
AspetJ Implementation of Dynamially Pluggable FilterObjets in Distributed EnvironmentRushikesh K. Joshi and Neeraj AgrawalDepartment of Computer Siene and EngineeringIndian Institute of Tehnology, BombayMumbai, IndiaEmail: frkj,neerajg�se.iitb.a.inAbstratFilter objets are dynamially pluggable �rst lass objets whih transparently intereptmessages sent to server objets to whih they are attahed. We desribe an implementationof Filter Objets for JAVA on Xerox PARC's AspetJTM . AspetJ supports the trans-pareny properties of Filter Objets. The implementation handles objets in a distributedenvironment. One distint feature of the �lter objet implementation is that �lter objetsneed not be developed at the ompilation time of the base system. Filtering apabilities aredemonstrated through implementations of a distributed �lter on�gurations. Various �lterbinding types have been introdued and their related implementation issues are disussed.Keywords: Filter objets, Aspet Oriented programming, Implementation Model, FilterBindings, Distributed Environment, Repeater Con�guration1 IntrodutionOne of the earliest �ltering abstration in a programming language is the Composition Filtersmodel of Aksit et al. for language Sina [8℄, [10℄. Sine the development of Composition Filters,various mehanisms have been implemented for supporting �ltering in programming languagesand environments. Filter Objets of Joshi et al. [1℄ represent a suit of abstrat �lter objetonstruts for objet oriented languages based on an interlass �lter relationship. Filter objetsare dynamially pluggable �rst lass objets. They an be passed and returned as parameters,they have identities and they an be reated dynamially. They are modular sine they areinstane of lasses. Filter objets have speial apabilities to transparently interept messagesent to server objets related to them. Filter objets, themselves being instanes of lasses,an also reeive diret messages just as other �rst lass objets do. They an organize theirindependent ativities ohesively. Filter onstruts have been implemented for C++ [1℄, JAVA[4℄ and MICO CORBA [6℄.The �lter objet onstruts are primarily omposed of an interlass �lter relationship, �ltermember spei�ations, and a �lter binding mehanism. The interlass �lter relationship makesit possible to speify �lter lasses and eventually �lter objets. A �lter lass spei�es �lteringmember funtions whih �lter their respetive server member funtions when a �lter instane isplugged to a server objet at run time. Filter binding mehanism failitates dynami plugging

Client1

Cleint2

FilterContainerPipe

Server1
Original Path

Filter
 NewServer

Filter2Figure 1: The Filter Modeland unplugging of �lter instanes (�lter objets) to their respetive servers. There are otherextended �lter objet onstruts whih provide additional apabilities to �lter objets. Forexample, �lter objets an be layered, they an be made to �lter a group of server objets. Itmay also be possible to swith �lter member funtion implementations at runtime.This work reports an implementation of Filter Objets on AspetJTM [5℄. We hose AspetJas a platform for implementation due to semanti similarities between the two suits, AspetJbeing a more general paradigm for separation of onerns and Filter Objets being a spei�suit of protools for �ltering. One important feature of this approah is the apability to speifyand attah �lter objets at runtime. Filter lasses need not exist at the time of ompilation ofthe appliation.In the �rst setion, we briey overview the onstruts of the �lter objet model followed bya disussion on our approah to implementation based on AspetJ. A onrete implementationof a �lter on�guration is presented, subsequently highlighting the underlying development lifeyle for �lter based appliations. Some issues arising in design and implementation of �lterobjets in a distributed environment inluding bindings and deployment are disussed.2 Filter Objet ModelFilter Objet model an be desribed in the form of following apabilities:� Interlass �lter relationship: A Filter lass is like any other lass exept that it alsoexports a �ltering interfae by virtue of the interlass �lter relationship. The �lteringinterfae onsists of �lter members, whih are automatially invoked by the exeutionenvironment as indiated by �lter bindings. A �lter objet may also export a publiinterfae apart from the �lter interfae. The publi interfae is available to objets thatknow of its identity.� Transpareny: Filter objets are transparent to aller (lient) or the allee (server). Clientand server objets need not know about the existene of the �lter objets.� Intereption of upward and downward messages: A �lter objet an �lter upward mes-sages traveling towards the intended server with a member funtion alled up�lter. An

