence large object oriented applications are relatively easy to

maintain. Morover, inheritance allows specialized objects to

be created from existing objects facilitating extensions with

reuse.

Power system applications are usually a set of programs

distributed over many computers. Distribution of an appli-

cation over heterogeneous platforms is a complex task since

each platform may have its own representation of data types

which may not match with that of the other platforms. Hence

passing parameters between processes running on di�erent

platforms is a fairly involved task. Any remote procedure

call mechanism must take care of the mismatch between data

representation across the platforms. Hence communication

between objects in these environments requires a broker or

middle-ware to take care of the di�erences at variuos levels.

The Common Object Request Broker Architecture (CORBA)

speci�cation de�nes a standard for an object broker [1]. The

salient features of the CORBA speci�cation include object

orientation, distribution transparency and language, platform

and vendor independence.

The analysis of a power system begins with the topology

processing. All other applications use the results provided by

the topology processor. Hence the �rst step in creating dis-

tributed object power system applications is the implemen-

tation of a distributed object network topology processor.

1

Algorithms for object oriented network topology processors

have been provided by Foley and Bose [2]. These algorithms

need to be modi�ed to allow distribution of the objects.

Section II covers the features of the CORBA speci�cation.

Section III describes the implementation of a CORBA based

network topology processor. Section IV discusses the results

obtained from the topology processor and the conclusions.

II. CORBA Based Network Topology Processor

This section describes the implementation of a topology pro-

cessor that uses distributed CORBA objects. The topology

processor has been implemented for a few basic power system

objects in order to keep the application size small. The pro-

cessor has been implemented using an algorithm proposed by

Foley and Bose.

A. Implemented Objects

The topology processor has been implemented using phys-

ically based objects which include components, nodes and

stations. The components implemented are circuit breakers,

lines, sources and loads. Brief descriptions of the objects im-

plemented are as follows :

� Nodes

A node object maintains a list of the names of all com-

ponent objects that are connected to it. It has a ag to

indicate whether it is a bus. A node object may be a

static node or a dynamic node. A static node is part of

the static circuit description of a station. A static node

object is created when a station is created and and is

destroyed only when the station object is destroyed. A

dynamic node is a node which is formed when the topol-

ogy of a station is resolved. These nodes are dynamic

objects which are destroyed when the station resolves its

topology again. Static and dynamic nodes are instances

of the same node class.

� Lines

A line object connects two nodes which may belong to

di�erent stations. It stores the name of the two static

nodes to which it is connected. A line also stores the

names of two dynamic nodes to which it is connected.

� Breakers

The breaker object connects two nodes belonging to the

same station. This object stores the names of the two

static nodes to which it is connected. A breaker ob-

ject does not get connected to dynamic nodes, since the

dynamic topology of a station does not include circuit

breakers. The breaker object has a �eld to store its state.

The breaker's state may be set as on or o�.

� Sources and Loads

Sources and loads are objects connected to a single node.

These objects store the name of the static and dynamic

nodes to which they are connected.

� Station

A station object stores three di�erent lists which are :

���� ��
��
��
��

�
�
�
�

bk1 bk2

sr1 ld1

nd1

nd2 nd3

station1

Figure 1: A sample circuit

* A component list which stores the names of all the

components that are part of the station's circuit.

* A static node list which contains a list of the names of

all nodes that are part of its static circuit description.

* A dynamic node list which contains the names of the

nodes that are created when the topology of the station

is resolved. This list changes every time the topology of

a station is solved after after a change in the status of

any breaker.

Figure 1 shows a simple station circuit with three nodes,

two breakers, a source and a load. Figure 2 shows the rela-

tions between the component, node and station objects that

represent this circuit. An arrow pointing to an object rep-

resents a reference to the object. Bidirectional arrows show

that the objects reference each other. The dynamic node list

shown in the �gure is for the case when both the breakers are

closed (in the on state). A second dynamic node would have

been created if one of the breakers were open.

B. Object Naming Scheme

When objects are distributed over a large network, locating

a speci�c object can be simpli�ed by using a naming service.

