
Aspe
tJ Implementation of Dynami
ally Pluggable FilterObje
ts in Distributed EnvironmentRushikesh K. Joshi and Neeraj AgrawalDepartment of Computer S
ien
e and EngineeringIndian Institute of Te
hnology, BombayMumbai, IndiaEmail: frkj,neerajg�
se.iitb.a
.inAbstra
tFilter obje
ts are dynami
ally pluggable �rst 
lass obje
ts whi
h transparently inter
eptmessages sent to server obje
ts to whi
h they are atta
hed. We des
ribe an implementationof Filter Obje
ts for JAVA on Xerox PARC's Aspe
tJTM . Aspe
tJ supports the trans-paren
y properties of Filter Obje
ts. The implementation handles obje
ts in a distributedenvironment. One distin
t feature of the �lter obje
t implementation is that �lter obje
tsneed not be developed at the 
ompilation time of the base system. Filtering 
apabilities aredemonstrated through implementations of a distributed �lter 
on�gurations. Various �lterbinding types have been introdu
ed and their related implementation issues are dis
ussed.Keywords: Filter obje
ts, Aspe
t Oriented programming, Implementation Model, FilterBindings, Distributed Environment, Repeater Con�guration1 Introdu
tionOne of the earliest �ltering abstra
tion in a programming language is the Composition Filtersmodel of Aksit et al. for language Sina [8℄, [10℄. Sin
e the development of Composition Filters,various me
hanisms have been implemented for supporting �ltering in programming languagesand environments. Filter Obje
ts of Joshi et al. [1℄ represent a suit of abstra
t �lter obje
t
onstru
ts for obje
t oriented languages based on an inter
lass �lter relationship. Filter obje
tsare dynami
ally pluggable �rst 
lass obje
ts. They 
an be passed and returned as parameters,they have identities and they 
an be 
reated dynami
ally. They are modular sin
e they areinstan
e of 
lasses. Filter obje
ts have spe
ial 
apabilities to transparently inter
ept messagesent to server obje
ts related to them. Filter obje
ts, themselves being instan
es of 
lasses,
an also re
eive dire
t messages just as other �rst 
lass obje
ts do. They 
an organize theirindependent a
tivities 
ohesively. Filter 
onstru
ts have been implemented for C++ [1℄, JAVA[4℄ and MICO CORBA [6℄.The �lter obje
t 
onstru
ts are primarily 
omposed of an inter
lass �lter relationship, �ltermember spe
i�
ations, and a �lter binding me
hanism. The inter
lass �lter relationship makesit possible to spe
ify �lter 
lasses and eventually �lter obje
ts. A �lter 
lass spe
i�es �lteringmember fun
tions whi
h �lter their respe
tive server member fun
tions when a �lter instan
e isplugged to a server obje
t at run time. Filter binding me
hanism fa
ilitates dynami
 plugging



Client1

Cleint2

FilterContainerPipe

Server1
Original Path

Filter       
           NewServer

Filter2Figure 1: The Filter Modeland unplugging of �lter instan
es (�lter obje
ts) to their respe
tive servers. There are otherextended �lter obje
t 
onstru
ts whi
h provide additional 
apabilities to �lter obje
ts. Forexample, �lter obje
ts 
an be layered, they 
an be made to �lter a group of server obje
ts. Itmay also be possible to swit
h �lter member fun
tion implementations at runtime.This work reports an implementation of Filter Obje
ts on Aspe
tJTM [5℄. We 
hose Aspe
tJas a platform for implementation due to semanti
 similarities between the two suits, Aspe
tJbeing a more general paradigm for separation of 
on
erns and Filter Obje
ts being a spe
i�
suit of proto
ols for �ltering. One important feature of this approa
h is the 
apability to spe
ifyand atta
h �lter obje
ts at runtime. Filter 
lasses need not exist at the time of 
ompilation ofthe appli
ation.In the �rst se
tion, we brie
y overview the 
onstru
ts of the �lter obje
t model followed bya dis
ussion on our approa
h to implementation based on Aspe
tJ. A 
on
rete implementationof a �lter 
on�guration is presented, subsequently highlighting the underlying development life
y
le for �lter based appli
ations. Some issues arising in design and implementation of �lterobje
ts in a distributed environment in
luding bindings and deployment are dis
ussed.2 Filter Obje
t ModelFilter Obje
t model 
an be des
ribed in the form of following 
apabilities:� Inter
lass �lter relationship: A Filter 
lass is like any other 
lass ex
ept that it alsoexports a �ltering interfa
e by virtue of the inter
lass �lter relationship. The �lteringinterfa
e 
onsists of �lter members, whi
h are automati
ally invoked by the exe
utionenvironment as indi
ated by �lter bindings. A �lter obje
t may also export a publi
interfa
e apart from the �lter interfa
e. The publi
 interfa
e is available to obje
ts thatknow of its identity.� Transparen
y: Filter obje
ts are transparent to 
aller (
lient) or the 
allee (server). Clientand server obje
ts need not know about the existen
e of the �lter obje
ts.� Inter
eption of upward and downward messages: A �lter obje
t 
an �lter upward mes-sages traveling towards the intended server with a member fun
tion 
alled up�lter. An