up�lter member may pass or boune the message. In the ase of a boune ation, the�lter itself returns a result to the lient on behalf of the intended destination. Also, itan let the message pass through to the server. Similarly, a down�lter member funtionan �lter a return result on its way to lient. Message arguments may be manipulatedinside a �lter member. A �lter objet may also ollaborate with other lasses from withinautomati �ltering member invoations.� Dynami pluggability: A �lter objet an be spei�ed, reated and attahed to a serverobjet at runtime. Similarly, a �lter objet may be unplugged or delinked from �lteringpaths at runtime.� Chaining and Grouping of Filters: Multiple �lter objets an be attahed to one serverobjet. They are arranged in an order, in whih, their servies are alled. It is alsopossible to provide multiple �lter lasses for a server lass. A �lter objet may be madeto �lter a group of server instanes provided that the �lter relationship between theirrespetive lasses is met.3 Implementation ModelAspetJ [11℄ is a JAVA implementation model for separation of onerns based on AspetOriented Programming [5℄. Filter Objets are a spei� suit of protools at the level of objetoriented programming, while AspetJ an be seen as a general framework for separation ofonerns. AspetJ has been hosen as a substrate for implementing Filter Objets followingthe guidelines listed below.1) A �lter objet attahment to a server an be modeled as a ross-utting Aspet. AnAspet may be used as a Filter Pipe to hold all the �lter objets for a given sever objet. AFilterPipe may be implemented in various modes suh as per lass, per server objet or perlient-server pair.2) AspetJ has the apability to model message intereption in a modular way, whih is arequirement of the �lter objet model. By means of around advie on a all, messages an beinterepted and made to go through a FilterPipe. An around advie provides enough ontrolover messages so that they an be bouned, passed and manipulated. Intermediate invoationson other objets may be arried out by �lter objets.3) AspetJ has the apability to make the FilterPipe and Filter Objets transparent toserver and lient. It does not require modi�ation to the soure ode manually, whih is a oreproperty required for implementing �lter objets.As shown in Figure 1, A lient invokes a diret method on a server objet shown by thedotted line. This is the path taken in for non �lterable lasses. For a �lterable lass, the atualpath is shown by solid lines. FilterPipe is kept transparent in the sense its identity need notbe revealed to lient or server objets. In the �gure, the FilterPipe ontains two �lter objets.The pipe is attahed to two server instanes. FilterPipes are bi-diretional. All messages tothese two server instanes and their return results ow through the FilterPipe.The distributed environment for AspetJ-based �lter implementation onsists of ollabo-rating objets hosted by multiple JVMs running on a luster of workstations. Collaborations

aross JVMs are ahieved through JAVA RMI mehanism. An important issue in �lter imple-mentations for distributed environment is the loation of the �lter objets. A �lter objet mayexist on the lient mahine where method all to the server objet is originated, it may existon the mahine on whih the instane of the orresponding server lass is loated, or it maybe loated on a third-party mahine.4 An Example ImplementationThe implementation is disussed with the help of an example. In the example, a requirementon an existing software is spei�ed and a �lter objet based solution satisfying the same ispresented. The solution is based on the Repeater Con�guration disussed in [2℄.Requirement: An aademi registration system provides an Enroller objet through whihnew-entrants an be enrolled into the system. While the appliation is exeuting, a newstudent assoiation is started on the ampus. The new requirement states that at the timeof enrollment, a new-entrant should also be enrolled into the student's assoiation. Also, theupgradation should be done without shutting down the appliation.Solution: It is possible to satisfy the need in the onventional message passing model, ifsuh a need was antiipated by the designer. Also ode for the new assoiations has to beinjeted in the lasses of the appliation whih ould be made possible through appropriateomponentization tehniques. However, in the ase of an unantiipated request, there maybe onerns that may not have been thought of at the time of designing and ompilation.Addressing this need, we now disuss an implementation with Filter Objets handled throughaddition of a new Aspet an be added at runtime. Note that onsisteny riteria are of seriousonern in suh a ase and we presume that the same are met through expliit oding whileenabling the hange. The solution is depited in Figure 2. The implementation of the same isdisussed below.The following lass is a lient to lass Enroller, whih sends a message enroll() to an instaneof lass Enroller. Class Enroller is the server lass to whih �lter objet attahment is provided.publi lass Client{Enroller enr;publi Client() {enr = new Enroller();enr.enroll(new Student("John"));}}publi lass Enroller {stati Vetor allStudnets = new Vetor();publi Enroller(){...}publi void enroll(Student newS){ allStudents.add(newS); }} Filter pipe for the server lass is modeled as an Aspet to add the �lter attahment apability tolass Enroller is given below. The aspet has two stati member variables named upFilterVetor anddownFilterVetor of type vetor. These two variables hold all the �lters held in the �lter pipe. A �lteris added to a pipe by inserting a �lter objet into these vetors.