The CORBA standard de�nes a naming service that enables

binding of object addresses to simple names [3]. To make use

of the naming service, a naming scheme has to be devised

to assign names to all the objects in a network. Figure 3

shows the naming hierarchy that has been devised to name

the power system objects. The underlined labels in the �gure

represent object instances. The object line1 in the diagram

2

nd1

nd2
nd3

dn1

bk1 bk2

sr1 ld1

component
list

node
list

dynamic node
list

station1

Figure 2: Objects for the sample circuit

stations

breakers loads

sources

dynamic

station1
station2

implementation

nodes

implementation dynamic

sources

loadsbreakers

nodes

lines

line2line1

(root naming context)/

nd1

bk1

nd1
nd2

ld1

Figure 3: The Naming hierarchy

can be accessed using a name of length two. The name of

this object is lines/line1 . The object ld1 in the �gure has the

name stations/station1/loads/ld1 which is a name of length

four. Special objects, called naming contexts, are used to

create a naming hierarchy like the one shown in the �gure. A

naming context is an object de�ned in the CORBA standard,

that allows other objects to create name-address bindings.

As shown in the �gure, the root naming context contains two

naming contexts stations and lines. All line objects are bound

to the lines naming context. Every station object creates a

naming context of its own under the stations context when it

is instantiated. All station names must be unique. The �gure

shows two naming contexts created by station1 and station2.

The station object binds to a standard name implementation

under the naming context of its name.

Every station creates �ve naming contexts under its own

naming context for the di�erent kinds components available.

A component in a station binds its name to one of these

naming contexts depending on its type.

Nodes that are part of the static description of a station

bind to the nodes naming context of the station to which

they belong. They are instantiated when the station object

is instantiated. When a station receives a message to resolve

its topology, new nodes are instantiated depending on the

status of the breaker objects in the station. These nodes are

bound to the naming context dynamic. The node objects in

the dynamic naming context give the current topology of the

station.

This hierarchical naming scheme prevents clashes in the

naming of components that are likely to occur if all names

were bound to the root naming context. For instance, both

station1 and station2 can have load objects named ld1 . The

full names of the loads would be stations/station1/loads/ld1

and stations/station2/loads/ld1 which uniquely identify the

two load objects.

C. Topology Processing Algorithm.

The station object forms a new set of dynamic nodes when

it receives a message to resolve its topology. All nodes that

are part of the previous dynamic circuit are �rst destroyed.

All nodes contain a topology ag that indicates whether the

node has joined the topology being formed. The station ob-

ject clears the topology ags of all the nodes. The station

object then creates a dynamic node and asks the �rst node

in its static node list to join this node. The method invoked

is called the join-topology method. The dynamic node being

formed is sent as a parameter to this method. When control

returns to the station object, the dynamic node will contain

a list of components. If this list is empty, the dynamic node

is passed again as a parameter to the join-topology method

to the next static node object in the list. Otherwise, the

dynamic node is added to the list of the station's dynamic

node list and a new dynamic node is formed for the next in-

vocation of the join-topology method. The algorithm for the

resolve method of the station object is listed below :

Destroy all the dynamic nodes in the dynamic

node list.

For all nodes in the static node list

clear topology flag

Form a new dynamic node and assign it to

the current node

For all nodes in the static node list

{

if current node has any component

attached

{

add the current node to the

dynamic node list

form a new node and set it

as the current node

}

send node the join-topology message

with the current node being formed.

}

On receiving the join-topology message from the station ob-

ject, a node �rst checks if it has already received the message

using the status of its topology ag. If its topology ag is

set, the node returns control to the station without doing

3

anything. Otherwise it invokes the join-topology method on

all the components that are connected to it with the name

of the dynamic node that it received from the station object.

The algorithm is listed below :

If topology flag is set

{

return

}

Set the topology flag

For all components attached to the node

{

Pass the join-topology message with

the current-node as parameter.

