ShadowObjects: A Programming Model for Service
Replication in Distributed Object Systems

Rushikesh K. Joshi O. Ramakrishna, D. Janaki Ram
Department of Computer Sc. & Engg. Department of Computer Sc. & Engg.
Indian Institute of Technology Indian Institute of Technology
Bombay-400076, India Madras-600036, India

E-mail: rkj@cse.iith.ernet.in, oram@lotus.iitm.ernet.in, djram@lotus.iitm.ernet.in

Abstract

With the growing emphasis on distributed applications, sophisticated program-
ming models for handling replication become important. Control replication as an
issue has so far been considered in the larger context of distributed systems such
as ISIS and Arjuna. We present a programming model called ShadowODbjects for
programming replicated services to cater to the needs of control replication in dis-
tributed object oriented systems. The ShadowObjects model provides primitives
for building highly available and redundant services. Replication in ShadowOb-
jects is encapsulated and a replica access control mechanism is provided. Messages
accessing the services exported by a server object can be captured on-the-fly, and
can be appropriately scheduled on the replicas. The ShadowObjects model can be

used to develop applications for distributed systems.

Keywords: control replication, distributed object systems, highly available ser-

vices, redundant services, replica access control

1 Introduction

Replication has been widely recognized for its ability to provide high availability, paral-
lelism and fault tolerance in distributed systems. Control replication deals with replica-
tion of control flow. An example of control replication is the replicated workers model
in distributed systems [1]. Another example of control replication is a replicated state-

less service. This paper deals with mechanisms to program control replication that are



used to build replicated services. The paper does not address the issues of data replica-
tion. The replicas in ShadowObjects are independent servers and hence do not maintain

consistency among their local states.

Various existing approaches to distributed programming systems such as ISIS [2], Ar-
juna [10] and Charm++ [7] provide support for replication. In these systems, replication
is provided as part of larger systems that are built for applications such as database
systems or parallel computations. Whereas, ShadowObjects is a highly specialized pro-
gramming model tailored only for the needs of control replication. ShadowObjects treats
the replicas as servers exporting services and not as data objects that are replicated for

availability.

While replicated data items in ISIS, active and passive replicas of Arjuna, and design
patterns such as Field Partitioning [15] provide data-centric approaches to replication,
Charm++ [7] and Interface Groups of ANSA [11] provide a group communication model
for replicated objects that can be used for control replication. In Charm++, a branched
chare forms a single handler for the replicas, whereas interface groups provide one in-
terface handle for multiple replicated interfaces. While Charm++ is targeted for a
distributed programming environment, the ShadowObjects model discusses the issues
relating to replication of independent servers in distributed systems. Horus[3] is another
example of a group communication protocol which supports groups of processes. In
contrast to group-oriented replication, where a group addressing abstraction is primary,
the ShadowObjects model provides a service-oriented model for replication. Replicated
services can not only be used in a group to obtain redundant services, but they can also

be converted into independent servers.

Novel features of ShadowObjects include the access control mechanism and on-the-fly
message filtering. The other features provided by ShadowObjects are vote-based N-
modular-redundant services and highly available remote calls. These mechanisms of
ShadowObjects are intended for building replicated services. It is possible to adapt the

mechanisms of ShadowObjects for a more general distributed programming language.

Most of the features of ShadowObjects are provided using a library approach. This ap-
proach makes ShadowObjects a general purpose utility for building distributed services.
ShadowObjects was implemented on a network of Sun workstations for the C++ pro-

gramming language [13]. This paper describes examples and some interesting features



of the implementation at appropriate places.

2 The Mechanisms of ShadowObjects

In the ShadowObjects model, an object that replicates is called a replicate agent. A
replicate agent obtains the replication behavior via inheritance, and replicates itself by
making a member function call. Replicas provide the same interface as provided by the
replicate agent. Replicas can be created on remote machines. Remote client objects
may access services of the replicas. Replicas are asynchronous and independent. This

section describes various features of the ShadowObjects model.
Encapsulation of Replication

Replication may be an object’s internal decision hidden behind its public interface. For
example, a server object might replicate itself internally to cater to an additional load

without the clients having to know about the replication.
Replica Access Control Mechanism

A replicate agent may hide the replicas as its internal implementation. In such a case,
the access to replicas is governed by the replicate agent itself. A construct called Capture
is provided to filter messages to the replicate agent and to route them to its replicas.