Call to other object

enrollerFilterPipe

Upward messages

Downward results
NewAssociationFilter

Enroller

NewAssociationEnroller

Client

Figure 2: A Repeateraspet enrollerFilterPipe{stati Vetor upFilterVetor = new Vetor();stati Vetor downFilterVetor = new Vetor();pointut enrollCall(enroller enr, String str):target(enr) && args(str) && all(publi boolean enroll(String));String around(enroller enr,String str): enrollCall(enr,str) ...} The around advie and pointut apture a method invoation on an instane of lass Enroller. Upona message apture, it invokes the orresponding method on eah �lter attahed in an order of theirappearane in the Vetor. With this invoation, it provides them with the required ontext informationso that they an perform �lter ations of pass, boune and argument modi�ation. This ontextinformation inludes a handle to the target objet, array of arguments, and an objet of type Result.Upon boune, the result is stored in this objet. If the message is not bouned, original method is alledwith the possibly modi�ed arguments. Implementation of around advie is given below.String around(enroller enr,String str): enrollCall(enr,str) {boolean flag = true;Result res = new Result();enrollerFilter enrollerFilt;Objet args[℄ = new Objet[1℄;args[0℄ = str;for(Enumeration e =upfilterVetor.elements(); e.hasMoreElements() && flag;) {enrollerFilt = (enrollerFilter)e.nextElement();flag = flag && enrollerFilt.filterenroll(enr, args, res);}if (flag) res.retValue = proeed(enr,(String)args[0℄); //not bounedfor (Enumeration e = downfilterVetor.elements(); e.hasMoreElements();) {enrollerFilt = (enrollerFilter)e.nextElement();enrollerFilt.filterenroll(res);}return (String) res.retValue;}} The base �lter lass for lass Enroller and its onrete implementation is provided below. Theabstrat base lass EnrollerBaseFilter is extended by every �lter lass for lass Enroller. A �lter lass

AspectJ compiler

application FilterAspect
BaseFilters

Filterclass
for classessource code

Application
Compiled code Filter classes

Abstract
FilterclassesFilterPipes

AspectJ compiler

JVM
Dynamic Filter Attachment

Abstract

Figure 3: The Life CyleEnrollToOtherAssoiation given below performs the additional requirement by means of a message sentto an external objet.interfae EnrollerBaseFilter {boolean filterenroll(Enroller target, Objet args[℄, Result res);void filterenroll(Result res);}lass EnrollToOtherAssoiation implements EnrollerBaseFilter {NewOrg newstudentOrg;publi boolean filterenroll(enroller enr, objet args[℄, Result res){newstudentOrg.enroll((Student) args[0℄);return true; // message is passed}publi boolean filterenroll(Result res){};} To attah a �lter objet to a server lass, one needs to insert it in the upFilterVetor in the �lter pipe.Similarly, a down�lter an be attahed to objet by inserting a �lter instane in to downFilterVetorof pipe as shown in Figure 2. The lient instane makes a all to an enroller instane. It goes throughthe �lter pipe, interepted by instane enrolToOtherAssoiation, whih satis�es the new requirementand passes the message through it. In ase of multiple �lters (layering) attahed to an objet, they areinvoked in an order of their appearane in the vetor.5 The Development LifeyleFigure 3 depits various stages in the development of a �lter appliation. One soure ode for theappliation is ready, lasses for whih �lter attahment apability is to be provided are identi�ed.For eah suh lass, an Aspet is generated to apture method invoked on it. This Aspet may bemanually written or its skeleton automatially generated. For all methods in the server lass, a pointut with target and all primitive of AspetJ is inluded in the Aspet. Around advie is used to make