}

When a breaker object receives the join-topology message,

it checks its current state. If the breaker is o�, it returns

control to the node object that invoked the method without

doing anything. If the breaker is on, it invokes the join-

topology method on the node from which it has not received

the current invocation of the method with the dynamic node

it received as the parameter. This will result in the compo-

nents connected to it to join the dynamic node. Hence com-

ponents connected to the nodes on either side of the breaker

will connect to the same dynamic node. The algorithm is

listed below :

If breaker is on

{

pass join-topology message to the node from

which it has not received the invocation.

}

else

{

return.

}

All other components that receive the join-topology mes-

sage join the node which is passed as a parameter to them.

The algorithm used by these components is as follows :

Figure 4 shows the ow of control between the objects for

the example circuit shown in �gure 1. The control ow dia-

gram is for the case when breaker bk1 is closed (on) and bk2

is open (o�). The arrows show the invocation of the join-

topology method. Numbers alongside the arrows indicate the

sequence of execution. The name of the dynamic node that

is passed as the parameter to the method is written inside

parentheses alongside. The return of control to the object

that invokes the method is not shown in the �gure. The se-

quence results in the creation of two dynamic nodes dn1 and

dn2 in the station. The �rst dynamic node contains the name

of the source object and the second dynamic node contains

the name of the load object after the whole sequence is exe-

cuted.

D. Object Interfaces

The algorithms discussed in the previous section require

that all component objects support the following two meth-

ods:

station1

sr1

ld1

nd3

nd2

nd1

1

2

(dn1)

(dn1)

(dn1)

(dn2)

(dn2)

(dn2)

(dn2)

(dn1)

(dn1)

(dn1)

on

off

bk1

bk2

10

9

8

7

6

5

4

3

Figure 4: Control ow diagram

� The join method

The join method acts di�erently depending on whether

the component is a node or a normal component. The

method accepts an object name as a parameter. In the

case of a node, the parameter is a component name and

the node adds the component's name to a list of con-

nected components that it maintains. All other com-

ponents assume that the name passed is a node object

name. The join method of these components stores the

name of the node passed and invokes the join method of

the node passed with the component's name as the pa-

rameter. This method is di�erent from the join-topology

method de�ned in the topology processing algorithms.

The method also takes a parameter that indicates the

branch number of the component which is to be joined

to the node passed.

� The join-topology method

This method accepts a node name as its parameter. The

name passed is the name of the node under formation.

The method is implemented di�erently in each compo-

nent according to the algorithm presented in the previous

section. This method also takes a parameter that gives

the branch number of the component that is to join the

dynamic node.

In addition, a method called dump is included in the interface.

This method takes a string reference as a parameter. The

string reference on return points to the status information of

the object.

The de�nition of the component interface which contains

the methods mentioned above has to be written in a language

called the Interface De�nition Language (IDL). IDL makes

CORBA language independent. An object interface provided

4

in IDL can be parsed by an IDL compiler to generate class

de�nitions in any language that is supported by a CORBA

implementation. The interface de�nition of the component

object in IDL is listed below :

interface component

{

void join_topology(in CosNaming::Name jnode,

in unsigned short branch);

void join(in CosNaming::Name jnode,

in unsigned short branch);

void dump(out string str);

};

Apart from these common methods for the topology pro-

cessing, a component object can implement methods to query

or modify its state. For instance, the breaker object has the

following methods which are unique to it:

* An on method to close the breaker

* An o� method to open the breaker

* A status method that returns the current state of the

breaker.

The interface to a breaker object is derived from the com-

ponent interface in the following manner :

interface breaker : component

{

void on();

void off();

CORBA::short status();

}

This de�nition implies that the breaker object will have to

implement the three methods on, o� and status in addition

to the methods de�ned in the component interface. A client

application may access the breaker object as a component or

as a breaker object. When a client accesses the breaker as a

component, the methods de�ned in the component interface

are the only methods that it can invoke. These methods are

used by the topology processing application. To access the

other three methods, a client application has to access the

breaker using the breaker interface. For example, a client

aplication that monitors the states of all breakers in a circuit

would have to use the breaker interface to query the status

of the breakers.