Replicate agents provide their own capture specifications.

A direct access to a replica may also be made by remote clients. To provide this open
distributed access, a replicate agent performs an expose operation on its replica. During
run time, it is possible to switch between direct access and access through the replicate
agent. As an example, a resource manager controlling a pool of replicated services may
be modeled as a replicate agent making the replicate-agent’s address accessible only to
privileged users. If the inflow of the privileged requests is low, the replicate-agent may

make available some of its replicas to requests from a wider domain.
Support for N-Modular-Redundant Programming

This feature provides redundancy to the services of the replicate agent. Using this mech-
anism, it is possible for a replicate agent to simultaneously execute multiple invocations

of a service on its many replicas. One of the available results can be voted to be the



Replicate-agent

Figure 1: The Basic Replication Model

final result. The voting mechanism is not only useful for redundant services but also
for applications that return varying results. As an example, a service that reports the
load on its host machine can be modeled using NMR services. The service can be made
to return the most lightly loaded machine’s address for use by an independent parallel
application such as a PVM [14] task. The voting routine has a specific semantics and

the routine is supplied by an application.
Highly Available Remote Services

Access to the highly available remote services in ShadowObjects is based on the dy-
namic binding of remote calls to servers. When a client accesses a highly available
service through a specially designed interface, the destination of the invocation is left
unspecified. At the time of actual invocation, the system chooses one of the available
replicated services for the actual execution of the service requested. As an example,
a news-reader service may be replicated at multiple locations and late binding can be

applied to select the actual reader.

3 The Basic Replication Mechanism

A replicate agent class inherits a standard superclass called Replica. This approach is
similar to earlier library approaches for extended functionalities such as for providing

concurrency in Eiffel [8], and atomic transactions and persistence in Arjuna [10].

An instance of class Replica may create its own replicas by making an internal call to
a function called replicate() that is defined in the superclass Replica. Figure 1 shows
the basic replication mechanism. The member replicate() takes as its arguments, the

number of replicas and a list of machines on which the replicas are to be created.

The superclass exports an interface that consists of mechanisms for controlling the access



Eval :: Eval (int copies) {
MachineList ML;

class Eval : public Replica { // build the list by invoking calls on ML
private:

Eval (int); bindService (0, serv__add);

serv__add (); bindService (1, serv__mult);

serv__mult (); replicate (copies, ML);
public: }

float add (float, float); main () {

float mult (float, float); Eval E (4);

Figure 2: An Example of Server Replication

to replicas and mechanisms for redundancy. When an object replicates, a replica receives
the state of the object just prior to replication. The control in the creator of the replica
resumes, whereas the replica is now a shadow object of the creator ready to provide
services. Since replication is achieved by making a function call, replication can be

dynamic.

A replicate-agent has to define message service routines to be invoked by the replicas for
processing the messages received. A service is initiated by making a call to the member
function bindService(). This call binds each message service routine to an identifier.

Messages to replicas use this identifier to access the services.

An example program in Figure 2 shows a C++ based implementation of replication of
a server. The server object E belonging to class Eval is modeled as a replicate agent.
It exports two functions and is replicated to obtain four replicas. The replicate-agent
defines message service routines serv__add() and serv__mult(), and binds them as services

of the replicas before making a call to replicate().

A replica becomes an active object immediately after its creation. Once a replica be-
comes active, it enters the service loop where it waits for messages from the replicate-

agent and invokes the service routines bound earlier by the replicate-agent.

In Figure 2, the member function replicate() receives an argument which specifies the
number of replicas to be created. Another attribute is the placement specification for

replicas specifying the nodes on which the replicas are to be created.



