

OOPLs: some issues

Abstraction
● Data abstractions – examples: primitive types, structured

types

● Control abstractions – examples: functions, control
constructs

● Object abstraction: data (hidden) + control (exported)

● Limitations of non-oop abstractions in combining the two?

– Data cannot be kept hidden inside function bodies
● Static? --- cannot be shared across multiple function

– Try an implementation of objects with multiple
function—use function pointers

● Globals-- accessible to other functions—breakage of
encapsulation (data cannot be hidden)

● Multiple instantiation needs parameterization-->data
has to be global

Object abstraction in OOPLs
● core constructs: class, interface

● Class = {data, public interface, their implementations}

● Classless OOPLs---cloning for instantiation

● An Example

– Object Counter –
● interface={inc,dec,set,reset,val}: Abstract data

type
● Focus on externally observable behavior
● Not on internal implementation (during

conceptualization)

Encapsulation
● To make sure that the only way to access or interact

with an object is through the intended abstraction

● An old principle – applied to obj abstractions
– e.g. Locals in files, functions

– Other examples: human beings, function libraries – local
members/control flow are hidden, files with local variable

● How does this principle manifest in OOPLs?

– The distinction between Private members and public
members

● Required when you implement abstraction

– i.e. It has more to do with implementation than a
conceptualization. Abstraction deals with
conceptualization.

Breakage of Encapsulation
● When is encapsulation considered as broken:

– Abstraction no longer works

– Bypass abstraction and manipulate

– Flaws in design – e.g. Top pointer public

– Flaw/feature in language – exploited e.g. Viruses,
buggy code using pointers

– Type safe computation – compile time and runtime
● Exception handling

Inheritance and delegation
reuse mechanisms

● Relation between 2 classes
● Between two objects== delegation model

– Delegation is meant to obtain the same effect
as that of inheritance when we operate at
object level in classless languages

●

o3

o2

o1
m()

m Not foundm()

m not foundm()

M found and answered

reply

Delegation Model

Inheritance between classes

o3

o2

o1
m()

m Not foundm()

m not foundm()

M found and answered

reply

Delegation Model
o1={j,k}
o2={l}
o3={m}
o2 is parent of o1;
o3 is parent of o2;
o1.m() --> will this
work?

c2

c1

C1={h,k}
C2={f,g}
o1 = new C1;
o2 = new C2;
is o2 parent of o1?

:no. o1 and o2 are independent
 instances. But o1 has its own internal o2

Inheritance vs. delegation

● Inheritance
– Between classes
– In Class-based

languages
– Every instance of

derived class has
internal parent chain

– Cannot share parent
objects, but can
share parent classes

– Reuse of parent class

● Delegation
– Between objects
– In prototype-based

languages
– Chaining of objects

is explicit
– Can Share parent

instances
– Reuse of parent

object

Internal parent objects in
inheritance

c2

c1
O1 part

O1's o2

O1 = new C1

o1's o2 can be extracted if needed --> widening

from such o2, the associated o1 can be extracted back--> narrowing

O1 in whole
O1's o2

An integrated
assembly
for instance of
C1

Alternative way of picturing
the same assembly

Example of narrowing

Object

myclass o1

objects

A vector holds instances of type object (by widening)

from this vector the actual objects can be extracted for use --> narrowing

o1

objects

o1

object

o1

object

o1

object

o1

object

vector

Inheritance for reusing
parent's members as they are: pure extension.

c2

c1

Defn C2 = {f.,g}
Defn C1 = {h, k}

Effectively, if C1 : subclass of C2, then
C1 = {f,g,h,k}

in other words, C1 is an extension
of C2, i.e. C2 has been extended—you
have 2 more functions

why not simply edit C2 and add these functions
-- useful in modeling?
-- independent instances of c2 will be affected

objects of both the classes are needed

Can be some members be removed?

c2

c1

Defn C2 = {f.,g}
Defn C1 = {h, k}

can we say, C1 is subclass of C2, but
without C2:f ?

