Implementing objects and inheritance

Object's memory map
Sharing of function
The 'this' pointer

Function invocations

Dynamic binding as per the subsumption rules

PoPL course notes

Rushikesh K. Joshi
lectures on Aug 23,22,20

Standalone classes and their instances

A_incr_i (void *this, int x) {
*((int *) (this+0)) +=x;
}
A_incr_j (void *this, int x) {
*((int *) (this+sizeof int)) +=x;

! A incr i

main ()
A incr_j
..al....a2 point to memory chu

A_incr i (al, 1); main
A_incr_i (a2,2);

A_incr_j (a2,3);

class A {
int 1; int j;
public incr_i (int x) {
1+=X;
}
public incr_j (int x) {

J+=X;

b

main () {
A *al =new A();
A *a2 = new A();
al ->incr_i(1);
a2-> incr_1(2);

aZ2s>ific (3)s

The solution

An instance's memory map contains all its state (the
variables), and the class's function bodies are separated

from the state chunks.
shared function bodies
To share a function body since a function may have to
operate on multiple instances, we need to pass the
memory reference of the object's state chunk.

The 'this' pointer or 'self' reference

The solution contd..

Functions bodies are changed to reflect the indirect
addressing of object's internal state through the 'this'
pointer

The invocations are changed to reflect the same by
explicitly passing the receiver object's address as the
first parameter

The same this pointer can be made available to the
programmer in source code

mainly used for returning itself

Summary of the solution

We were able to share function bodies
across many instances
&
The functions were able to find the
locations of the object state variables

Single Inheritance and instances

A_incr_1 (void *this, int X) {
*((int *) (this+sizeof dt)) +=x;
}
A_incr_j (void *this, int x) {
*((int *) (this+sizeof dt+sizeof int)) +=X;
}
B _incr_j (void *this, int X) {
*((int *) (this+sizeof dt+sizeof 1) +=X;
*((int) (this+sizeof dt+2*sizeof int) +-1;

}
main () {
..al....a2 point to memory chunks
A_incr_i (al, 1);
A_incr_1 (a2,2);
A_incr_j (a2,3);
}

class A {
protected int i; int j;
public virtual incr_i (int X) {1 +=X; }
public virtual incr_j (int X) {j+=x;}
h:
class B : public A{
int k;
public virtual incr_j(int x){j += x; k++;}
I
main () {
A *al = new A();
B *bl = new B();
A *a2 =bl;
al ->incr_i(1);
al->incr_j(2);
a2 ->incr_1(3);
a2->incr_j(4);
bl -> incr_1(5)3
bl->.ancE j(6);

Single Inheritance and instances

A_incr_i (void *this, int x) { class A {
*((int *) (this+sizeof dt)) +=x; protected int 1; int j;

}
A_incr_j (void *this, int x) {

public virtual incr_i (int X) {1 +=X; }

public virtual incr_j (int X) {j+=x;}
1
class B : public A {

int k;

*((int *) (this+sizeof dt+sizeof int)) +=Xx;
}

B _incr_j (void *this, int x) {
*((int *) (this+sizeof dt+sizeof 1))4=1;

public virtual incr_j(int x){j += x; k++;}

1

(int) (this+sizeod dt+2*sizeof int))+=1;

main () { main () {
A*a A *al = new A();
B *b

B *bl = new B();

A *a2 =bl; or new A()
al ->incr_i(1);
al->incr_j(2);

a2 -> incr_1(3);

a2-> incr_j(4);

bl -> incr_i(5); bl -> incr_i(5)

b1-> incr_j(6); bl->ancE 6);

A *a2 =bl;or new
al ->incr_i(1);
al->incr_j(2);
a2 -> incr_1(3);
a2-> incr_j(4);

The solution

" when the instances of subclasses are used as
instances of superclasses, the respective functions

should be called

" Which means we may not know at compile time the
exact function bodies that will be called through a
variable of a given type

" The solution 1s to make one dispatch table for every
class and keep an address of this table 1n every
instance.

The solution contd..

The dispatch table contains function pointers
Invocations are now made through the dispatch table

The this pointer scheme 1s the same as the one used
earlier

The table of a subclass preserves the order of entries

1n its superclass.

Summary of the solution

We were able to locate the function from the instance
even 1f the type of the variable was different

&

The functions were again able to find the right set of
variables

Additional problems of multiple

inheritance
Class A {

protected i,j;
dynamically bound functions f,g,h;

}

class B {
protected k,I;
dynamically bound functions f,qg,s;

}
class C inherits both A & B {

protected m,n;
dynamically bound functions f,g;

}

What's the problem?

we may not be able to preserve the schema
for the functions found in tables of the two
superclasses within the table of the
subclass.

solutions? (try in the lab..)