Clients Filters Servers Clients Filters Servers

Clients Filters Servers FiltersClients Servers

1

1

2
2

21

1

(b) One to Many Filter Binding (d) Many to Many Filter Binding

(a) One to One Filter Binding (c) Many to One Filter Binding

Figure 4: Four Types of Filter Bindingsall messages pass through the FilterPipe. AspetJ ompiler is used to weave these Aspets into theappliation. After the appliation starts exeution, a new �lter extending the base �lter for the targetlass an be ompiled and attahed to the target server objet through Reetion as shown in the �gurethrough a dotted line.6 Filter Objet BindingsFilter instanes an be ategorized into four kinds alled one to one, one to many, many to one andmany to many based on their bindings with lient and server objet. These bindings are disussedbelow.� One to One Filter: This type of �lter objet is bound with an instane eah of server andlient lass. Figure 4(a) shows this type of binding. This binding is used for <per-instane,per-instane> pairing of lient and server respetively. Thus, eah �lter objet is assoiated witha unique pairing. It an be noted that there ould be a series of �lter objets assoiated with apairing within this onstraint.� One to Many Filter: This type of �lter objet is bound to an instane of lient, but an bebound to more than one server instanes as shown in Figure 4(b). This binding represents a <per-instane, per-group> paring of lient and server. Thus, a unique lient objet an be identi�edfor every �lter objet, whereas, a �lter objet may at as a �lter to many server instanes.� Many to One Filter: This type of �lter objet is bound to an instane of a server and manylient instanes as shown in Figure 4(). This binding is identi�ed as a <per-group, per-instane>pairing, in whih, a �lter is assoiated with a group of lients. However, a �lter objet is assoiatedwith a unique server instane.� Many to Many Filter: This type of �lter objet is bound to multiple instanes of server andlient. It an be represented as a <per-group, per-group> pairing of lient and server instanes.A �lter objet may serve many lients and many servers as shown in Figure 4(d). In the �gure,the lower �lter objet is of type many-to-many, whereas, the upper objet is of type one-to-many.A group in these on�gurations an be arved out of a server lass giving a per-server lass binding.Alternatively, a set of server instanes may be identi�ed to form a group. Similarly, at lient side, agroup may either be onsidered to onsist of all lients of a server objet, or a speialized group may be

Table 1: Typial Deployment in a Distributed EnvironmentOne to One Filter Client side/Server sideMany to One Filter Server sideOne to Many Filter Client sideMany to Many Filter Independent mahineformed. For eah ase, a suitable Aspet implementation needs to be hosen. For <per-instane, per-instane> pairing, the mapping to �lters requires two keys onsisting of lient and server identi�ers.Similarly,<per-instane, per-group> requires one key, whih is lient identi�er, provided that it is aper-server lass �lter. If the server side group is not a lass group, a group key is also required. For<per-group, per-instane> pairing, two keys are required to identify lient group and server instane iflient side group is not formed of all lients. If the group represents all lients, only one key is required.In the ase of <per-group, per-group> pairing, two keys are required if groups do not represent all lientsand server-lass. Otherwise, no key is required in this ase. In ase of a key-based implementation, amehanism suh as Hash table an be used to store mappings.7 Deployment of Filter Objets and Filter PipesType of the �lter objet binding an be hanged dynamially. They an be onverted from one typeto another by dynamially plugging/unplugging them to appropriate server objets. In a distributedenvironment, lient and server objets may exist on di�erent JVMs. A �lter objet in a distributedenvironment exeutes within a single JVM, but is available remotely. Typial deployment suggestionsfor �lter objets are given in Table 1.A loation is hosen based on network overheads and also semantis of �ltering. For a one to one�lter, most eÆient loation ould be both lient or server side as it does not have any network overhead.It would be eÆient to loate a one to many �lter on the lient side, sine in this ase, messages originateonly from one JVM and having �lter objets on lient side redues the network overheads. For many toone �lter objet, server side loation is preferable. If loated elsewhere, all method alls to the serverobjet originating from many lient objets existing on di�erent JVMs on di�erent mahines will haveto be routed through this single JVM resulting in additional network overheads. Many to many �lterobjets inur message routing overheads sine alls from lients loated on di�erent mahines and onthe way to servers loated on di�erent mahines are interepted by these type of �lter objets. Theloation of many to many �lter objets may be driven by the loads and resoures available on mahines.A �lter pipe an be simply stated as a olletion of �lter objets (stritly, referenes to �lter objets).Given a spei� on�guration from those disussed above, the designer may hoose to implement thesame over multiple pipes suitably holding referenes to �lter objets. For example, in a non distributedenvironment, a per server lass �lter pipe may be implemented by modeling all its methods and membervariable as lass members or stati members of JAVA. This saves memory overhead of having to reatea FilterPipe instane. Whereas, in a distributed environment, if only one FilterPipe is designed, allmessages to a server objet need to be routed through the single pipe. Alternatively, a �lter pipe maybe implemented on multiple mahines for a given server lass to exploit a loality of referene.8 Comparing Filter Objets with Composition FiltersThe main di�erene between �lter objets and omposition �lters is derived from separation of �lterspei�ations from the lasses they �lter. Moreover, �lter spei�ations themselves are modularized