--- most OO languages do not permit this
feature
-- for type safe widening

Inheritance with Specialization: Can some
members be changed?-yes

c2

c1

Defn C2 = {f.,g}
Defn C1 = {h, k, f}

can we say, C1 is subclass of C2, with C2:f
changed ? : yes
java like syntax
for an equivalent prog in c++, use pointers
C1 c1 = new C1;
C2 c2 = new C2;
c1.f which f? C1::f
c2.f which f? C2::f
c2 = c1;
c2.f which f? C1::f

Observe that
though the 2
statements are
same, static
binding
is not done

Inheritance for mixins

c1

mixin

c1 c1c1

Mixin has 4 internal components.
e.g. A PC with motherboard, memory, graphics
card and inbuilt network card

Contracts
● Between parties (at least 2)
● Contract = abstraction / full behavior =

ADT specification
● Interface = syntactic contract

● Member function names
● Input parameter types
● Return types
● Exceptions
● Name of the interface

● Object's contract: object itself and its
environment

● Design by contract method by Meyer,
inventor/designer of Eiffel language

Design by contract
● Between full ADT description

● Assertions

– Preconditions
● Parameter values
● Local state

– Postconditions
● Value to be returned
● Current local state
● Old state (state-1) before this call was accepted

– Invariants
● Class invariant == true throughout the lifetime of

the instance
● Example of stack

What if a contract violation is
detected?

● Who detects?

– The runtime environment

● Exception is thrown

– e.g. Precondition violation exception

● Who benefits from pre-conditions?

– Implementation of the object

● In what way? -- no need to check for pre-conditions

– Write the pure abstraction logic
● Who ensures pre-conditions?

– Parameters: caller ensures
– Local state: previous postcondition/initial condition

● Who benefits from post-conditions?

– Caller

– Who ensures them?

● Server object/the object/service provider

–

3 levels of contract
specifications

● Best: full description
● Syntactic – interface type descriptions
● Assertions: pre/post conditions, invariants:

design-by-contract
● C++: use assert macro—before and after

the method body (core code); and do not
check for the assertions in the core code of
the method—to benefit from contracts
– Terminate upon failure of assertion
– For graceful degradation: exception handling is

used (as in Eiffel)

● Defensive Programming

Defensive/contract oriented
programming/development

● Develop interfaces
● then develop contract specifications
● Compile them
● Then write the body of the methods ==

you got the class now!
● Work with the class

– Your contract code (assertions) work against
logical errors in methods bodies

Contracts and inheritance?

● What's an acceptable refinement in
inheritance?

● Builder's dilemma

– Original: 1,00,000 --> 3BHK

– New? 2,00,000 -->3BHKFurn

– 1,00,000 -->3BHKFurn

– 50,000-1,00,000 --> 3BHK or 3BHKFurn

– 2,00,000 ---> 1BHK

– Should preconditions be allowed to become weaker?
stronger?

– Should postconditions be allowed to become
stronger? weaker?

Type systematic view

C1
S1 f (T1 t)

C2
S2 f (T2 t)

C1::f and C2::f are virtual/dynamically bound functions

consider following code:

C1 *obj = new
T1 * t = new

 obj --> f (t);

We have following 4 combinations

T1 T2

C1

C2

covariance
● C1 *obj = another.k()
● T1 *t = other.g()
● obj->f(t)
● K returns an instance of C2

– G returns an instance of T1
– Compiler passes the code
– Runtime error

● Can you construct such an example with
contravariance?

● Not allowing covariance is too restrictive

contravariance

● Type safe but too restrictive
– Asking developers of new classes to use old

or older parameter types
– Therefore Eiffel supports covariance and uses

runtime type checking to prevent type unsafe
combinations

Invariance of parameter types

● If there is a slightest change in parameter
types
– Don't analyze relationships between those

parameter types
– Simply consider the two functions as entirely

different ones – they only happen to have
same name and that;s all-- overloading

● Overloading is not dynamic binding
– At compile time you can resolve functions
– No need to wait till runtime
– Overloading is called syntactic polymorphism

Return types

● Covariance is safe
● Contra: unsafe

– C1 *obj = new C2
– S1 *s = obj.f()

● S2 C2:f()
● If S1 is subclass of S2

polymorphism

● Why is subclass a subtype?
● Reuse argument

– 1. reuse code written in terms of the
superclass(super-type)

● In what context?
– In an environment which provides instance of subclasses

– 2. reuse member functions of superclass
● In what context?

– By not implementing/overriding in subclass. i.e. Reused
in subclass

– Reuse the contracts

'this'

● Sharing of member function
implementations
– i.e. One per class

vs.

● Embedding implementations inside
objects
– i.e one per object

'this'

C1 *o1 = new C1

C2 *o2 = new C2

C1* o3 = new C2

 o1 -> f

 o2 -> f

 o3 ->f

