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used to build replicated services. The paper does not address the issues of data replica-tion. The replicas in ShadowObjects are independent servers and hence do not maintainconsistency among their local states.Various existing approaches to distributed programming systems such as ISIS [2], Ar-juna [10] and Charm++ [7] provide support for replication. In these systems, replicationis provided as part of larger systems that are built for applications such as databasesystems or parallel computations. Whereas, ShadowObjects is a highly specialized pro-gramming model tailored only for the needs of control replication. ShadowObjects treatsthe replicas as servers exporting services and not as data objects that are replicated foravailability.While replicated data items in ISIS, active and passive replicas of Arjuna, and designpatterns such as Field Partitioning [15] provide data-centric approaches to replication,Charm++ [7] and Interface Groups of ANSA [11] provide a group communication modelfor replicated objects that can be used for control replication. In Charm++, a branchedchare forms a single handler for the replicas, whereas interface groups provide one in-terface handle for multiple replicated interfaces. While Charm++ is targeted for adistributed programming environment, the ShadowObjects model discusses the issuesrelating to replication of independent servers in distributed systems. Horus[3] is anotherexample of a group communication protocol which supports groups of processes. Incontrast to group-oriented replication, where a group addressing abstraction is primary,the ShadowObjects model provides a service-oriented model for replication. Replicatedservices can not only be used in a group to obtain redundant services, but they can alsobe converted into independent servers.Novel features of ShadowObjects include the access control mechanism and on-the-ymessage �ltering. The other features provided by ShadowObjects are vote-based N-modular-redundant services and highly available remote calls. These mechanisms ofShadowObjects are intended for building replicated services. It is possible to adapt themechanisms of ShadowObjects for a more general distributed programming language.Most of the features of ShadowObjects are provided using a library approach. This ap-proach makes ShadowObjects a general purpose utility for building distributed services.ShadowObjects was implemented on a network of Sun workstations for the C++ pro-gramming language [13]. This paper describes examples and some interesting features2



of the implementation at appropriate places.2 The Mechanisms of ShadowObjectsIn the ShadowObjects model, an object that replicates is called a replicate agent. Areplicate agent obtains the replication behavior via inheritance, and replicates itself bymaking a member function call. Replicas provide the same interface as provided by thereplicate agent. Replicas can be created on remote machines. Remote client objectsmay access services of the replicas. Replicas are asynchronous and independent. Thissection describes various features of the ShadowObjects model.Encapsulation of ReplicationReplication may be an object's internal decision hidden behind its public interface. Forexample, a server object might replicate itself internally to cater to an additional loadwithout the clients having to know about the replication.Replica Access Control MechanismA replicate agent may hide the replicas as its internal implementation. In such a case,the access to replicas is governed by the replicate agent itself. A construct called Captureis provided to �lter messages to the replicate agent and to route them to its replicas.Replicate agents provide their own capture speci�cations.A direct access to a replica may also be made by remote clients. To provide this opendistributed access, a replicate agent performs an expose operation on its replica. Duringrun time, it is possible to switch between direct access and access through the replicateagent. As an example, a resource manager controlling a pool of replicated services maybe modeled as a replicate agent making the replicate-agent's address accessible only toprivileged users. If the inow of the privileged requests is low, the replicate-agent maymake available some of its replicas to requests from a wider domain.Support for N-Modular-Redundant ProgrammingThis feature provides redundancy to the services of the replicate agent. Using this mech-anism, it is possible for a replicate agent to simultaneously execute multiple invocationsof a service on its many replicas. One of the available results can be voted to be the3