3.1 Creation of remote replicas

By default, the replicas of an object are named by numbers starting from 0 and onwards,
and the place for the replicas is the same machine as that of the replicate-agent object.

Remote replicas are created by explicitly stating the set of remote machines.

The ShadowObjects model implements two mechanisms for creation of replicas on remote
machines. In the first approach, a replica is created on the same machine and migrated
to its destination using process migration. After the migration, communication links are
established. This approach has the advantage that it does not need a translation stage.

However, process migration fails when heterogeneous architectures are involved.

The second approach is the RIB (Remote Instruction Block) code migration approach
as implemented in Object-Based Subcontracting [5]. In this approach, the blocks that
need to be activated on a remote machine need to be built at compile time from the
source program and assembled as an RIB. The RIBs may be kept in executable formats
for homogeneous computing. Source code migration with remote compilation may be

used for heterogeneous architectures.

Process migration is costlier than the RIB approach in terms of execution time. However,
the RIB approach has an additional overhead of a translator stage for building the RIBs.
The current implementation of ShadowObjects supports a low level mechanism that

accepts prewritten RIBs in a standard RIB format.

3.2 Writing message service routines

The message service routines are executed when messages are delivered to a replica. A
service routine performs three tasks. It receives arguments from the caller, calls the
desired service using these arguments, and subsequently saves the results for future use.
Figure 3 shows the definitions of the two service routines as declared in Figure 2. The
functions in ShadowObjects need to use predefined messages for receiving and sending
the arguments. The following functions are used for writing the message service routines

for use by the shadow objects:
1. revMsgFromCaller (void *buffer, int sz)

The replica receives the message of sz bytes into the specified buffer space.



void Eval :: serv__add () { void Eval :: serv__mult () {

float x, y, z; // locals float x, y, z; // locals
rcvMsgFromCaller (&x, sizeof x); rcvMsgFromCaller (&x, sizeof x);
rcvMsgFromCaller (&y, sizeof y); rcvMsgFromCaller (&y, sizeof y);
z = add (x, y); z = mult (x, y);
saveResult (&z, sizeof z); saveResult (&z, sizeof z);

} I

Figure 3: Defining Message Service Routines

Replicate-agent

public
interface

getResult

.soveResuH
o

Replica

Figure 4: Accessing the Services of a Replica

2. saveResult (void *result, int sz)

The result of the current computation, as identified by the buffer space result of sz bytes
is saved into an internally managed result space. This makes the calls to service members
from the replicate-agent non-blocking. A result can be pulled out of the result space at

a later time by the replicate-agent by using a predefined function getResult().

3.3 Calling the services of a replica

Figure 4 depicts the mechanism for accessing the services of a replica. The services
are called in a non-blocking fashion. The replica stores the results until the results are
fetched by the replicate-agent. A particular service in a replica can be called with a call
to postOp(), which posts an operation request to the replica. It makes a non-blocking

call to a service routine of the replica. The postOp() function has the form:
int postOp (Name replica_name, int service_id, arglist..),

Where replica_name is the name of the replica to which the message is being sent,
and service_id is the identifier for the service desired. The arglist has the form

sizel, &argl, size2, &arg2,...,T. It specifies a list of pointers to the arguments to be



main ()
{
int rid1, rid2;
float a=..., b=...;
float resl, res2;
Eval E (2); // create 2 replicas
ridl = E.postOp (0, 0, sizeof a, &a, sizeof b, &b, T); // call service 0 of replica 0
rid2 = E.postOp (1, 1, sizeof a, &a, sizeof b, &b, T); // call service 1 of replica 1
E.getResult (ridl, sizeof resl, &resl);
E.getResult (rid2, sizeof res2, &res2);
cout << resl << ”"\n” << res2 << ”"\n”;
E.destroy (ALL);

Figure 5: Function main() using Replication

passed to a service along with their sizes. A system defined terminator T specifies the
end of the list. The call returns immediately with a request identifier. This identifier
can be used later to obtain the results of the execution. This mechanism is similar to

the promises of Argus [9] used for asynchronous calls.