up�lter member may pass or boun
e the message. In the 
ase of a boun
e a
tion, the�lter itself returns a result to the 
lient on behalf of the intended destination. Also, it
an let the message pass through to the server. Similarly, a down�lter member fun
tion
an �lter a return result on its way to 
lient. Message arguments may be manipulatedinside a �lter member. A �lter obje
t may also 
ollaborate with other 
lasses from withinautomati
 �ltering member invo
ations.� Dynami
 pluggability: A �lter obje
t 
an be spe
i�ed, 
reated and atta
hed to a serverobje
t at runtime. Similarly, a �lter obje
t may be unplugged or delinked from �lteringpaths at runtime.� Chaining and Grouping of Filters: Multiple �lter obje
ts 
an be atta
hed to one serverobje
t. They are arranged in an order, in whi
h, their servi
es are 
alled. It is alsopossible to provide multiple �lter 
lasses for a server 
lass. A �lter obje
t may be madeto �lter a group of server instan
es provided that the �lter relationship between theirrespe
tive 
lasses is met.3 Implementation ModelAspe
tJ [11℄ is a JAVA implementation model for separation of 
on
erns based on Aspe
tOriented Programming [5℄. Filter Obje
ts are a spe
i�
 suit of proto
ols at the level of obje
toriented programming, while Aspe
tJ 
an be seen as a general framework for separation of
on
erns. Aspe
tJ has been 
hosen as a substrate for implementing Filter Obje
ts followingthe guidelines listed below.1) A �lter obje
t atta
hment to a server 
an be modeled as a 
ross-
utting Aspe
t. AnAspe
t may be used as a Filter Pipe to hold all the �lter obje
ts for a given sever obje
t. AFilterPipe may be implemented in various modes su
h as per 
lass, per server obje
t or per
lient-server pair.2) Aspe
tJ has the 
apability to model message inter
eption in a modular way, whi
h is arequirement of the �lter obje
t model. By means of around advi
e on a 
all, messages 
an beinter
epted and made to go through a FilterPipe. An around advi
e provides enough 
ontrolover messages so that they 
an be boun
ed, passed and manipulated. Intermediate invo
ationson other obje
ts may be 
arried out by �lter obje
ts.3) Aspe
tJ has the 
apability to make the FilterPipe and Filter Obje
ts transparent toserver and 
lient. It does not require modi�
ation to the sour
e 
ode manually, whi
h is a 
oreproperty required for implementing �lter obje
ts.As shown in Figure 1, A 
lient invokes a dire
t method on a server obje
t shown by thedotted line. This is the path taken in for non �lterable 
lasses. For a �lterable 
lass, the a
tualpath is shown by solid lines. FilterPipe is kept transparent in the sense its identity need notbe revealed to 
lient or server obje
ts. In the �gure, the FilterPipe 
ontains two �lter obje
ts.The pipe is atta
hed to two server instan
es. FilterPipes are bi-dire
tional. All messages tothese two server instan
es and their return results 
ow through the FilterPipe.The distributed environment for Aspe
tJ-based �lter implementation 
onsists of 
ollabo-rating obje
ts hosted by multiple JVMs running on a 
luster of workstations. Collaborations