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Figure 1: The Basic Replication Model�nal result. The voting mechanism is not only useful for redundant services but alsofor applications that return varying results. As an example, a service that reports theload on its host machine can be modeled using NMR services. The service can be madeto return the most lightly loaded machine's address for use by an independent parallelapplication such as a PVM [14] task. The voting routine has a speci�c semantics andthe routine is supplied by an application.Highly Available Remote ServicesAccess to the highly available remote services in ShadowObjects is based on the dy-namic binding of remote calls to servers. When a client accesses a highly availableservice through a specially designed interface, the destination of the invocation is leftunspeci�ed. At the time of actual invocation, the system chooses one of the availablereplicated services for the actual execution of the service requested. As an example,a news-reader service may be replicated at multiple locations and late binding can beapplied to select the actual reader.3 The Basic Replication MechanismA replicate agent class inherits a standard superclass called Replica. This approach issimilar to earlier library approaches for extended functionalities such as for providingconcurrency in Ei�el [8], and atomic transactions and persistence in Arjuna [10].An instance of class Replica may create its own replicas by making an internal call toa function called replicate() that is de�ned in the superclass Replica. Figure 1 showsthe basic replication mechanism. The member replicate() takes as its arguments, thenumber of replicas and a list of machines on which the replicas are to be created.The superclass exports an interface that consists of mechanisms for controlling the access4



class Eval : public Replica fprivate:Eval (int);serv add ();serv mult ();public: oat add (oat, oat);oat mult (oat, oat);g
Eval :: Eval (int copies) fMachineList ML;// build the list by invoking calls on ML...bindService (0, serv add);bindService (1, serv mult);replicate (copies, ML);gmain () fEval E (4);....gFigure 2: An Example of Server Replicationto replicas and mechanisms for redundancy. When an object replicates, a replica receivesthe state of the object just prior to replication. The control in the creator of the replicaresumes, whereas the replica is now a shadow object of the creator ready to provideservices. Since replication is achieved by making a function call, replication can bedynamic.A replicate-agent has to de�ne message service routines to be invoked by the replicas forprocessing the messages received. A service is initiated by making a call to the memberfunction bindService(). This call binds each message service routine to an identi�er.Messages to replicas use this identi�er to access the services.An example program in Figure 2 shows a C++ based implementation of replication ofa server. The server object E belonging to class Eval is modeled as a replicate agent.It exports two functions and is replicated to obtain four replicas. The replicate-agentde�nes message service routines serv add() and serv mult(), and binds them as servicesof the replicas before making a call to replicate().A replica becomes an active object immediately after its creation. Once a replica be-comes active, it enters the service loop where it waits for messages from the replicate-agent and invokes the service routines bound earlier by the replicate-agent.In Figure 2, the member function replicate() receives an argument which speci�es thenumber of replicas to be created. Another attribute is the placement speci�cation forreplicas specifying the nodes on which the replicas are to be created.
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3.1 Creation of remote replicasBy default, the replicas of an object are named by numbers starting from 0 and onwards,and the place for the replicas is the same machine as that of the replicate-agent object.Remote replicas are created by explicitly stating the set of remote machines.The ShadowObjects model implements two mechanisms for creation of replicas on remotemachines. In the �rst approach, a replica is created on the same machine and migratedto its destination using process migration. After the migration, communication links areestablished. This approach has the advantage that it does not need a translation stage.However, process migration fails when heterogeneous architectures are involved.The second approach is the RIB (Remote Instruction Block) code migration approachas implemented in Object-Based Subcontracting [5]. In this approach, the blocks thatneed to be activated on a remote machine need to be built at compile time from thesource program and assembled as an RIB. The RIBs may be kept in executable formatsfor homogeneous computing. Source code migration with remote compilation may beused for heterogeneous architectures.Process migration is costlier than the RIB approach in terms of execution time. However,the RIB approach has an additional overhead of a translator stage for building the RIBs.The current implementation of ShadowObjects supports a low level mechanism thataccepts prewritten RIBs in a standard RIB format.3.2 Writing message service routinesThe message service routines are executed when messages are delivered to a replica. Aservice routine performs three tasks. It receives arguments from the caller, calls thedesired service using these arguments, and subsequently saves the results for future use.Figure 3 shows the de�nitions of the two service routines as declared in Figure 2. Thefunctions in ShadowObjects need to use prede�ned messages for receiving and sendingthe arguments. The following functions are used for writing the message service routinesfor use by the shadow objects:1. rcvMsgFromCaller (void *bu�er, int sz)The replica receives the message of sz bytes into the speci�ed bu�er space.6