3.4 Obtaining the results

The results of a particular operation can be collected by making a call to getResult():
getResult (int request-id, int sz, void *result)

The first argument specifies the id of an earlier posting. Argument sz specifies the size
of the expected result. The result is deposited at the buffer space specified by the result

pointer.

Figure 5 shows the main() function in which replicas are created and their services called

using the features discussed until now.

4 N-modular-redundant programming

This mechanism provides language support for N-modular-redundant programming [12].
An application can request multiple invocations of a particular service and subsequently
select one of the available results through a voting mechanism. A variant of the function

postOp() called NMRpostOp() is provided:



int NMRpostOp (int redundancy_number, int service_id, arglist..),

This member function takes the redundancy number as an argument instead of
replica_name as in postOp() function. It returns an id on which the voted result can

be collected.

The superclass Replica defines a virtual member called NMRvote(). A derived replicate-
agent class that uses the NMR facility must define this virtual member. NMRuvote() is
called automatically by the NMRgetres() function, which obtains the result of an earlier
NMR posting. NMRgetres() internally calls NMRvote() whenever a new result becomes
available. The results form the arguments for successive NMRvote() invocations. When
the status of all executions is available, an additional last call to NMRvote() is made
with an argument VOTE_NOW. At this invocation, NMRvote() must return the agreed-
upon value. This value is returned as the return value of the NMRgetres() call. It
is also possible to return the final result after at least one replica returns the result
successfully. In this case, results from other invocations are discarded. A final return
value is distinguished from a pending return value by using a special return value called
PENDING_RESULT. Applications must provide appropriate voting routines that follow

these semantics.

5 The Replica Access Control Mechanism

This mechanism makes it possible to provide centralized or distributed access to the
replicas. The replicate-agent regulates access to the replicas. By default, the replicas
are hidden behind the public interface of the replicate-agent. The Capture construct
can be used to capture the messages to replicate-agent on-the-fly and to route them

appropriately to its replicas.

A replicate-agent can expose its replicas leading to distributed access. In the case of
exposure, outside objects in the system can communicate with the replicas bypassing

the replicate-agent after they undergo a link operation.



public capture
interface specification

Replicate-agent ;@:

captured ’ h

. captured
message _ -

~~.message

=7 \
1

'

.

_

Figure 6: Call Capturing

class Eval : public Replica {
captures;
private:

void serv__mult ();

// ... members for round robin Eval :: Capture {
// scheduling algorithm float mult(float x, float y)
public: Q{
Eval (int); int rid, location;
float mult (float, float); float res;
I location = RoundRobin ();
Eval :: Eval (int copies ) { rid = postOp (location, 1, sizeof (x),
&x, sizeof (y), &y, T);
bindService (0, serv__mult); getResult (rid, sizeof res, &res);
replicate (copies) ; return (res);
} 1@
}s

Figure 7: A Capture Specification
5.1 Centralized access through hide

Centralized access is the default choice made by a replicate-agent. In the case of hiding,
other objects in the system know only of the replicate-agent and send messages to the
replicate-agent alone. Thus the replicate-agent provides a single interface to all the
replicas and internally handles the scheduling of requests to them. The Capture code
captures the messages sent to an object before they are actually delivered to it. It is
a static form of the more general filter objects [6] that manipulate messages on-the-
fly. The Capture code is used for capturing messages sent to a replicate-agent and for
scheduling them on the replicas instead of processing them at the replicate-agent itself.
Figure 6 shows a replicate-agent that performs call capturing and scheduling. A call to
any public member function of the replicate-agent can be captured and routed to one of

the replicas.

An example capture specification is shown in Figure 7. A capture code can access the

10



—_

- - (expose (replica1,"orion");
External
T

r I
replica 1 |
s orl ®
Replicate-agent '
Objec
>~
AL' K t
ink to
Replica 2 Replica 1 orion u
remoteOp

Figure 8: The Expose Mechanism

arguments to the member function that it captures. Local variables can be created
within a capture specification. A capture code is enclosed within capture code markers

as shown in the figure.