a
ross JVMs are a
hieved through JAVA RMI me
hanism. An important issue in �lter imple-mentations for distributed environment is the lo
ation of the �lter obje
ts. A �lter obje
t mayexist on the 
lient ma
hine where method 
all to the server obje
t is originated, it may existon the ma
hine on whi
h the instan
e of the 
orresponding server 
lass is lo
ated, or it maybe lo
ated on a third-party ma
hine.4 An Example ImplementationThe implementation is dis
ussed with the help of an example. In the example, a requirementon an existing software is spe
i�ed and a �lter obje
t based solution satisfying the same ispresented. The solution is based on the Repeater Con�guration dis
ussed in [2℄.Requirement: An a
ademi
 registration system provides an Enroller obje
t through whi
hnew-entrants 
an be enrolled into the system. While the appli
ation is exe
uting, a newstudent asso
iation is started on the 
ampus. The new requirement states that at the timeof enrollment, a new-entrant should also be enrolled into the student's asso
iation. Also, theupgradation should be done without shutting down the appli
ation.Solution: It is possible to satisfy the need in the 
onventional message passing model, ifsu
h a need was anti
ipated by the designer. Also 
ode for the new asso
iations has to beinje
ted in the 
lasses of the appli
ation whi
h 
ould be made possible through appropriate
omponentization te
hniques. However, in the 
ase of an unanti
ipated request, there maybe 
on
erns that may not have been thought of at the time of designing and 
ompilation.Addressing this need, we now dis
uss an implementation with Filter Obje
ts handled throughaddition of a new Aspe
t 
an be added at runtime. Note that 
onsisten
y 
riteria are of serious
on
ern in su
h a 
ase and we presume that the same are met through expli
it 
oding whileenabling the 
hange. The solution is depi
ted in Figure 2. The implementation of the same isdis
ussed below.The following 
lass is a 
lient to 
lass Enroller, whi
h sends a message enroll() to an instan
eof 
lass Enroller. Class Enroller is the server 
lass to whi
h �lter obje
t atta
hment is provided.publi
 
lass Client{Enroller enr;publi
 Client() {enr = new Enroller();enr.enroll(new Student("John"));}}publi
 
lass Enroller {stati
 Ve
tor allStudnets = new Ve
tor();publi
 Enroller(){...}publi
 void enroll(Student newS){ allStudents.add(newS); }} Filter pipe for the server 
lass is modeled as an Aspe
t to add the �lter atta
hment 
apability to
lass Enroller is given below. The aspe
t has two stati
 member variables named upFilterVe
tor anddownFilterVe
tor of type ve
tor. These two variables hold all the �lters held in the �lter pipe. A �lteris added to a pipe by inserting a �lter obje
t into these ve
tors.



Call to other object

enrollerFilterPipe

Upward messages

Downward results
NewAssociationFilter

Enroller

NewAssociationEnroller

Client

Figure 2: A Repeateraspe
t enrollerFilterPipe{stati
 Ve
tor upFilterVe
tor = new Ve
tor();stati
 Ve
tor downFilterVe
tor = new Ve
tor();point
ut enrollCall(enroller enr, String str):target(enr) && args(str) && 
all(publi
 boolean enroll(String));String around(enroller enr,String str ): enrollCall(enr,str) ...} The around advi
e and point
ut 
apture a method invo
ation on an instan
e of 
lass Enroller. Upona message 
apture, it invokes the 
orresponding method on ea
h �lter atta
hed in an order of theirappearan
e in the Ve
tor. With this invo
ation, it provides them with the required 
ontext informationso that they 
an perform �lter a
tions of pass, boun
e and argument modi�
ation. This 
ontextinformation in
ludes a handle to the target obje
t, array of arguments, and an obje
t of type Result.Upon boun
e, the result is stored in this obje
t. If the message is not boun
ed, original method is 
alledwith the possibly modi�ed arguments. Implementation of around advi
e is given below.String around(enroller enr,String str ): enrollCall(enr,str) {boolean flag = true;Result res = new Result();enrollerFilter enrollerFilt;Obje
t args[℄ = new Obje
t[1℄;args[0℄ = str;for(Enumeration e =upfilterVe
tor.elements(); e.hasMoreElements() && flag; ) {enrollerFilt = (enrollerFilter)e.nextElement();flag = flag && enrollerFilt.filterenroll(enr, args, res);}if (flag) res.retValue = pro
eed(enr,(String)args[0℄); //not boun
edfor ( Enumeration e = downfilterVe
tor.elements(); e.hasMoreElements(); ) {enrollerFilt = (enrollerFilter)e.nextElement();enrollerFilt.filterenroll(res);}return (String) res.retValue;}} The base �lter 
lass for 
lass Enroller and its 
on
rete implementation is provided below. Theabstra
t base 
lass EnrollerBaseFilter is extended by every �lter 
lass for 
lass Enroller. A �lter 
lass