void Eval :: serv add () foat x, y, z; // localsrcvMsgFromCaller (&x, sizeof x);rcvMsgFromCaller (&y, sizeof y);z = add (x, y);saveResult (&z, sizeof z);g; void Eval :: serv mult () foat x, y, z; // localsrcvMsgFromCaller (&x, sizeof x);rcvMsgFromCaller (&y, sizeof y);z = mult (x, y);saveResult (&z, sizeof z);g;Figure 3: De�ning Message Service Routines
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Figure 4: Accessing the Services of a Replica2. saveResult (void *result, int sz)The result of the current computation, as identi�ed by the bu�er space result of sz bytesis saved into an internally managed result space. This makes the calls to service membersfrom the replicate-agent non-blocking. A result can be pulled out of the result space ata later time by the replicate-agent by using a prede�ned function getResult().3.3 Calling the services of a replicaFigure 4 depicts the mechanism for accessing the services of a replica. The servicesare called in a non-blocking fashion. The replica stores the results until the results arefetched by the replicate-agent. A particular service in a replica can be called with a callto postOp(), which posts an operation request to the replica. It makes a non-blockingcall to a service routine of the replica. The postOp() function has the form:int postOp (Name replica name, int service id, arglist..),Where replica name is the name of the replica to which the message is being sent,and service id is the identi�er for the service desired. The arglist has the formsize1;&arg1; size2;&arg2; :::; T . It speci�es a list of pointers to the arguments to be7



main ()fint rid1, rid2;oat a=..., b=...;oat res1, res2;Eval E (2); // create 2 replicasrid1 = E.postOp (0, 0, sizeof a, &a, sizeof b, &b, T); // call service 0 of replica 0rid2 = E.postOp (1, 1, sizeof a, &a, sizeof b, &b, T); // call service 1 of replica 1E.getResult (rid1, sizeof res1, &res1);E.getResult (rid2, sizeof res2, &res2);cout << res1 << "\n" << res2 << "\n";E.destroy (ALL);g Figure 5: Function main() using Replicationpassed to a service along with their sizes. A system de�ned terminator T speci�es theend of the list. The call returns immediately with a request identi�er. This identi�ercan be used later to obtain the results of the execution. This mechanism is similar tothe promises of Argus [9] used for asynchronous calls.3.4 Obtaining the resultsThe results of a particular operation can be collected by making a call to getResult():getResult (int request-id, int sz, void *result)The �rst argument speci�es the id of an earlier posting. Argument sz speci�es the sizeof the expected result. The result is deposited at the bu�er space speci�ed by the resultpointer.Figure 5 shows the main() function in which replicas are created and their services calledusing the features discussed until now.4 N-modular-redundant programmingThis mechanism provides language support for N-modular-redundant programming [12].An application can request multiple invocations of a particular service and subsequentlyselect one of the available results through a voting mechanism. A variant of the functionpostOp() called NMRpostOp() is provided: 8



int NMRpostOp (int redundancy number, int service id, arglist..),This member function takes the redundancy number as an argument instead ofreplica name as in postOp() function. It returns an id on which the voted result canbe collected.The superclass Replica de�nes a virtual member called NMRvote(). A derived replicate-agent class that uses the NMR facility must de�ne this virtual member. NMRvote() iscalled automatically by the NMRgetres() function, which obtains the result of an earlierNMR posting. NMRgetres() internally calls NMRvote() whenever a new result becomesavailable. The results form the arguments for successive NMRvote() invocations. Whenthe status of all executions is available, an additional last call to NMRvote() is madewith an argument VOTE NOW. At this invocation, NMRvote() must return the agreed-upon value. This value is returned as the return value of the NMRgetres() call. Itis also possible to return the �nal result after at least one replica returns the resultsuccessfully. In this case, results from other invocations are discarded. A �nal returnvalue is distinguished from a pending return value by using a special return value calledPENDING RESULT. Applications must provide appropriate voting routines that followthese semantics.5 The Replica Access Control MechanismThis mechanism makes it possible to provide centralized or distributed access to thereplicas. The replicate-agent regulates access to the replicas. By default, the replicasare hidden behind the public interface of the replicate-agent. The Capture constructcan be used to capture the messages to replicate-agent on-the-y and to route themappropriately to its replicas.A replicate-agent can expose its replicas leading to distributed access. In the case ofexposure, outside objects in the system can communicate with the replicas bypassingthe replicate-agent after they undergo a link operation.
