AspectJ Implementation of Dynamically Pluggable Filter
Objects in Distributed Environment

Rushikesh K. Joshi and Neeraj Agrawal
Department of Computer Science and Engineering
Indian Institute of Technology, Bombay
Mumbai, India

Email: {rkj,neeraj}@Qcse.iith.ac.in

Abstract

Filter objects are dynamically pluggable first class objects which transparently intercept
messages sent to server objects to which they are attached. We describe an implementation
of Filter Objects for JAVA on Xerox PARC’s AspectJT™ . Aspect] supports the trans-
parency properties of Filter Objects. The implementation handles objects in a distributed
environment. One distinct feature of the filter object implementation is that filter objects
need not be developed at the compilation time of the base system. Filtering capabilities are
demonstrated through implementations of a distributed filter configurations. Various filter
binding types have been introduced and their related implementation issues are discussed.

Keywords: Filter objects, Aspect Oriented programming, Implementation Model, Filter
Bindings, Distributed Environment, Repeater Configuration

1 Introduction

One of the earliest filtering abstraction in a programming language is the Composition Filters
model of Aksit et al. for language Sina [8], [10]. Since the development of Composition Filters,
various mechanisms have been implemented for supporting filtering in programming languages
and environments. Filter Objects of Joshi et al. [1] represent a suit of abstract filter object
constructs for object oriented languages based on an interclass filter relationship. Filter objects
are dynamically pluggable first class objects. They can be passed and returned as parameters,
they have identities and they can be created dynamically. They are modular since they are
instance of classes. Filter objects have special capabilities to transparently intercept message
sent to server objects related to them. Filter objects, themselves being instances of classes,
can also receive direct messages just as other first class objects do. They can organize their
independent activities cohesively. Filter constructs have been implemented for C++ [1], JAVA
[4] and MICO CORBA [6].

The filter object constructs are primarily composed of an interclass filter relationship, filter
member specifications, and a filter binding mechanism. The interclass filter relationship makes
it possible to specify filter classes and eventually filter objects. A filter class specifies filtering
member functions which filter their respective server member functions when a filter instance is
plugged to a server object at run time. Filter binding mechanism facilitates dynamic plugging

Original Path

FilterContainerPi d

"

Filter Filter2

D

Figure 1: The Filter Model

and unplugging of filter instances (filter objects) to their respective servers. There are other
extended filter object constructs which provide additional capabilities to filter objects. For
example, filter objects can be layered, they can be made to filter a group of server objects. It
may also be possible to switch filter member function implementations at runtime.

This work reports an implementation of Filter Objects on AspectJ”[5]. We chose Aspect]
as a platform for implementation due to semantic similarities between the two suits, AspectJ
being a more general paradigm for separation of concerns and Filter Objects being a specific
suit of protocols for filtering. One important feature of this approach is the capability to specify
and attach filter objects at runtime. Filter classes need not exist at the time of compilation of
the application.

In the first section, we briefly overview the constructs of the filter object model followed by
a discussion on our approach to implementation based on AspectJ. A concrete implementation
of a filter configuration is presented, subsequently highlighting the underlying development life
cycle for filter based applications. Some issues arising in design and implementation of filter
objects in a distributed environment including bindings and deployment are discussed.

2 Filter Object Model
Filter Object model can be described in the form of following capabilities:

e Interclass filter relationship: A Filter class is like any other class except that it also
exports a filtering interface by virtue of the interclass filter relationship. The filtering
interface consists of filter members, which are automatically invoked by the execution
environment as indicated by filter bindings. A filter object may also export a public
interface apart from the filter interface. The public interface is available to objects that
know of its identity.

e Transparency: Filter objects are transparent to caller (client) or the callee (server). Client
and server objects need not know about the existence of the filter objects.

e Interception of upward and downward messages: A filter object can filter upward mes-
sages traveling towards the intended server with a member function called upfilter. An

upfilter member may pass or bounce the message. In the case of a bounce action, the
filter itself returns a result to the client on behalf of the intended destination. Also, it
can let the message pass through to the server. Similarly, a downfilter member function
can filter a return result on its way to client. Message arguments may be manipulated
inside a filter member. A filter object may also collaborate with other classes from within
automatic filtering member invocations.