AspectJ compiler

application FilterAspect
BaseFilters

Filterclass
for classessource code

Application
Compiled code Filter classes

Abstract
FilterclassesFilterPipes

AspectJ compiler

JVM
Dynamic Filter Attachment

Abstract

Figure 3: The Life Cy
leEnrollToOtherAsso
iation given below performs the additional requirement by means of a message sentto an external obje
t.interfa
e EnrollerBaseFilter {boolean filterenroll(Enroller target, Obje
t args[℄, Result res);void filterenroll(Result res);}
lass EnrollToOtherAsso
iation implements EnrollerBaseFilter {NewOrg newstudentOrg;publi
 boolean filterenroll(enroller enr, obje
t args[℄, Result res){newstudentOrg.enroll((Student) args[0℄);return true; // message is passed}publi
 boolean filterenroll(Result res){};} To atta
h a �lter obje
t to a server 
lass, one needs to insert it in the upFilterVe
tor in the �lter pipe.Similarly, a down�lter 
an be atta
hed to obje
t by inserting a �lter instan
e in to downFilterVe
torof pipe as shown in Figure 2. The 
lient instan
e makes a 
all to an enroller instan
e. It goes throughthe �lter pipe, inter
epted by instan
e enrolToOtherAsso
iation, whi
h satis�es the new requirementand passes the message through it. In 
ase of multiple �lters (layering) atta
hed to an obje
t, they areinvoked in an order of their appearan
e in the ve
tor.5 The Development Life
y
leFigure 3 depi
ts various stages in the development of a �lter appli
ation. On
e sour
e 
ode for theappli
ation is ready, 
lasses for whi
h �lter atta
hment 
apability is to be provided are identi�ed.For ea
h su
h 
lass, an Aspe
t is generated to 
apture method invoked on it. This Aspe
t may bemanually written or its skeleton automati
ally generated. For all methods in the server 
lass, a point
ut with target and 
all primitive of Aspe
tJ is in
luded in the Aspe
t. Around advi
e is used to make



Clients Filters Servers Clients Filters Servers

Clients Filters Servers FiltersClients Servers

1

1

2
2

21

1

(b) One to Many Filter Binding                                 (d) Many to Many Filter Binding

(a) One to One Filter Binding                                      (c) Many to One Filter Binding

Figure 4: Four Types of Filter Bindingsall messages pass through the FilterPipe. Aspe
tJ 
ompiler is used to weave these Aspe
ts into theappli
ation. After the appli
ation starts exe
ution, a new �lter extending the base �lter for the target
lass 
an be 
ompiled and atta
hed to the target server obje
t through Re
e
tion as shown in the �gurethrough a dotted line.6 Filter Obje
t BindingsFilter instan
es 
an be 
ategorized into four kinds 
alled one to one, one to many, many to one andmany to many based on their bindings with 
lient and server obje
t. These bindings are dis
ussedbelow.� One to One Filter: This type of �lter obje
t is bound with an instan
e ea
h of server and
lient 
lass. Figure 4(a) shows this type of binding. This binding is used for <per-instan
e,per-instan
e> pairing of 
lient and server respe
tively. Thus, ea
h �lter obje
t is asso
iated witha unique pairing. It 
an be noted that there 
ould be a series of �lter obje
ts asso
iated with apairing within this 
onstraint.� One to Many Filter: This type of �lter obje
t is bound to an instan
e of 
lient, but 
an bebound to more than one server instan
es as shown in Figure 4(b). This binding represents a <per-instan
e, per-group> paring of 
lient and server. Thus, a unique 
lient obje
t 
an be identi�edfor every �lter obje
t, whereas, a �lter obje
t may a
t as a �lter to many server instan
es.� Many to One Filter: This type of �lter obje
t is bound to an instan
e of a server and many
lient instan
es as shown in Figure 4(
). This binding is identi�ed as a <per-group, per-instan
e>pairing, in whi
h, a �lter is asso
iated with a group of 
lients. However, a �lter obje
t is asso
iatedwith a unique server instan
e.� Many to Many Filter: This type of �lter obje
t is bound to multiple instan
es of server and
lient. It 
an be represented as a <per-group, per-group> pairing of 
lient and server instan
es.A �lter obje
t may serve many 
lients and many servers as shown in Figure 4(d). In the �gure,the lower �lter obje
t is of type many-to-many, whereas, the upper obje
t is of type one-to-many.A group in these 
on�gurations 
an be 
arved out of a server 
lass giving a per-server 
lass binding.Alternatively, a set of server instan
es may be identi�ed to form a group. Similarly, at 
lient side, agroup may either be 
onsidered to 
onsist of all 
lients of a server obje
t, or a spe
ialized group may be