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Figure 6: Call Capturingclass Eval : public Replica fcaptures;private: void serv mult ();// ... members for round robin// scheduling algorithmpublic: Eval (int);oat mult (oat, oat);g;Eval :: Eval (int copies ) f...bindService (0, serv mult);replicate (copies) ;g;...
Eval :: Capture foat mult(oat x, oat y)@f int rid, location;oat res;location = RoundRobin ();rid = postOp (location, 1, sizeof (x),&x, sizeof (y), &y, T);getResult (rid, sizeof res, &res);return (res);g@g;Figure 7: A Capture Speci�cation5.1 Centralized access through hideCentralized access is the default choice made by a replicate-agent. In the case of hiding,other objects in the system know only of the replicate-agent and send messages to thereplicate-agent alone. Thus the replicate-agent provides a single interface to all thereplicas and internally handles the scheduling of requests to them. The Capture codecaptures the messages sent to an object before they are actually delivered to it. It isa static form of the more general �lter objects [6] that manipulate messages on-the-y. The Capture code is used for capturing messages sent to a replicate-agent and forscheduling them on the replicas instead of processing them at the replicate-agent itself.Figure 6 shows a replicate-agent that performs call capturing and scheduling. A call toany public member function of the replicate-agent can be captured and routed to one ofthe replicas.An example capture speci�cation is shown in Figure 7. A capture code can access the10
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Figure 8: The Expose Mechanismarguments to the member function that it captures. Local variables can be createdwithin a capture speci�cation. A capture code is enclosed within capture code markersas shown in the �gure.The capture construct has an additional overhead that it requires a translation stage.Alternatively, a capture code could be directly introduced into the code of the functionthat it captures, thereby eliminating the translation stage. However, this would mergethe functionalities of the message scheduler and the actual message processing code.Capture provides a better abstraction for separating message control from message pro-cessing.5.2 Distributed access through exposeDistributed access to replicas can be achieved by exposing them to objects on othernodes. After the exposure, the replicas can be directly contacted by other objects. Theexpose mode makes the replicas independent and allows them to be accessible from awider domain. It also removes the bottleneck of the replicate-agent since the replicasare independently contacted in expose mode.Figure 8 depicts the expose mechanism of the ShadowObjects model. The functionexpose(), is called by the replicate-agent to expose its replica. A new system-widename is given to it for further referencing by other objects in the network. A nameserver maintains the system-wide names. An exposure can be withdrawn with a call tofunction unexpose(). If an unexpose() call is made to a replica when it is in the midstof servicing a request, the requested service is completed �rst. No more direct requestsare accepted after an unexpose() call, and the exposure is withdrawn.11



class Interface : public Link f ...public: oat remote add (oat, oat);oat local mult (oat, oat) f...g;g;int Interface :: remote add (oat a, oat b) fint rid;oat result;rid = remoteOp (0, sizeof (oat),&a, sizeof(oat),&b,T);getRemoteResult (rid, sizeof (oat),&result);return (result);g;
...main () fInterface i obj;i obj.link ("orion");cout << i obj.remote add (...);// a remote operationcout << i obj.local mult (...);// a local operationi obj.unlink ();gFigure 9: Linking an Exposed Replica5.3 Linking to remote replicasTo communicate with a replica, a remote program creates an interface object. Thisobject is created by inheriting a system de�ned superclass called Link. The Link classde�nes members to build interface objects that import remote services.Figure 9 shows a program specifying an interface object which links and communicateswith a remote replica. In the �gure, class Interface de�nes the interface object byinheriting class Link. A remote add() function has been de�ned for calling a service ofa replica. The local mult() function executes locally. When the