e Dynamic pluggability: A filter object can be specified, created and attached to a server
object at runtime. Similarly, a filter object may be unplugged or delinked from filtering
paths at runtime.

e Chaining and Grouping of Filters: Multiple filter objects can be attached to one server
object. They are arranged in an order, in which, their services are called. It is also
possible to provide multiple filter classes for a server class. A filter object may be made
to filter a group of server instances provided that the filter relationship between their
respective classes is met.

3 Implementation Model

AspectJ [11] is a JAVA implementation model for separation of concerns based on Aspect
Oriented Programming [5]. Filter Objects are a specific suit of protocols at the level of object
oriented programming, while AspectJ can be seen as a general framework for separation of
concerns. AspectJ has been chosen as a substrate for implementing Filter Objects following
the guidelines listed below.

1) A filter object attachment to a server can be modeled as a cross-cutting Aspect. An
Aspect may be used as a Filter Pipe to hold all the filter objects for a given sever object. A
FilterPipe may be implemented in various modes such as per class, per server object or per
client-server pair.

2) AspectJ has the capability to model message interception in a modular way, which is a
requirement of the filter object model. By means of around advice on a call, messages can be
intercepted and made to go through a FilterPipe. An around advice provides enough control
over messages so that they can be bounced, passed and manipulated. Intermediate invocations
on other objects may be carried out by filter objects.

3) AspectJ has the capability to make the FilterPipe and Filter Objects transparent to
server and client. It does not require modification to the source code manually, which is a core
property required for implementing filter objects.

As shown in Figure 1, A client invokes a direct method on a server object shown by the
dotted line. This is the path taken in for non filterable classes. For a filterable class, the actual
path is shown by solid lines. FilterPipe is kept transparent in the sense its identity need not
be revealed to client or server objects. In the figure, the FilterPipe contains two filter objects.
The pipe is attached to two server instances. FilterPipes are bi-directional. All messages to
these two server instances and their return results flow through the FilterPipe.

The distributed environment for AspectJ-based filter implementation consists of collabo-
rating objects hosted by multiple JVMs running on a cluster of workstations. Collaborations

across JVMs are achieved through JAVA RMI mechanism. An important issue in filter imple-
mentations for distributed environment is the location of the filter objects. A filter object may
exist on the client machine where method call to the server object is originated, it may exist
on the machine on which the instance of the corresponding server class is located, or it may
be located on a third-party machine.

4 An Example Implementation

The implementation is discussed with the help of an example. In the example, a requirement
on an existing software is specified and a filter object based solution satisfying the same is
presented. The solution is based on the Repeater Configuration discussed in [2].

Requirement: An academic registration system provides an Enroller object through which
new-entrants can be enrolled into the system. While the application is executing, a new
student association is started on the campus. The new requirement states that at the time
of enrollment, a new-entrant should also be enrolled into the student’s association. Also, the
upgradation should be done without shutting down the application.

Solution: It is possible to satisfy the need in the conventional message passing model, if
such a need was anticipated by the designer. Also code for the new associations has to be
injected in the classes of the application which could be made possible through appropriate
componentization techniques. However, in the case of an unanticipated request, there may
be concerns that may not have been thought of at the time of designing and compilation.
Addressing this need, we now discuss an implementation with Filter Objects handled through
addition of a new Aspect can be added at runtime. Note that consistency criteria are of serious
concern in such a case and we presume that the same are met through explicit coding while
enabling the change. The solution is depicted in Figure 2. The implementation of the same is
discussed below.

The following class is a client to class Enroller, which sends a message enroll() to an instance
of class Enroller. Class Enroller is the server class to which filter object attachment is provided.

public class Client{
Enroller enr;
public Client() {
enr = new Enroller();
enr.enroll(new Student("John"));

}
public class Enroller {
static Vector allStudnets = new Vector();
public Enroller(){...}
public void enroll(Student newS){ allStudents.add(newS); }

Filter pipe for the server class is modeled as an Aspect to add the filter attachment capability to
class Enroller is given below. The aspect has two static member variables named upFilter Vector and
downFilter Vector of type vector. These two variables hold all the filters held in the filter pipe. A filter
is added to a pipe by inserting a filter object into these vectors.