Table 1: Typi
al Deployment in a Distributed EnvironmentOne to One Filter Client side/Server sideMany to One Filter Server sideOne to Many Filter Client sideMany to Many Filter Independent ma
hineformed. For ea
h 
ase, a suitable Aspe
t implementation needs to be 
hosen. For <per-instan
e, per-instan
e> pairing, the mapping to �lters requires two keys 
onsisting of 
lient and server identi�ers.Similarly,<per-instan
e, per-group> requires one key, whi
h is 
lient identi�er, provided that it is aper-server 
lass �lter. If the server side group is not a 
lass group, a group key is also required. For<per-group, per-instan
e> pairing, two keys are required to identify 
lient group and server instan
e if
lient side group is not formed of all 
lients. If the group represents all 
lients, only one key is required.In the 
ase of <per-group, per-group> pairing, two keys are required if groups do not represent all 
lientsand server-
lass. Otherwise, no key is required in this 
ase. In 
ase of a key-based implementation, ame
hanism su
h as Hash table 
an be used to store mappings.7 Deployment of Filter Obje
ts and Filter PipesType of the �lter obje
t binding 
an be 
hanged dynami
ally. They 
an be 
onverted from one typeto another by dynami
ally plugging/unplugging them to appropriate server obje
ts. In a distributedenvironment, 
lient and server obje
ts may exist on di�erent JVMs. A �lter obje
t in a distributedenvironment exe
utes within a single JVM, but is available remotely. Typi
al deployment suggestionsfor �lter obje
ts are given in Table 1.A lo
ation is 
hosen based on network overheads and also semanti
s of �ltering. For a one to one�lter, most eÆ
ient lo
ation 
ould be both 
lient or server side as it does not have any network overhead.It would be eÆ
ient to lo
ate a one to many �lter on the 
lient side, sin
e in this 
ase, messages originateonly from one JVM and having �lter obje
ts on 
lient side redu
es the network overheads. For many toone �lter obje
t, server side lo
ation is preferable. If lo
ated elsewhere, all method 
alls to the serverobje
t originating from many 
lient obje
ts existing on di�erent JVMs on di�erent ma
hines will haveto be routed through this single JVM resulting in additional network overheads. Many to many �lterobje
ts in
ur message routing overheads sin
e 
alls from 
lients lo
ated on di�erent ma
hines and onthe way to servers lo
ated on di�erent ma
hines are inter
epted by these type of �lter obje
ts. Thelo
ation of many to many �lter obje
ts may be driven by the loads and resour
es available on ma
hines.A �lter pipe 
an be simply stated as a 
olle
tion of �lter obje
ts (stri
tly, referen
es to �lter obje
ts).Given a spe
i�
 
on�guration from those dis
ussed above, the designer may 
hoose to implement thesame over multiple pipes suitably holding referen
es to �lter obje
ts. For example, in a non distributedenvironment, a per server 
lass �lter pipe may be implemented by modeling all its methods and membervariable as 
lass members or stati
 members of JAVA. This saves memory overhead of having to 
reatea FilterPipe instan
e. Whereas, in a distributed environment, if only one FilterPipe is designed, allmessages to a server obje
t need to be routed through the single pipe. Alternatively, a �lter pipe maybe implemented on multiple ma
hines for a given server 
lass to exploit a lo
ality of referen
e.8 Comparing Filter Obje
ts with Composition FiltersThe main di�eren
e between �lter obje
ts and 
omposition �lters is derived from separation of �lterspe
i�
ations from the 
lasses they �lter. Moreover, �lter spe
i�
ations themselves are modularized