The capture construct has an additional overhead that it requires a translation stage.
Alternatively, a capture code could be directly introduced into the code of the function
that it captures, thereby eliminating the translation stage. However, this would merge
the functionalities of the message scheduler and the actual message processing code.
Capture provides a better abstraction for separating message control from message pro-

cessing.

5.2 Distributed access through expose

Distributed access to replicas can be achieved by exposing them to objects on other
nodes. After the exposure, the replicas can be directly contacted by other objects. The
expose mode makes the replicas independent and allows them to be accessible from a
wider domain. It also removes the bottleneck of the replicate-agent since the replicas

are independently contacted in expose mode.

Figure 8 depicts the expose mechanism of the ShadowObjects model. The function
expose(), is called by the replicate-agent to expose its replica. A new system-wide
name is given to it for further referencing by other objects in the network. A name
server maintains the system-wide names. An exposure can be withdrawn with a call to
function unezpose(). If an unexpose() call is made to a replica when it is in the midst
of servicing a request, the requested service is completed first. No more direct requests

are accepted after an unezpose() call, and the exposure is withdrawn.

11



class Interface : public Link { ...
public:
float remote_add (float, float);
float local_mult (float, float) {...};
}s

int Interface :: remote_add (float a, float b) { main () {

int rid; Interface i_obj;
float result; i_obj.link (”orion”);
rid = remoteOp (0, sizeof (float), cout << i_obj.remote_add (...);
&a, sizeof(float),&b,T); // a remote operation
getRemoteResult (rid, sizeof (float), cout << i_obj.local_mult (...);
&result); // a local operation
return (result); i_obj.unlink ();
} }

Figure 9: Linking an Exposed Replica
5.3 Linking to remote replicas

To communicate with a replica, a remote program creates an interface object. This
object is created by inheriting a system defined superclass called Link. The Link class

defines members to build interface objects that import remote services.

Figure 9 shows a program specifying an interface object which links and communicates
with a remote replica. In the figure, class Interface defines the interface object by
inheriting class Link. A remote_add() function has been defined for calling a service of
a replica. The local_mult() function executes locally. When the object i_obj, an instance
of the Interface class, invokes the inherited link() member function, the specified replica
orion is linked with i_obj. It enables main() to send a message remote_add() to i_obj.

At the end of the program, an unlink is performed.
The public members of the Link class are described below.
1. int link (char *name)

A call to link() links the named object to a replica. The replica can be specified by

argument name. A positive integer return value specifies that the linking is successful.
2. int remoteOp (int operation-id, arglist..., T)

The function sends a message to the replica that has been linked. The arguments are
similar to those in postOp() member function provided for hidden replicas. The call

returns with a request identifier.

12



3. getRemoteResult (int rid, int sz, void *result)

It blocks the caller for obtaining the result of a previous operation invoked on a replica.
The identifier of the operation and the space for holding the result is specified. By
checking the return value of getRemoteResult(), a failure due to a crash or an unsuccessful

operation due to an unerpose can be detected.
4. unlink ()

The interface object can unlink itself from the replica by a call to unlink(). The call
takes no arguments. A previously linked interface object cannot link itself to a new

object until it unlinks by an unlink() call.

The differences between proxies [4] and interface objects are noteworthy. Proxies directly
correspond to their actual objects, whereas, interface objects are only links to remote
servers. Interface objects can be linked dynamically to objects of different types unlike
proxies which are meant to handle requests only for specific types. Remote method invo-
cation through interface objects is performed by two independent calls, one for making
the member function invocation and the other for obtaining the result subsequently. In
between these two activities, the client may perform another useful computation. The

interface object shown in Figure 9 implements an RPC-like synchronous interaction.

6 Highly Available Distributed Services

ShadowObjects provides a mechanism to exploit the highly available replicated services.
Special types of links called highly available links are supported to enable clients to take
advantage of high availability. A client of a highly available service does not bind to a

particular replica, instead it relies on late binding.