Call to other object

Upward messages NewA ssociationEnroller

enrollerFilterPipe Enroller

Client

Y

S

) -

NewA ssociationFilter
Downward results

Figure 2: A Repeater

aspect enrollerFilterPipe{
static Vector upFilterVector = new Vector();
static Vector downFilterVector = new Vector();
pointcut enrollCall(enroller enr, String str):
target(enr) && args(str) && call(public boolean enroll(String));
String around(enroller enr,String str): enrollCall(enr,str)

The around advice and pointcut capture a method invocation on an instance of class Enroller. Upon
a message capture, it invokes the corresponding method on each filter attached in an order of their
appearance in the Vector. With this invocation, it provides them with the required context information
so that they can perform filter actions of pass, bounce and argument modification. This context
information includes a handle to the target object, array of arguments, and an object of type Result.
Upon bounce, the result is stored in this object. If the message is not bounced, original method is called
with the possibly modified arguments. Implementation of around advice is given below.

String around(enroller enr,String str): enrollCall(enr,str) {

boolean flag = true;

Result res = new Result();

enrollerFilter enrollerFilt;

Object args[] = new Object[1];

args[0] = str;

for (Enumeration e =upfilterVector.elements(); e.hasMoreElements() && flag;) {

enrollerFilt = (enrollerFilter)e.nextElement();

flag = flag && enrollerFilt.filterenroll(enr, args, res);

}

if (flag) res.retValue = proceed(enr, (String)args[0]); //not bounced

for (Enumeration e = downfilterVector.elements(); e.hasMoreElements();) {
enrollerFilt = (enrollerFilter)e.nextElement();
enrollerFilt.filterenroll(res);

}

return (String) res.retValue;

The base filter class for class Enroller and its concrete implementation is provided below. The
abstract base class EnrollerBaseFilter is extended by every filter class for class Enroller. A filter class

l

application FilterAspect Abstract
source code for classes BaseFilters

Filterclass

AspectJ compiler

AspectJ compiler

Application . . Abstract .
Compiled code FilterPipes Filterclasses Filter classes

Dynamic Filter Attachment

Figure 3: The Life Cycle

EnrollToOther Association given below performs the additional requirement by means of a message sent
to an external object.

interface EnrollerBaseFilter {
boolean filterenroll(Enroller target, Object args[], Result res);
void filterenroll(Result res);
}
class EnrollToOtherAssociation implements EnrollerBaseFilter {
New0rg newstudent(Org;
public boolean filterenroll(enroller enr, object args[], Result res){
newstudentOrg.enroll((Student) args[0]);
return true; // message is passed
}
public boolean filterenroll(Result res){};
}

To attach a filter object to a server class, one needs to insert it in the upFilterVector in the filter pipe.
Similarly, a downfilter can be attached to object by inserting a filter instance in to downFilterVector
of pipe as shown in Figure 2. The client instance makes a call to an enroller instance. It goes through
the filter pipe, intercepted by instance enrolToOtherAssociation, which satisfies the new requirement
and passes the message through it. In case of multiple filters (layering) attached to an object, they are
invoked in an order of their appearance in the vector.

5 The Development Lifecycle

Figure 3 depicts various stages in the development of a filter application. Once source code for the
application is ready, classes for which filter attachment capability is to be provided are identified.
For each such class, an Aspect is generated to capture method invoked on it. This Aspect may be
manually written or its skeleton automatically generated. For all methods in the server class, a point
cut with target and call primitive of AspectJ is included in the Aspect. Around advice is used to make

O——0O——=0

Q/’

m

Clients Filters Servers Clients Filters Servers

(a) One to One Filter Binding (c) Many to One Filter Binding

12
Clients Filters Servers Clients Filters Servers

(b) Oneto Many Filter Binding (d) Many to Many Filter Binding

Figure 4: Four Types of Filter Bindings

all messages pass through the FilterPipe. AspectJ compiler is used to weave these Aspects into the
application. After the application starts execution, a new filter extending the base filter for the target
class can be compiled and attached to the target server object through Reflection as shown in the figure
through a dotted line.