in terms of 
lasses. The �lter obje
t model integrates the 
on
ept of transparent �ltering into obje
torientation by means of an inter
lass �lter relationship. An instan
e of a �lter 
lass is a �rst 
lass obje
tin an environment, whi
h is a single address spa
e or a 
olle
tion of distributed 
ollaborating obje
ts.Filter obje
ts may be independently and dynami
ally plugged into message paths.9 Handling Feature Intera
tionThe feature intera
tion problem [3℄ 
an be brie
y stated as a problem of handling undesired e�e
tsof features when they intera
t through a 
ommon environment. In the �lter obje
t model, it may bepossible that a feature added by a �lter obje
t may 
on
i
t with a feature already supported by anexisting �lter obje
t. The �lter obje
t model provides a notion of pre
eden
es, with whi
h, message 
anbe made to pass through �lter obje
ts in a prede
ided order. Similarly, �lter obje
ts have the 
apabilityof 
ollaborating with ea
h other through dire
t message, and also of sharing obje
ts external to them.New �lter obje
ts may be inje
ted into the system at runtime and an existing 
hain of �lter obje
ts 
anbe dynami
ally rearranged through a sequen
e of unplug and plug operations. We believe that these
apabilities o�er me
hanisms for designing elegant solutions to feature intera
tion problems.10 Con
lusionsFilter Obje
t 
onstru
ts were des
ribed and an implementation of the same based on Aspe
tJ wasdis
ussed. Filter Obje
t atta
hment 
apability is modeled as aspe
t. An example implementation ofthe repeater �lter 
on�guration was dis
ussed. Four kinds of �lter bindings were introdu
ed with therelated implementation issues. These are one-to-one, one-to-many, many-to-one and many-to-manybindings. The bindings are formed based on the number of 
lient and server instan
es the �lter obje
tsare asso
iated with. Per-
lass �lters are viewed as spe
ial 
ases of these bindings. Filter bindingsin
uen
e implementation of �lter pipes and their deployment status.Referen
es[1℄ Rushikesh K. Joshi and N. VivekanandD and D. Jankiram, Message Filters for Obje
t-orientedSystems, Software-pra
ti
e and Experien
e, (27)6:677-699, June 1997.[2℄ Rushikesh K. Joshi, Filter Con�gurations for Transparent Intera
tions in Distributed Obje
t Sys-tems, Journal of Obje
t Oriented Programming, 14(2):10-16, June/July 2001.[3℄ E. Cameron, A Feature Intera
tion Ben
hmark for IN and Beyond, E.J. Cameron et al., A FeatureIntera
tion Ben
hmark for IN and Beyond, in Feature Intera
tions in Tele
ommuni
ations Systems,IOS press, 1-23, 1994.[4℄ Maureen M., Rushikesh K. Joshi, Filter Obje
t for JAVA, Computer S
ien
e and Engineering, IITBombay, O
tober 2000[5℄ Gregor Ki
zal
s, Anurag Mendhekar, Chris Ma
da, Cristina Vid
ira Lopes, Jean-Mar
 Loingtier,John Irwin, Aspe
t Oriented Programming, In pro
eedings of ECOOP'97, LNCS Vol. 1241, 220-242, June 1997.[6℄ G. Srirami Reddy and Rushikesh K. Joshi, Filter Obje
ts for Distributed Obje
t Systems, Journalof Obje
t Oriented Programming, 13(9):12-17, January 2001.[7℄ Rushikesh K. Joshi, Modeling with Filter Obje
ts in Distributed Systems, Pro
eedings of Engi-neering Distributed Obje
ts 2000 at UC Davis, LNCS Vol. 1999, 182-187, 2000.



[8℄ Lodewijk M. L. Bergmans, The Composition-Filters Obje
t Model, Ph.D thesis, University ofTwente, June 1994.[9℄ IONA Te
hnologies Ltd, Orbix Advan
ed Programmer's Guide, 1995.[10℄ M. Aksit and K. Wakita, Abstra
ting Obje
t Intera
tions using Composition Filters, Pro
eedingsof ECOOP'93 Workshop on Obje
t Based Distributed Programming, 152-184, 1993.[11℄ Aspe
tJ group, Aspe
tJ Programming Guide, Xerox Corporation, 2001.