Other components like sources and loads may contain

methods for querying their injection or voltage state which

can be used by the load ow programs. The advantage of

having a common interface for all component objects is that

the topology processor's code need not be changed to accom-

modate any new component types as long as the new type

supports the component interface.

The interface de�nition of the station object is listed below

:

interface station

{

void resolve();

void dump(out string str);

void dyn-dump(out string str);

};

The resolve method causes the station object to resolve its

topology. The station object clears the topology ags and

invokes the join-topology method on all the nodes that it

contains.

The dump and dyn-dump methods return the static node

listing and the dynamic node listing of the station respec-

tively.

III. Results

The topology processor described was implemented for

testing on a free CORBA implementation called MICO [4].

This implementation supported objects in C++. The test cir-

cuit consisted of six stations with thirty three components.

The test circuit is shown in �gure V. All objects were dis-

tributed over three pentium based computers running the

Linux operating system. Station1, station4 and all line ob-

jects were served by the �rst computer. The second computer

served station2 and station5 and the third computer served

station3 and station6.

A client application was developed to test the topology

processing. The application could be run on any computer

in the network and could connect to any station object given

its name and a simple interface was o�ered using which the

user could do the following :

� Query the state of any circuit breaker in the station by

name.

� Opening and closing any circuit breaker by name.

� Obtaining the static circuit description of the station.

� Obtaining the current dynamic description of the station.

� Sending the resolve method to the station.

The following listing is the output of the client application

when it was run on the �rst computer and used to modify

the breaker settings of station5.

Enter station to connect to ... station5

Connected to station station5

********** Static description station5

*********** Node id 5 **************

stations/station5/sources/1

stations/station5/breakers/4

*********** Node id 4 **************

lines/line_56

stations/station5/breakers/3

*********** Node id 3 **************

lines/line_54

stations/station5/breakers/2

*********** Node id 2 **************

lines/line_45

5

stations/station5/breakers/1

*********** BUS id 1 **************

stations/station5/breakers/4

stations/station5/breakers/3

stations/station5/breakers/2

stations/station5/breakers/1

station5>breaker 1 on

station5>breaker 2 off

station5>breaker 3 on

station5>breaker 4 on

station5>resolve

station5>dynamic

********** Dynamic description station5

*********** Node id 2 **************

lines/line_54

*********** BUS id 1 **************

lines/line_45

lines/line_56

stations/station5/sources/1

station5>breaker 2 on

station5>resolve

station5>dynamic

********** Dynamic description station5

*********** BUS id 1 **************

lines/line_45

lines/line_54

lines/line_56

stations/station5/sources/1

station5>

The topology of the station which consisted of a node and

a bus when breaker2 was open changed when it was closed.

Similar tests were carried out on the other stations in the cir-

cuit and the topology was resolved successfully. Although all

objects were modeled in the C++ language and implemented

on the Intel platform running Linux, it is possible to model

the objects in other languages on other platforms.

IV. Conclusions

The use of CORBA based distributed object solutions will

make the development, maintenance and upgradation of

power system objects easier and less prone to errors. The

proposed naming scheme for the component objects makes

them easily locatable irrespective of their exible machine

bindings. Di�erent application components can be imple-

mented on platforms that are best suited for them and the

integration of the applications can be achieved easily. It is en-

visaged that distributed control and exchange of information

among stations would become necessary and feasible with the

advent of new technologies. This work would serve as a �rst

step in this direction. With the limited experience gained,

this technology seems promising.

References

[1] OMG, CORBA Speci�catons, http://www.omg.org//,

1998

[2] M.Foley and A.Bose, \Object Oriented On-Line Network

Analysis", IEEE Transactions on Power Systems, Vol. 10,

No. 1, Feb. 1995, pp. 125-132.

[3] OMG, Naming Service Speci�cations,

http://www.omg.org//, 1998

[4] Kay Romer and Arno Puder, \The MICO Manual",

http://www.vsb.cs.uni~frankfurt.de/~mico/, 1997.

6