6 Filter Object Bindings

Filter instances can be categorized into four kinds called one to one, one to many, many to one and
many to many based on their bindings with client and server object. These bindings are discussed
below.

e One to One Filter: This type of filter object is bound with an instance each of server and
client class. Figure 4(a) shows this type of binding. This binding is used for <per-instance,
per-instance> pairing of client and server respectively. Thus, each filter object is associated with
a unique pairing. It can be noted that there could be a series of filter objects associated with a
pairing within this constraint.

e One to Many Filter: This type of filter object is bound to an instance of client, but can be
bound to more than one server instances as shown in Figure 4(b). This binding represents a <per-
instance, per-group> paring of client and server. Thus, a unique client object can be identified
for every filter object, whereas, a filter object may act as a filter to many server instances.

e Many to One Filter: This type of filter object is bound to an instance of a server and many
client instances as shown in Figure 4(c). This binding is identified as a <per-group, per-instance>
pairing, in which, a filter is associated with a group of clients. However, a filter object is associated
with a unique server instance.

e Many to Many Filter: This type of filter object is bound to multiple instances of server and
client. It can be represented as a <per-group, per-group> pairing of client and server instances.
A filter object may serve many clients and many servers as shown in Figure 4(d). In the figure,
the lower filter object is of type many-to-many, whereas, the upper object is of type one-to-many.

A group in these configurations can be carved out of a server class giving a per-server class binding.
Alternatively, a set of server instances may be identified to form a group. Similarly, at client side, a
group may either be considered to consist of all clients of a server object, or a specialized group may be

Table 1: Typical Deployment in a Distributed Environment

One to One Filter Client side/Server side
Many to One Filter Server side

One to Many Filter Client side

Many to Many Filter | Independent machine

formed. For each case, a suitable Aspect implementation needs to be chosen. For <per-instance, per-
instance> pairing, the mapping to filters requires two keys consisting of client and server identifiers.
Similarly,<per-instance, per-group> requires one key, which is client identifier, provided that it is a
per-server class filter. If the server side group is not a class group, a group key is also required. For
<per-group, per-instance> pairing, two keys are required to identify client group and server instance if
client side group is not formed of all clients. If the group represents all clients, only one key is required.
In the case of <per-group, per-group> pairing, two keys are required if groups do not represent all clients
and server-class. Otherwise, no key is required in this case. In case of a key-based implementation, a
mechanism such as Hash table can be used to store mappings.

7 Deployment of Filter Objects and Filter Pipes

Type of the filter object binding can be changed dynamically. They can be converted from one type
to another by dynamically plugging/unplugging them to appropriate server objects. In a distributed
environment, client and server objects may exist on different JVMs. A filter object in a distributed
environment executes within a single JVM, but is available remotely. Typical deployment suggestions
for filter objects are given in Table 1.

A location is chosen based on network overheads and also semantics of filtering. For a one to one
filter, most efficient location could be both client or server side as it does not have any network overhead.
It would be efficient to locate a one to many filter on the client side, since in this case, messages originate
only from one JVM and having filter objects on client side reduces the network overheads. For many to
one filter object, server side location is preferable. If located elsewhere, all method calls to the server
object originating from many client objects existing on different JVMs on different machines will have
to be routed through this single JVM resulting in additional network overheads. Many to many filter
objects incur message routing overheads since calls from clients located on different machines and on
the way to servers located on different machines are intercepted by these type of filter objects. The
location of many to many filter objects may be driven by the loads and resources available on machines.