in terms of lasses. The �lter objet model integrates the onept of transparent �ltering into objetorientation by means of an interlass �lter relationship. An instane of a �lter lass is a �rst lass objetin an environment, whih is a single address spae or a olletion of distributed ollaborating objets.Filter objets may be independently and dynamially plugged into message paths.9 Handling Feature InterationThe feature interation problem [3℄ an be briey stated as a problem of handling undesired e�etsof features when they interat through a ommon environment. In the �lter objet model, it may bepossible that a feature added by a �lter objet may onit with a feature already supported by anexisting �lter objet. The �lter objet model provides a notion of preedenes, with whih, message anbe made to pass through �lter objets in a predeided order. Similarly, �lter objets have the apabilityof ollaborating with eah other through diret message, and also of sharing objets external to them.New �lter objets may be injeted into the system at runtime and an existing hain of �lter objets anbe dynamially rearranged through a sequene of unplug and plug operations. We believe that theseapabilities o�er mehanisms for designing elegant solutions to feature interation problems.10 ConlusionsFilter Objet onstruts were desribed and an implementation of the same based on AspetJ wasdisussed. Filter Objet attahment apability is modeled as aspet. An example implementation ofthe repeater �lter on�guration was disussed. Four kinds of �lter bindings were introdued with therelated implementation issues. These are one-to-one, one-to-many, many-to-one and many-to-manybindings. The bindings are formed based on the number of lient and server instanes the �lter objetsare assoiated with. Per-lass �lters are viewed as speial ases of these bindings. Filter bindingsinuene implementation of �lter pipes and their deployment status.Referenes[1℄ Rushikesh K. Joshi and N. VivekanandD and D. Jankiram, Message Filters for Objet-orientedSystems, Software-pratie and Experiene, (27)6:677-699, June 1997.[2℄ Rushikesh K. Joshi, Filter Con�gurations for Transparent Interations in Distributed Objet Sys-tems, Journal of Objet Oriented Programming, 14(2):10-16, June/July 2001.[3℄ E. Cameron, A Feature Interation Benhmark for IN and Beyond, E.J. Cameron et al., A FeatureInteration Benhmark for IN and Beyond, in Feature Interations in Teleommuniations Systems,IOS press, 1-23, 1994.[4℄ Maureen M., Rushikesh K. Joshi, Filter Objet for JAVA, Computer Siene and Engineering, IITBombay, Otober 2000[5℄ Gregor Kizals, Anurag Mendhekar, Chris Mada, Cristina Vidira Lopes, Jean-Mar Loingtier,John Irwin, Aspet Oriented Programming, In proeedings of ECOOP'97, LNCS Vol. 1241, 220-242, June 1997.[6℄ G. Srirami Reddy and Rushikesh K. Joshi, Filter Objets for Distributed Objet Systems, Journalof Objet Oriented Programming, 13(9):12-17, January 2001.[7℄ Rushikesh K. Joshi, Modeling with Filter Objets in Distributed Systems, Proeedings of Engi-neering Distributed Objets 2000 at UC Davis, LNCS Vol. 1999, 182-187, 2000.

[8℄ Lodewijk M. L. Bergmans, The Composition-Filters Objet Model, Ph.D thesis, University ofTwente, June 1994.[9℄ IONA Tehnologies Ltd, Orbix Advaned Programmer's Guide, 1995.[10℄ M. Aksit and K. Wakita, Abstrating Objet Interations using Composition Filters, Proeedingsof ECOOP'93 Workshop on Objet Based Distributed Programming, 152-184, 1993.[11℄ AspetJ group, AspetJ Programming Guide, Xerox Corporation, 2001.