object i obj, an instanceof the Interface class, invokes the inherited link() member function, the speci�ed replicaorion is linked with i obj. It enables main() to send a message remote add() to i obj.At the end of the program, an unlink is performed.The public members of the Link class are described below.1. int link (char *name)A call to link() links the named object to a replica. The replica can be speci�ed byargument name. A positive integer return value speci�es that the linking is successful.2. int remoteOp (int operation-id, arglist..., T)The function sends a message to the replica that has been linked. The arguments aresimilar to those in postOp() member function provided for hidden replicas. The callreturns with a request identi�er. 12



3. getRemoteResult (int rid, int sz, void *result)It blocks the caller for obtaining the result of a previous operation invoked on a replica.The identi�er of the operation and the space for holding the result is speci�ed. Bychecking the return value of getRemoteResult(), a failure due to a crash or an unsuccessfuloperation due to an unexpose can be detected.4. unlink ()The interface object can unlink itself from the replica by a call to unlink(). The calltakes no arguments. A previously linked interface object cannot link itself to a newobject until it unlinks by an unlink() call.The di�erences between proxies [4] and interface objects are noteworthy. Proxies directlycorrespond to their actual objects, whereas, interface objects are only links to remoteservers. Interface objects can be linked dynamically to objects of di�erent types unlikeproxies which are meant to handle requests only for speci�c types. Remote method invo-cation through interface objects is performed by two independent calls, one for makingthe member function invocation and the other for obtaining the result subsequently. Inbetween these two activities, the client may perform another useful computation. Theinterface object shown in Figure 9 implements an RPC-like synchronous interaction.6 Highly Available Distributed ServicesShadowObjects provides a mechanism to exploit the highly available replicated services.Special types of links called highly available links are supported to enable clients to takeadvantage of high availability. A client of a highly available service does not bind to aparticular replica, instead it relies on late binding.Figure 10 depicts this late binding mechanism. If the linking of an interface object isperformed with a member function HA link (), the link is not bound immediately, unlikethe ordinary link() call. The HA link () call binds the link to a family of replicas andnot to a speci�c replica. When a remoteOp () call is made, the speci�c link bindingis performed. Out of the available replicas, the system chooses a suitable replica andexecutes the requested service on it. This mechanism makes it possible to exploit thehigh availablily of distributed services. Since late binding is performed, unavailability13
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Figure 10: Late Binding in ShadowObjectsdue to failures can be tolerated. Moreover, it is possible to equally distribute the loadamong the replicas, if highly available services are used.7 ConclusionsWe presented ShadowObjects, a programming model for building replicated services inthe context of control replication in distributed systems. The mechanisms of ShadowOb-jects constitute encapsulated dynamic replication, replica access control, N-modular-redundant services and highly available services. Both distributed and centralized accessto replicas are supported. A capture construct is introduced to capture on-the-y themessages sent to a replicate-agent, and to schedule them on the replicas. The mecha-nisms of ShadowObjects are implemented in C++ on a network of Sun workstations.AcknowledgementWe thank the anonymous reviewers for their e�orts in providing valuable suggestionsand comments, which have resulted improvements in this work.References[1] G. R. Andrews, Paradigms for Process Interaction in Distributed Programs, ACMComputing Surveys, 23(1): 49-90; March 1991.[2] Kenneth P. Birman, The Process Group Approach to Reliable Distributed Com-puting, Communications of the ACM, 36(12): 37-53; December 1993.14
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