A filter pipe can be simply stated as a collection of filter objects (strictly, references to filter objects).
Given a specific configuration from those discussed above, the designer may choose to implement the
same over multiple pipes suitably holding references to filter objects. For example, in a non distributed
environment, a per server class filter pipe may be implemented by modeling all its methods and member
variable as class members or static members of JAVA. This saves memory overhead of having to create
a FilterPipe instance. Whereas, in a distributed environment, if only one FilterPipe is designed, all
messages to a server object need to be routed through the single pipe. Alternatively, a filter pipe may
be implemented on multiple machines for a given server class to exploit a locality of reference.

8 Comparing Filter Objects with Composition Filters

The main difference between filter objects and composition filters is derived from separation of filter
specifications from the classes they filter. Moreover, filter specifications themselves are modularized

in terms of classes. The filter object model integrates the concept of transparent filtering into object
orientation by means of an interclass filter relationship. An instance of a filter class is a first class object
in an environment, which is a single address space or a collection of distributed collaborating objects.
Filter objects may be independently and dynamically plugged into message paths.

9 Handling Feature Interaction

The feature interaction problem [3] can be briefly stated as a problem of handling undesired effects
of features when they interact through a common environment. In the filter object model, it may be
possible that a feature added by a filter object may conflict with a feature already supported by an
existing filter object. The filter object model provides a notion of precedences, with which, message can
be made to pass through filter objects in a predecided order. Similarly, filter objects have the capability
of collaborating with each other through direct message, and also of sharing objects external to them.
New filter objects may be injected into the system at runtime and an existing chain of filter objects can
be dynamically rearranged through a sequence of unplug and plug operations. We believe that these
capabilities offer mechanisms for designing elegant solutions to feature interaction problems.

10 Conclusions

Filter Object constructs were described and an implementation of the same based on Aspect] was
discussed. Filter Object attachment capability is modeled as aspect. An example implementation of
the repeater filter configuration was discussed. Four kinds of filter bindings were introduced with the
related implementation issues. These are one-to-one, one-to-many, many-to-one and many-to-many
bindings. The bindings are formed based on the number of client and server instances the filter objects
are associated with. Per-class filters are viewed as special cases of these bindings. Filter bindings
influence implementation of filter pipes and their deployment status.

References

[1] Rushikesh K. Joshi and N. VivekanandD and D. Jankiram, Message Filters for Object-oriented
Systems, Software-practice and Experience, (27)6:677-699, June 1997.

[2] Rushikesh K. Joshi, Filter Configurations for Transparent Interactions in Distributed Object Sys-
tems, Journal of Object Oriented Programming, 14(2):10-16, June/July 2001.

[3] E. Cameron, A Feature Interaction Benchmark for IN and Beyond, E.J. Cameron et al., A Feature
Interaction Benchmark for IN and Beyond, in Feature Interactions in Telecommunications Systems,
10S press, 1-23, 1994.

[4] Maureen M., Rushikesh K. Joshi, Filter Object for JAVA, Computer Science and Engineering, IIT
Bombay, October 2000

[5] Gregor Kiczalcs, Anurag Mendhekar, Chris Macda, Cristina Vidcira Lopes, Jean-Marc Loingtier,
John Irwin, Aspect Oriented Programming, In proceedings of ECOOP’97, LNCS Vol. 1241, 220-
242, June 1997.

[6] G. Srirami Reddy and Rushikesh K. Joshi, Filter Objects for Distributed Object Systems, Journal
of Object Oriented Programming, 13(9):12-17, January 2001.

[7] Rushikesh K. Joshi, Modeling with Filter Objects in Distributed Systems, Proceedings of Engi-
neering Distributed Objects 2000 at UC Davis, LNCS Vol. 1999, 182-187, 2000.

[8] Lodewijk M. L. Bergmans, The Composition-Filters Object Model, Ph.D thesis, University of
Twente, June 1994.

[9] IONA Technologies Ltd, Orbix Advanced Programmer’s Guide, 1995.

[10] M. Aksit and K. Wakita, Abstracting Object Interactions using Composition Filters, Proceedings
of ECOOP’93 Workshop on Object Based Distributed Programming, 152-184, 1993.

[11] AspectJ group, AspectJ Programming Guide, Xerox Corporation, 2001.