Figure 10 depicts this late binding mechanism. If the linking of an interface object is
performed with a member function HA_link (), the link is not bound immediately, unlike
the ordinary link() call. The HA_link () call binds the link to a family of replicas and
not to a specific replica. When a remoteOp () call is made, the specific link binding
is performed. Out of the available replicas, the system chooses a suitable replica and
executes the requested service on it. This mechanism makes it possible to exploit the

high availablily of distributed services. Since late binding is performed, unavailability

13



Late Binding -~

‘. HA_Link
) to replicate agent

v y \
remoteOp

External
Object

Figure 10: Late Binding in ShadowObjects

due to failures can be tolerated. Moreover, it is possible to equally distribute the load

among the replicas, if highly available services are used.

7 Conclusions

We presented ShadowObjects, a programming model for building replicated services in
the context of control replication in distributed systems. The mechanisms of ShadowOb-
jects constitute encapsulated dynamic replication, replica access control, N-modular-
redundant services and highly available services. Both distributed and centralized access
to replicas are supported. A capture construct is introduced to capture on-the-fly the
messages sent to a replicate-agent, and to schedule them on the replicas. The mecha-

nisms of ShadowObjects are implemented in C++ on a network of Sun workstations.

Acknowledgement

We thank the anonymous reviewers for their efforts in providing valuable suggestions

and comments, which have resulted improvements in this work.

References

[1] G. R. Andrews, Paradigms for Process Interaction in Distributed Programs, ACM
Computing Surveys, 23(1): 49-90; March 1991.

[2] Kenneth P. Birman, The Process Group Approach to Reliable Distributed Com-
puting, Communications of the ACM, 36(12): 37-53; December 1993.

14



3]

[10]

[11]

[12]

[13]

[14]

Robbert van Renesse, Kenneth P. Birman, and Silvano Maffeis, Horus: A Flexible
Communication System, Communications of the ACM, 39(4): 76-83; April 1996.

E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Reading, Addison Wesley, 1995.

Rushikesh K. Joshi, D. Janaki Ram, Object-Based Subcontracting for Parallel Pro-
gramming on Loosely-Coupled Distributed Systems, Journal of Programming Lan-

guages, 4 (1996), 169-183.

Rushikesh K. Joshi, Vivekananda N., D. Janaki Ram, Message Filters for Object
Oriented Systems, Software-Practice and Ezperience, Vol. 26(6), June 1997, 667-
699.

Laxmikant Kale and S. Krishnan, Charm++: A Portable Concurrent Object Ori-
ented System Based On C++, In 8th Annual Conf. on Object-oriented Programming
Systems, Languages and Applications, ACM Sigplan Notices 28(10): 91-108, Oct.
1993.

Murat Karaorman & John Bruno, Introducing Concurrency to a Sequential Lan-

guage, Communications of the ACM, 36(9); Sept. 1993, 103-115.

Liskov B. and Shrira L., Promises: Linguistic Support for Efficient Asynchronous
Procedure Calls in Distributed Systems, Programming Language Design and Im-

plementation, SIGPLAN’88 Conference, 260-267.

Mark C. Little, Santhosh K. Shrivastava, Object Replication in Arjuna, ESPRIT
Basic Research Project 6360, University of Newcastle, UK.

Ed Oskiewicz, Nigel Edwards, A Model for Interface Groups, APM.1002.01, ANSA,
Cambridge, U.K., May 1994.

S.K. Shrivastava, Replicated Distributed Processing, In Proceedings of the confer-
ence on Networking in Open Systems, LNCS-248, 1987.

B. Stroustrup, The C++ Programming Language, 2nd Ed., Addison-Wesley, 1991.

V.S. Sunderam, PVM: A Framework for Parallel Distributed Computing, Concur-
rency: Practice and Ezperience, 2(4): 315-339; December 1990.

15



[15] C. Weir, Using Replication for Distribution, Object Designers Ltd., August 1995.

16



